[go: up one dir, main page]

US3830291A - Apparatus for the solidification of molten sulphur - Google Patents

Apparatus for the solidification of molten sulphur Download PDF

Info

Publication number
US3830291A
US3830291A US00158076A US15807671A US3830291A US 3830291 A US3830291 A US 3830291A US 00158076 A US00158076 A US 00158076A US 15807671 A US15807671 A US 15807671A US 3830291 A US3830291 A US 3830291A
Authority
US
United States
Prior art keywords
sulphur
belt
cooling
bath
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00158076A
Inventor
E Ellithorpe
R Fletcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enersul LP
Original Assignee
Procor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procor Ltd filed Critical Procor Ltd
Priority to US00158076A priority Critical patent/US3830291A/en
Application granted granted Critical
Publication of US3830291A publication Critical patent/US3830291A/en
Assigned to PROCOR LIMITED, A CANADIAN CORP. reassignment PROCOR LIMITED, A CANADIAN CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: VENNARD & ELLITHORPE, LTD., A CORP. OF ALBERTA
Assigned to PROCOR SULPHUR SERVICES INC. reassignment PROCOR SULPHUR SERVICES INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PROCOR LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0216Solidification or cooling of liquid sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/135Movable heat exchanger
    • Y10S165/136Movable belt or strip transfers heat to or from objects or material thereon

Definitions

  • ABSTRACT Apparatus for solidifying sulphur has a belt formed with undulations or alternately angled tilted sections which contact cooling liquid in a cooling bath and cause molten sulphur to flow relative to the belt surface and thereby increase the rate of cooling of the sulphur.
  • the cooling liquid is circulated through a heat exchanger for cooling the liquid, and the belt has longitudinal edge surfaces preventing flow of the sulphur over the belt edges.
  • This invention relates generally to apparatus for the solidification of molten sulphur.
  • the present invention contemplates the feeding of molten sulphur on the normally upper surface of a movable member, the cooling and solidification of molten sulphur thereon and the dispatch and delivery of solid or partially solid sulphur formations of a predetermined size from said movable member.
  • Elemental sulphur is normally recovered initially by the Frasch process and by treatment of hydrogen sulphite bearing natural and industrial gases in molten form.
  • Sulphur mined by the Frasch process for example, is in a liquid state and must be solidified for shipment.
  • Numerous methods have been proposed for the rapid solidification of molten sulphur, its handling and transportation in a safe and efficient manner but at the present time none has proved completely acceptable. Indeed, some of the present practices of delivering molten sulphur for storage, its actual method of storage and subsequent recovery for use, are so clearly inefficient and in need of improvement that they are inconsistent with the general standards of todays technology. Certain well known methods of sulphur storage and recovery are almost somewhat archaic in their nature and clearly indicate the need for improvement.
  • molten sulphur is poured into rectangular forms, usually about eighteen inches in height and then allowed to cool and solidify. The form is then raised and the procedure repeated until a large solid block often with dimensions of about one hundred feet by five hundred feet is formed.
  • the recovery process normally involves the steps of drilling, blasting, ripping, dozing and crushing in order to produce managable formations of, for example, 3 to 4 inches in length and breadth, for transportation and market requirements.
  • a flexible belt with longitudinal edge surfaces for carrying the sulphur thereon has an upper run extending, in contact with cooling liquid in a cooling bath, along an undulating path forming a plurality of transverse undulations in the belt to cause the sulphur to flow to and fro on the belt surface.
  • the undulations may be formed by tilting the surface of the movable member at selected points along its length so as to cause the molten sulphur to flow transversely from one side of the surface to the other at and about those selected points. The transverse movement thus effected tends to subject the molten sulphur to a rolling action and expose a substantial portion of the body of the sulphur to direct air contact.
  • cooling and solidification may be advantageously accomplished by simple dipping or sequential dipping of the sulphur layer into a bath or a series of baths of aqueous cooling medium arranged along the surface of the movable member.
  • An additional layer or layers may be applied or fed onto the initial layer of sulphur to form a laminated solid sulphur structure but in this event the initial layer must be of sufficient thickness and strength to support the subsequently applied layer or layers.
  • FIG. 1 is a diagrammatic layout of one embodiment of the present invention incorporating the transverse belt tilting feature.
  • FIGS. 2a and 2b illustrate the manner in which the movable belt of this embodiment of the present invention may be tilted.
  • FIG. 3 is a diagrammatic illustration of a sequential dipping method and apparatus of the present invention.
  • FIG. 4 is a perspective view of one form of cooling ladder for molten sulphur.
  • FIG. 5 is a perspective view of a weir assembly over which molten sulphur may flow.
  • FIG. 1 illustrates a sulphur cooling ladder generally at which is structured to receive molten sulphur from delivery conduits by known means.
  • the cooling ladder 10 is provided with vents or heat outlets 11 at each step of the ladder. Additional cooling of the molten sulphur may be affected at this stage of the method of the present invention by the direction of cooling air onto the molten sulphur as desired.
  • the molten sulphur flows by gravity down the cooling ladder 10 into a sulphur holding tank 12.
  • a sulphur pump 13 is positioned to pump molten sulphur through conduit means 14.
  • the molten sulphur may be released through sulphur discharge valve 15 onto weirs l6 and 16a.
  • the weirs 16 and 16a are so structured to receive a predetermined volume of sulphur and deliver the liquid sulphur onto the surface of a movable belt disposed therebeneath when the volume of sulphur in the weirs has reached a predetermined level.
  • a water bath 18 provides a supply of water which may be circulated by pump 19 through conduit means 20 to a water cooler 21. The cooled water may then be circulated through further conduit means 22 to a belt moistener 23 disposed above the surface of the moving belt 17. In this manner a thin film of water may be easily applied to the surface of the belt.
  • the raised portions 24, 25, 26, 27 and 28 of the moving belt 17 serve to illustrate the alternate tilting sections of the belt 17 to provide transverse flow of the molten sulphur as it passes along on the belt 17.
  • the assembly shown in FIG. 1 is such as to provide for two separate feeds of molten sulphur from weirs l6 and 16 a.
  • the separate feeds enable a second layer of molten sulphur to be applied to a first layer in overlapping relationship, thus providing a laminated formation of sulphur. Additional layers could, of course, be applied as required.
  • FIG. 1 is such as to provide for two separate feeds of molten sulphur from weirs l6 and 16 a.
  • the separate feeds enable a second layer of molten sulphur to be applied to a first layer in overlapping relationship, thus providing a laminated formation of sulphur. Additional layers could, of course, be applied as required.
  • slinger 29 which is a high speed belt capable of throwing the sulphur which has been solidified on the belt 17 distances of, for example, 75 and 100 feet onto a sulphur stock pile. At this particular point the sulphur is still in what is generally known as the green stage and thus breakage of the solidified sulphur is minimized.
  • FIGS. 2a and 2b illustrate an example of the manner in which the movable belt 17 may be tilted toensure the alternate transverse flow of the molten sulphur.
  • Suitable supporting structures which are not illustrated would'be used to tilt or raise the belt to the desired angle. It is anticipated that as the sulphur cools and becomes more solidified a more steeply inclined tilt will be desired or possible in order to obtain the fullest desired cooling effect. It is anticipated, for example, that the tilts 26, 27 and 28 shown in FIG. 1 of the drawings may progressively increase to from 4 to 6 and to 8 inches at the highest point of their tilt on the edge of the belt 17.
  • FIGS. 2a and 2b serve to illustrate the anticipated workable slopes or tilts in order to cause the molten sulphur to flow transversely on the belt.
  • the molten sulphur is subjected to sequential dipping in baths 30 of an aqueous cooling medium such as water as it is moved longitudinally on the belt 17.
  • a laminated sulphur layer may be formed by applying additional layers of molten sulphur through suitable sulphur delivery means indicated only diagrammatically at 31 in FIG. 3.
  • the first layer of molten sulphur must have been cooled sufficiently to receive and support any additional or overlapping layers fed thereto at points 31 along the length of the belt 17.
  • Pump 32 is adapted to circulate water through conduit means 33 to a water cooler 34 which may be provided with a fan 35 to facilitate the cooling thereof.
  • the cooled water is then rccirculated for reuse through conduit 36 to the water bath 37.
  • Sizing cutters 38 are positioned to cut the solidified or partially solidified sulphur into sulphur formations of a predetermined size. The cut portions of sulphur may then be projected by the slinger 39 onto a sulphur stock pile which would normally be situated in the close proximity of the end of the apparatus.
  • molten sulphur may advantageously be delivered onto the cooling ladder 10 for preliminary cooling before it is subjected to the solidification process on the belt 17. Heat is quickly released from the molten sulphur as it is allowed to fall by gravity down the steps of the cooling ladder 10 and is delivered into the tank 12. If the molten sulphur is still too hot by the time it reaches the tank 12, it may be re-circulated for a further passage down the cooling ladder 10 before it is subjected to solidification treatment.
  • the molten sulphur should be as cool as possible before it is delivered onto the belt 17. If substantial heat is removed from the sulphur before it reaches the belt 17 it will be easier to handle and solidify and as much heat as possible should, therefore, be removed from the sulphur before it is delivered to the belt.
  • the molten sulphur is normally processed at starting temperatures of from 245 to 325F.
  • the belt 17 may be of stainless steel or other similar material for the purpose of practising the embodiments of FIG. 3 it would nevertheless be necessary to use a belt of more flexible material such as a tough heat-resistant rubber for the practice of the embodiment FIG. 1. It is clear that the material used for the belt of FIG. 1 should be such that it will permit flexibility to the extent of permitting the raised or angled sections of the belt as shown in FIGS. 2a and 2b to ensure the transverse movement of the molten sulphur.
  • valves 15 and are adjusted to permit enough sulphur to enter the weirs 16 and 16a to keep them filled up to the appropriate level.
  • the excess molten sulphur over-flows the lips of weirs 16 and 16a and discharges a uniform thin film of molten sulphur onto the moving belt 17 disposed therebeneath.
  • the flow of the molten sulphur should be constant and the speed of the belt 17 so timed as to enable the formation of the desired thickness of film.
  • lamination of sulphur is not absolutely essential to the present invention. It is believed that satisfactory cooling may be achieved with the transverse flow method disclosed in FIG. 1. However, if it is desired to form laminations provision is made for the delivery of a plurality of films of molten sulphur. In the embodiment of FIG. 1, for example, the two separate films may be advantageously delivered through control of the sulphur flowing from the valves and 15a into the weirs 16 and 16a. Similarly, in FIG. 3 the sulphur control will be developed from the points 31 along the length of the moving belt 17.
  • weir valves 15 and 15a may usefully be so controlled as to provide layers of about one-eighth of an inch on the moving belt 17.
  • each applied layer is cooled by dipping in the baths 30 before the next layer is applied in overlapping relationship to the previous layer.
  • a laminated sheet of solidified sulphur may thus be produced usefully of about three-eighth of an inch thick. It is preferable to ensure that the belt 17 is always suitably wetted with a thin film of water or other suitable aqueous medium. The absence of the thin film of water could well cause a temperature rise in the belt if it were composed of rubber or like material and consequently induce adherence between the sulphur and the rubber and in turn preventing the belt from being satisfactorily cleaned. Since solidified sulphur has a very high insulating quality during lamination, the first layer of, for example, eighth of an inch of solid sulphur prevents a great amount of the expelled heat from the subsequent layers from entering or affecting the belt 17.
  • the protection thus provided by the initial layer is adequate to eliminate the aforementioned problems of heat degradation between the sulphur and the belt.
  • this is a problem which is not believed to be as significant in the transverse flow method of FIG. 1.
  • the body of sulphur is moved transversely and a substantial portion of it is quickly subjected to contact with the air and thus the heat of the sulphur is believed to more quickly dissipate, thereby substantially minimizing the problem of heat on the belt.
  • the sulphur When the sulphur has been solidified it may be subjected to a cutting treatment such as may be provided by the sizing cutters 38. At this stage in the process the sulphur is in the amorphous stage. There is substantially no crystallization and no appreciable dusting or fines development as a result of the cutting. The sul- 6 phur still has a significant temperature at this stage, but
  • water from the bath may be continuously pumped through the cooler 34 to dissipate the heat acquired from cooling the sulphur.
  • the cooler 34 may have the dual purpose of dissipating heat from the coolant and also drying the product as indicated.
  • the rate of sulphur through-put in accordance with the invention is determined by the belt width. Most generally a width of 48 inches would have a capacity of 20 long tons per hour accepting the molten sulphur at any temperature between 250 and 310F. Requirements of water or other coolant would be that amount necessary to offset normal evaporation.
  • the method and apparatus of the present invention may be operated in an environment which is open to the elements. If the conditions are satisfactory this kind of operation can be advantageous in terms of facilitating the cooling of the sulphur such as when a cooling breeze of low velocity is blowing. However, when the system is operated in direct contact with hot sun it has a marked retrograde effect on the cooling of the sulphur and the method is less efficient and more costly to run. In many instances, therefore, it would be considered advantageous to enclose the apparatus shown in FIGS. 1 and 3 in a housing which would be such as to close the apparatus from the outside elements so that it operates in a controlled environment. The housing would also be preferably arranged to provide space at the side of the belt for the manual operators of the system.
  • the apparatus envisaged by the present invention overcome the serious economic and hazardous drawbacks of known sulphur treating systems in the prior art and present a new concept in sulphur treatment, which should benefit the industry generally.
  • Apparatus for the solidification of molten sulphur comprising a. a cooling bath adapted to contain a cooling liquid;
  • said flexible belt having an upper run extending along said bath with at least part of said upper run for contact with said cooling liquid for cooling said belt and the sulphur on said belt;
  • said flexible belt further having an undulating path forming a plurality of undulations in succession along said belt and each extending transversely of said belt within said bath for causing the sulphur to flow to and fro between the edges of the upper surfaces of said belt;
  • Apparatus as defined in claim 1 further comprising means for cutting solidified sulphur on said belt into spatching said formations from said belt.
  • Apparatus for the solidification of molten sulphur comprising a. a cooling bath adapted to contain a cooling liquid;
  • said flexible belt having a portion extending along said bath for contact with said cooling liquid for cooling said belt and the sulphur on said belt;
  • said flexible belt portion having an undulating path forming a plurality of undulations in succession along said belt and each extending transversely of said belt portion and forming alternately transversely angled tilting surfaces shaped to cause the sulphur to flow to and fro transversely of said belt portion;
  • Apparatus as defined in claim 3 further including means for despatching solidified sulphur from said belt.
  • said sulphur delivering means comprise a weir adapted to receive molten sulphur from said holding tank, said weir being so shaped as to permit the gravity flow of a thin sheet of molten sulphur from said weir to the surface of said movable belt.
  • said despatching means comprise a cutting assembly adapted to shape the solidified sulphur on said belt into formations of predetermined sizes and means for despatching said formations from said belt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Continuous Casting (AREA)

Abstract

Apparatus for solidifying sulphur has a belt formed with undulations or alternately angled tilted sections which contact cooling liquid in a cooling bath and cause molten sulphur to flow relative to the belt surface and thereby increase the rate of cooling of the sulphur. The cooling liquid is circulated through a heat exchanger for cooling the liquid, and the belt has longitudinal edge surfaces preventing flow of the sulphur over the belt edges.

Description

United States Patent [191 Ellithorpe et al.
[ 51 Aug. 20, 1974 APPARATUS FOR THE SOLIDIFICATION OF MOLTEN SULPHUR [76] Inventors: Ernest Ralph Ellithorpe, 276 43 Ave. N.W., Calgary 47, Alberta; Ronald Bruce Fletcher, 24 Rosary Pl., N.W., Calgary 41, Alberta, both of Canada [22] Filed: June 29, 1971 [21] Appl. No.: 158,076
Related US. Application Data [62] Division of Ser. No. 30,558, April 21, 1970, Pat. No.
[52] US. Cl. 165/120, 23/270 B, 23/224, 198/201 [51] Int. Cl F28f 5/00 [58] Field of Search 165/120; 23/224, 229, 295,
23/308 R, 308 S, 312 S, 270 B; 198/191, 201; 423/567, 578
[56] References Cited UNITED STATES PATENTS 2,665,973 1/1954 Morningstar et al. 23/224 M01 TEN SULPH uz 2,998,122 8/1961 Moar 198/201 3,034,773 5/1962 Legatski 3,469,676 9/1969 Wheeler 198/201 FOREIGN PATENTS OR APPLICATIONS 1,221,874 l/l960 France 23/308 1,256,453 2/1961 France 198/201 Primary ExaminerCharles J. Myhre Assistant ExaminerTheophil W. Streule, Jr. Attorney, Agent, or Firm-Joel E. Siegel; Charles M. Kaplan [5 7] ABSTRACT Apparatus for solidifying sulphur has a belt formed with undulations or alternately angled tilted sections which contact cooling liquid in a cooling bath and cause molten sulphur to flow relative to the belt surface and thereby increase the rate of cooling of the sulphur. The cooling liquid is circulated through a heat exchanger for cooling the liquid, and the belt has longitudinal edge surfaces preventing flow of the sulphur over the belt edges.
7 Claims, 6 Drawing Figures PAIENIEU mszmsm MEI 1m 2 PAIENIEB wszolsm M01 TEN SNAP/1 (/2 SIEUZBFZ APPARATUS FOR THE SOLIDIFICATION OF MOLTEN SULPHUR This application is a division of co-pending application Ser. No. 30,558 filed Apr. 21, 1970, METHOD AND APPARATUS FOR THE SOLIDIFICATION OF MOLTEN SULPHUR, Ernest ELLITHORPE, et al., inventors and now U.S. Pat. No. 3,684,005 granted Aug. 15, 1972.
This invention relates generally to apparatus for the solidification of molten sulphur.
Broadly speaking, the present invention contemplates the feeding of molten sulphur on the normally upper surface of a movable member, the cooling and solidification of molten sulphur thereon and the dispatch and delivery of solid or partially solid sulphur formations of a predetermined size from said movable member.
Elemental sulphur is normally recovered initially by the Frasch process and by treatment of hydrogen sulphite bearing natural and industrial gases in molten form. Sulphur mined by the Frasch process, for example, is in a liquid state and must be solidified for shipment. Numerous methods have been proposed for the rapid solidification of molten sulphur, its handling and transportation in a safe and efficient manner but at the present time none has proved completely acceptable. Indeed, some of the present practices of delivering molten sulphur for storage, its actual method of storage and subsequent recovery for use, are so clearly inefficient and in need of improvement that they are inconsistent with the general standards of todays technology. Certain well known methods of sulphur storage and recovery are almost somewhat archaic in their nature and clearly indicate the need for improvement.
For example, by one largely used delivery and storage method, molten sulphur is poured into rectangular forms, usually about eighteen inches in height and then allowed to cool and solidify. The form is then raised and the procedure repeated until a large solid block often with dimensions of about one hundred feet by five hundred feet is formed. When the sulphur is required for the market, the required amount must then be recovered from the large rock-like formation in which it is entrapped. The recovery process normally involves the steps of drilling, blasting, ripping, dozing and crushing in order to produce managable formations of, for example, 3 to 4 inches in length and breadth, for transportation and market requirements.
This procedure has many serious disadvantages in practice. It is firstly hazardous in that during the forming and solidification stages, it is necessary for work men to handle hot molten sulphur. Since sulphur is a poor conductor of heat and an excellent insulator, hot pockets" of molten sulphur are usually formed in the sulphur vat or pile and these pockets may remain indefinitely by reason of the great insulation factor of the sulphur itself. The hot pockets are indeed a great hazard to manual workers during the recovery process and fatalities are known to have occurred as a result. Additionally, it must be recognized that although explosive blasting is normally quite hazardous the use of dynamite to blast areas of sulphur storage piles substantially increases the danger factor, for example, if sufficient density of the sulphur fines is developed as a result of an explosion and the critical heat density is developed at the same time, serious tires or indeed further explosions could well result. The ripping, dozing and crushing necessary in typical presently used recovery procedures creates a large amount of sulphur dust which frequently cause dangerous flash fires. In addition, the sulphur dust is very fine and of low densityand readily carries on breezes of low velocity, thus also creating a problem of pollution.
It has been known for many years that sulphur can be solidified on stainless steel belts travelling over a network of spray nozzles for some 300 to 400 feet at velocities of 40 to feet per minute. This method has proven itself capable of producing suitable sulphur flakes for the sulphur industry. However, it has also been proved to be very costly in comparison with the alternative method of vatting and subsequently blasting and crushing for recovery as previously outlined.
In view of the comparatively low cost of the apparatus of the present invention, and in the light of its high level of safety it could be immediately innovated to provide an acceptable solution to the main problems of sulphur solidification and recovery.
Therefore, it is an object of the present invention to overcome the significant problems existing in present day sulphur storage and provide apparatus for the so lidification and storage of sulphur which is both safe and efficient.
According to the broad aspects of the present invention, a flexible belt with longitudinal edge surfaces for carrying the sulphur thereon has an upper run extending, in contact with cooling liquid in a cooling bath, along an undulating path forming a plurality of transverse undulations in the belt to cause the sulphur to flow to and fro on the belt surface. The undulations may be formed by tilting the surface of the movable member at selected points along its length so as to cause the molten sulphur to flow transversely from one side of the surface to the other at and about those selected points. The transverse movement thus effected tends to subject the molten sulphur to a rolling action and expose a substantial portion of the body of the sulphur to direct air contact. Alternatively, cooling and solidification may be advantageously accomplished by simple dipping or sequential dipping of the sulphur layer into a bath or a series of baths of aqueous cooling medium arranged along the surface of the movable member. An additional layer or layers may be applied or fed onto the initial layer of sulphur to form a laminated solid sulphur structure but in this event the initial layer must be of sufficient thickness and strength to support the subsequently applied layer or layers.
Reference is now made to the accompanying drawings which illustrate preferred embodiments of the invention and in which;
FIG. 1 is a diagrammatic layout of one embodiment of the present invention incorporating the transverse belt tilting feature.
FIGS. 2a and 2b illustrate the manner in which the movable belt of this embodiment of the present invention may be tilted.
FIG. 3 is a diagrammatic illustration of a sequential dipping method and apparatus of the present invention.
FIG. 4 is a perspective view of one form of cooling ladder for molten sulphur.
FIG. 5 is a perspective view of a weir assembly over which molten sulphur may flow.
With reference to the drawings, FIG. 1 illustrates a sulphur cooling ladder generally at which is structured to receive molten sulphur from delivery conduits by known means. It will be noted that the cooling ladder 10 is provided with vents or heat outlets 11 at each step of the ladder. Additional cooling of the molten sulphur may be affected at this stage of the method of the present invention by the direction of cooling air onto the molten sulphur as desired. The molten sulphur flows by gravity down the cooling ladder 10 into a sulphur holding tank 12. A sulphur pump 13 is positioned to pump molten sulphur through conduit means 14. The molten sulphur may be released through sulphur discharge valve 15 onto weirs l6 and 16a. The weirs 16 and 16a are so structured to receive a predetermined volume of sulphur and deliver the liquid sulphur onto the surface of a movable belt disposed therebeneath when the volume of sulphur in the weirs has reached a predetermined level. A water bath 18 provides a supply of water which may be circulated by pump 19 through conduit means 20 to a water cooler 21. The cooled water may then be circulated through further conduit means 22 to a belt moistener 23 disposed above the surface of the moving belt 17. In this manner a thin film of water may be easily applied to the surface of the belt. The raised portions 24, 25, 26, 27 and 28 of the moving belt 17 serve to illustrate the alternate tilting sections of the belt 17 to provide transverse flow of the molten sulphur as it passes along on the belt 17. The assembly shown in FIG. 1 is such as to provide for two separate feeds of molten sulphur from weirs l6 and 16 a. The separate feeds enable a second layer of molten sulphur to be applied to a first layer in overlapping relationship, thus providing a laminated formation of sulphur. Additional layers could, of course, be applied as required. FIG. 1 illustrates a slinger 29 which is a high speed belt capable of throwing the sulphur which has been solidified on the belt 17 distances of, for example, 75 and 100 feet onto a sulphur stock pile. At this particular point the sulphur is still in what is generally known as the green stage and thus breakage of the solidified sulphur is minimized.
FIGS. 2a and 2b illustrate an example of the manner in which the movable belt 17 may be tilted toensure the alternate transverse flow of the molten sulphur. Suitable supporting structures which are not illustrated would'be used to tilt or raise the belt to the desired angle. It is anticipated that as the sulphur cools and becomes more solidified a more steeply inclined tilt will be desired or possible in order to obtain the fullest desired cooling effect. It is anticipated, for example, that the tilts 26, 27 and 28 shown in FIG. 1 of the drawings may progressively increase to from 4 to 6 and to 8 inches at the highest point of their tilt on the edge of the belt 17. FIGS. 2a and 2b serve to illustrate the anticipated workable slopes or tilts in order to cause the molten sulphur to flow transversely on the belt.
In an alternative embodiment illustrated in FIG. 3, the molten sulphur is subjected to sequential dipping in baths 30 of an aqueous cooling medium such as water as it is moved longitudinally on the belt 17. A laminated sulphur layer may be formed by applying additional layers of molten sulphur through suitable sulphur delivery means indicated only diagrammatically at 31 in FIG. 3. The first layer of molten sulphur must have been cooled sufficiently to receive and support any additional or overlapping layers fed thereto at points 31 along the length of the belt 17. Pump 32 is adapted to circulate water through conduit means 33 to a water cooler 34 which may be provided with a fan 35 to facilitate the cooling thereof. The cooled water is then rccirculated for reuse through conduit 36 to the water bath 37. Sizing cutters 38 are positioned to cut the solidified or partially solidified sulphur into sulphur formations of a predetermined size. The cut portions of sulphur may then be projected by the slinger 39 onto a sulphur stock pile which would normally be situated in the close proximity of the end of the apparatus.
In operation and in practice it is found that molten sulphur may advantageously be delivered onto the cooling ladder 10 for preliminary cooling before it is subjected to the solidification process on the belt 17. Heat is quickly released from the molten sulphur as it is allowed to fall by gravity down the steps of the cooling ladder 10 and is delivered into the tank 12. If the molten sulphur is still too hot by the time it reaches the tank 12, it may be re-circulated for a further passage down the cooling ladder 10 before it is subjected to solidification treatment.
A decision may be taken to re-circulate the sulphur if it is, for example, at a temperature of more than about 260 when it is delivered to the tank 12. Advantageously the molten sulphur should be as cool as possible before it is delivered onto the belt 17. If substantial heat is removed from the sulphur before it reaches the belt 17 it will be easier to handle and solidify and as much heat as possible should, therefore, be removed from the sulphur before it is delivered to the belt. The molten sulphur is normally processed at starting temperatures of from 245 to 325F.
Although the belt 17 may be of stainless steel or other similar material for the purpose of practising the embodiments of FIG. 3 it would nevertheless be necessary to use a belt of more flexible material such as a tough heat-resistant rubber for the practice of the embodiment FIG. 1. It is clear that the material used for the belt of FIG. 1 should be such that it will permit flexibility to the extent of permitting the raised or angled sections of the belt as shown in FIGS. 2a and 2b to ensure the transverse movement of the molten sulphur.
It is believed that an average of 11 tons per hour at a belt speed of feet per minute is satisfactory in the practice of the present invention. Tests were conducted at this speed for approximately 164 hours and practically no wasteage of sulphur was encountered. The time taken from feeding to recovery of the solid formed sulphur was about 1 /2 minutes. The length of the belts 17 of the present invention are about feet long and approximately 36 inches wide and it was found that advantageously water may be used at about 1 gallon per minute which, by controlled delivery, provides a water film of about one-sixty fourth of an inch or less on the surface of the moving belt.
It will be seen from FIG. 1 of the drawings that the valves 15 and are adjusted to permit enough sulphur to enter the weirs 16 and 16a to keep them filled up to the appropriate level. The excess molten sulphur over-flows the lips of weirs 16 and 16a and discharges a uniform thin film of molten sulphur onto the moving belt 17 disposed therebeneath. For good results the flow of the molten sulphur should be constant and the speed of the belt 17 so timed as to enable the formation of the desired thickness of film.
The formation of a lamination of sulphur is not absolutely essential to the present invention. It is believed that satisfactory cooling may be achieved with the transverse flow method disclosed in FIG. 1. However, if it is desired to form laminations provision is made for the delivery of a plurality of films of molten sulphur. In the embodiment of FIG. 1, for example, the two separate films may be advantageously delivered through control of the sulphur flowing from the valves and 15a into the weirs 16 and 16a. Similarly, in FIG. 3 the sulphur control will be developed from the points 31 along the length of the moving belt 17.
It is believed that when molten sulphur is fed and formed in a plurality of overlapping separate layers on the supporting belt 17 and cooling permitted between the application of each layer, that a larger part of the sulphur solidifies to the amorphous state. It is also believed that the shrinkage of the sulphur in the longitudinal direction of the belt 17 aids in freeing the solid sulphur from the surface thereof. However, the provision of a thin film of water or other aqueous medium on the belt when using the transverse flow method of FIG. 1 will inhibit any substantial adherence of the solid sulphur to the belt 17 and, in addition, the shrinkage of the solid sulphur will itself assist in the freeing of the solid sulphur from the belt 17.
When it is desired to form a laminated layer of sulphur the weir valves 15 and 15a may usefully be so controlled as to provide layers of about one-eighth of an inch on the moving belt 17. In the use of the sequential dipping method of FIG. 3 each applied layer is cooled by dipping in the baths 30 before the next layer is applied in overlapping relationship to the previous layer. I
A laminated sheet of solidified sulphur may thus be produced usefully of about three-eighth of an inch thick. It is preferable to ensure that the belt 17 is always suitably wetted with a thin film of water or other suitable aqueous medium. The absence of the thin film of water could well cause a temperature rise in the belt if it were composed of rubber or like material and consequently induce adherence between the sulphur and the rubber and in turn preventing the belt from being satisfactorily cleaned. Since solidified sulphur has a very high insulating quality during lamination, the first layer of, for example, eighth of an inch of solid sulphur prevents a great amount of the expelled heat from the subsequent layers from entering or affecting the belt 17. The protection thus provided by the initial layer is adequate to eliminate the aforementioned problems of heat degradation between the sulphur and the belt. However, this is a problem which is not believed to be as significant in the transverse flow method of FIG. 1. In that particular method the body of sulphur is moved transversely and a substantial portion of it is quickly subjected to contact with the air and thus the heat of the sulphur is believed to more quickly dissipate, thereby substantially minimizing the problem of heat on the belt.
When the sulphur has been solidified it may be subjected to a cutting treatment such as may be provided by the sizing cutters 38. At this stage in the process the sulphur is in the amorphous stage. There is substantially no crystallization and no appreciable dusting or fines development as a result of the cutting. The sul- 6 phur still has a significant temperature at this stage, but
it is at a point of solidification which is suitable for convenient cutting and delivery through, for example, the
slinger 39, to a nearby stock pile. It may be noted from FIG. 1 that the cut pieces of sulphur progress up an inclined section 39 of the belt 17 which allows any excess water to drain off and for additional drying a fan 35 is disposed immediately over the inclined section to expel any remaining moisture from the sulphur.
As previously indicated water from the bath may be continuously pumped through the cooler 34 to dissipate the heat acquired from cooling the sulphur. It should be noted that the cooler 34 may have the dual purpose of dissipating heat from the coolant and also drying the product as indicated.
The rate of sulphur through-put in accordance with the invention is determined by the belt width. Most generally a width of 48 inches would have a capacity of 20 long tons per hour accepting the molten sulphur at any temperature between 250 and 310F. Requirements of water or other coolant would be that amount necessary to offset normal evaporation.
In some installations the method and apparatus of the present invention may be operated in an environment which is open to the elements. If the conditions are satisfactory this kind of operation can be advantageous in terms of facilitating the cooling of the sulphur such as when a cooling breeze of low velocity is blowing. However, when the system is operated in direct contact with hot sun it has a marked retrograde effect on the cooling of the sulphur and the method is less efficient and more costly to run. In many instances, therefore, it would be considered advantageous to enclose the apparatus shown in FIGS. 1 and 3 in a housing which would be such as to close the apparatus from the outside elements so that it operates in a controlled environment. The housing would also be preferably arranged to provide space at the side of the belt for the manual operators of the system.
The apparatus envisaged by the present invention overcome the serious economic and hazardous drawbacks of known sulphur treating systems in the prior art and present a new concept in sulphur treatment, which should benefit the industry generally.
We claim:
1. Apparatus for the solidification of molten sulphur comprising a. a cooling bath adapted to contain a cooling liquid;
b. a flexible movable endless belt for conveying the sulphur;
c. said flexible belt having an upper run extending along said bath with at least part of said upper run for contact with said cooling liquid for cooling said belt and the sulphur on said belt;
d. said flexible belt further having an undulating path forming a plurality of undulations in succession along said belt and each extending transversely of said belt within said bath for causing the sulphur to flow to and fro between the edges of the upper surfaces of said belt;
e. a heat exchanger for cooling the cooling liquid;
and
f. means for circulating said cooling liquid through said bath and said heat exchanger.
2. Apparatus as defined in claim 1, further comprising means for cutting solidified sulphur on said belt into spatching said formations from said belt.
3. Apparatus for the solidification of molten sulphur comprising a. a cooling bath adapted to contain a cooling liquid;
b. a flexible movable endless belt for conveying the sulphur;
c. said flexible belt having a portion extending along said bath for contact with said cooling liquid for cooling said belt and the sulphur on said belt;
d. said flexible belt portion having an undulating path forming a plurality of undulations in succession along said belt and each extending transversely of said belt portion and forming alternately transversely angled tilting surfaces shaped to cause the sulphur to flow to and fro transversely of said belt portion;
e. longitudinal edge surfaces on said belt for preventing the sulphur from flowing over the edges of said belt;
f. a heat exchanger for cooling the cooling liquid; and
g. means for circulating said cooling liquid through said bath and said heat exchanger.
4. Apparatus as defined in claim 3, further including means for despatching solidified sulphur from said belt.
5. Apparatus as claimed in claim 3, further comprismg a. a cooling ladder structured to provide steps thereon for the gravity flow of the sulphur thereover; b. means for the controlled feeding of the sulphur onto said cooling ladder; c. a holding tank adapted to receive the molten sulphur from said cooling ladder; d. means for delivering the molten sulphur from said holding tank onto said belt portion; and e. means for despatching solidified sulphur from said belt. 6. Apparatus as defined in claim 5, wherein said sulphur delivering means comprise a weir adapted to receive molten sulphur from said holding tank, said weir being so shaped as to permit the gravity flow of a thin sheet of molten sulphur from said weir to the surface of said movable belt.
7. Apparatus as defined in claim 5, wherein said despatching means comprise a cutting assembly adapted to shape the solidified sulphur on said belt into formations of predetermined sizes and means for despatching said formations from said belt.

Claims (7)

1. Apparatus for the solidification of molten sulphur comprising a. a cooling bath adapted to contain a cooling liquid; b. a flexible movable endless belt for conveying the sulphur; c. said flexible belt having an upper run extending along said bath with at least part of said upper run for contact with said cooling liquid for cooling said belt and the sulphur on said belt; d. said flexible belt further having an undulating path forming a plurality of undulations in succession along said belt and each extending transversely of said belt within said bath for causing the sulphur to flow to and fro between the edges of the upper surfaces of said belt; e. a heat exchanger for cooling the cooling liquid; and f. means for circulating said cooling liquid through said bath and said heat exchanger.
2. Apparatus as defined in claim 1, further comprising means for cutting solidified sulphur on said belt into formations of predetermined sizes and means for despatching said formations from said belt.
3. Apparatus for the solidification of molten sulphur comprising a. a cooling bath adapted to contain a cooling liquid; b. a flexible movable endless belt for conveying the sulphur; c. said flexible belt having a portion extending along said bath for contact with said cooling liquid for cooling said belt and the sulphur on said belt; d. said flexible belt portion having an undulating path forming a plurality of undulations in succession along said belt and each extending transversely of said belt portion and forming alternately transversely angled tilting surfaces shaped to cause the sulphur to flow to and fro transversely of said belt portion; e. longitudinal edge surfaces on said belt for preventing the sulphur from flowing over the edges of said belt; f. a heat exchanger for cooling the cooling liquid; and g. means for circulating said cooling liquid through said bath and said heat exchanger.
4. Apparatus as defined in claim 3, further including means for despatching solidified sulphur from said belt.
5. Apparatus as claimed in claim 3, further comprising a. a cooling ladder structured to provide steps thereon for the gravity flow of the sulphur thereover; b. means for the controlled feeding of the sulphur onto said cooling ladder; c. a holding tank adapted to receive the molten sulphur from said cooling ladder; d. means for delivering the molten sulphur from said holding tank onto said belt portion; and e. means for despatching solidified sulphur from said belt.
6. Apparatus as defined in claim 5, wherein said sulphur delivering means comprise a weir adapted to receive molten sulphur from said holding tank, said weir being so shaped as to permit the gravity flow of a thin sheet of molten sulphur from said weir to the surface of said movable belt.
7. Apparatus as defined in claim 5, wherein said despatching means comprise a cuttIng assembly adapted to shape the solidified sulphur on said belt into formations of predetermined sizes and means for despatching said formations from said belt.
US00158076A 1970-04-21 1971-06-29 Apparatus for the solidification of molten sulphur Expired - Lifetime US3830291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00158076A US3830291A (en) 1970-04-21 1971-06-29 Apparatus for the solidification of molten sulphur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3055870A 1970-04-21 1970-04-21
US00158076A US3830291A (en) 1970-04-21 1971-06-29 Apparatus for the solidification of molten sulphur

Publications (1)

Publication Number Publication Date
US3830291A true US3830291A (en) 1974-08-20

Family

ID=26706168

Family Applications (1)

Application Number Title Priority Date Filing Date
US00158076A Expired - Lifetime US3830291A (en) 1970-04-21 1971-06-29 Apparatus for the solidification of molten sulphur

Country Status (1)

Country Link
US (1) US3830291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730667A (en) * 1986-06-04 1988-03-15 Alex Chevion Liquid to solids heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2665973A (en) * 1950-03-17 1954-01-12 Olin Mathieson Process for producing finely ground sulfur of noncaking character
FR1221874A (en) * 1959-01-17 1960-06-07 Method and apparatus for the solidification and granulation of liquid products, in particular sulfur
FR1256453A (en) * 1960-05-07 1961-03-17 Suspended transporter
US2998122A (en) * 1956-11-05 1961-08-29 Moar John Floating conveyor belt
US3034773A (en) * 1958-03-24 1962-05-15 Phillips Petroleum Co Mining and extraction of ores
US3469676A (en) * 1967-09-22 1969-09-30 Fmc Corp Self-troughing self-releasing conveyor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2665973A (en) * 1950-03-17 1954-01-12 Olin Mathieson Process for producing finely ground sulfur of noncaking character
US2998122A (en) * 1956-11-05 1961-08-29 Moar John Floating conveyor belt
US3034773A (en) * 1958-03-24 1962-05-15 Phillips Petroleum Co Mining and extraction of ores
FR1221874A (en) * 1959-01-17 1960-06-07 Method and apparatus for the solidification and granulation of liquid products, in particular sulfur
FR1256453A (en) * 1960-05-07 1961-03-17 Suspended transporter
US3469676A (en) * 1967-09-22 1969-09-30 Fmc Corp Self-troughing self-releasing conveyor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730667A (en) * 1986-06-04 1988-03-15 Alex Chevion Liquid to solids heat exchanger

Similar Documents

Publication Publication Date Title
US3997336A (en) Metal scrap melting system
US3684005A (en) Method and apparatus for the solidification of molten sulphur
US2754559A (en) Method for the casting of sheets of a fusible material
PE20001247A1 (en) METHOD OF OPERATION OF A ROTATING SOLERA OVEN FOR THE PRODUCTION OF IRON AND IMPROVED OVEN APPARATUS
JPH0224791B2 (en)
US3830291A (en) Apparatus for the solidification of molten sulphur
CA1062428A (en) Method and apparatus for continuous passivation of sponge iron material
US4033559A (en) Apparatus for continuous passivation of sponge iron material
US4093455A (en) Compacted, passivated metallized iron product
US3751288A (en) Solidifying a thin layer of metal on plastic film
US4330264A (en) Apparatus for manufacturing vitreous slag
US3389009A (en) Method of coating conduits
IT8248772A1 (en) METHOD AND APPARATUS FOR ELECTRIC DISCHARGE MACHINING OF MOVING METAL WIRE WITH A COOLED WORKING FLUID
EP0911588B1 (en) Process and device for confinement using thermal stratification
GB2106028A (en) Method and apparatus for producing solid granules of pitch in the form of cylinders crushed at the ends
US4781239A (en) Process and apparatus for casting in a pit, without any explosive risk, of aluminum and its alloys, particularly with lithium
US3912431A (en) Apparatus for the solidification of molten sulphur
JPH08187560A (en) Heat treatment method for continuously cast slabs
US3793412A (en) Sodium chromate treatment of granulated pig iron
DE2626211A1 (en) Coolant coils located in wall of metallurgical melting furnace - and fed with high velocity mist of gas and water
US3838973A (en) Apparatus for the solidification of molten sulphur
US2511661A (en) Freezing tunnel
US2069485A (en) Metallurgy
JPS5942050B2 (en) Cooling method during solution heat treatment of stainless steel materials
DE10208340B4 (en) Device for the continuous casting of molten metal into cast strip

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROCOR LIMITED, A CANADIAN CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:VENNARD & ELLITHORPE, LTD., A CORP. OF ALBERTA;REEL/FRAME:005252/0747

Effective date: 19740731

AS Assignment

Owner name: PROCOR SULPHUR SERVICES INC., ALBERTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PROCOR LIMITED;REEL/FRAME:005360/0542

Effective date: 19900101