US3894574A - Method for producing complex-shaped metal articles utilizing electroslag remelting - Google Patents
Method for producing complex-shaped metal articles utilizing electroslag remelting Download PDFInfo
- Publication number
- US3894574A US3894574A US432154A US43215474A US3894574A US 3894574 A US3894574 A US 3894574A US 432154 A US432154 A US 432154A US 43215474 A US43215474 A US 43215474A US 3894574 A US3894574 A US 3894574A
- Authority
- US
- United States
- Prior art keywords
- fusion
- mould
- components
- slag bath
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000002184 metal Substances 0.000 title claims abstract description 21
- 230000004927 fusion Effects 0.000 claims abstract description 70
- 238000000034 method Methods 0.000 claims abstract description 46
- 239000002893 slag Substances 0.000 claims abstract description 28
- 239000000945 filler Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000005266 casting Methods 0.000 abstract description 19
- 238000007499 fusion processing Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 8
- 238000003466 welding Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
- B22D23/06—Melting-down metal, e.g. metal particles, in the mould
- B22D23/10—Electroslag casting
Definitions
- ABSTRACT A method for producing complex-shaped metal articles by bonding separate components of these articles through the use of fusion, is disclosed.
- Certain components of a future article to be bonded by fusion are arranged in the fusion area with respect to a mould and the fusion is accomplished directly during the casting of another article component, which is affected by electroslag remelting of a consumable electrode into a cooled mould,
- a mould for carrying into practice the method of the invention is also disclosed, the said mould having in the fusion area a hole fitted from the mould interior with a slot whose geometric dimensions ensure the formation of a slag blanket in the volume which is required for a uniform heat removal in the fusion area.
- the number of said holes correspond to the number of the article components to be joined by fusion and the geometric dimensions and contour of the said hole match up with those of the article components to be bonded by the application of the fusion process.
- the present invention relates to the procedures for manufacturing metal articles of intricate profile by permanent connection of their components which may be effected by various methods, such as: welding together, shrink-fit, etc., and to moulds for casting one of the components of such an article.
- the present invention can find application in the production of, e.g., fitting valve bodies for power plants of steam power stations, crankshafts and connecting rods for high-duty diesel engines, propellers, pressure vessels with pipe-branches, heavy pieces of variable crosssection, made conventionally from forged blanks, etc.
- vessel casings may be made up from individual prefabricated parts including shells, bottoms and connecting pieces; gas or steam turbine rotors may be made from separate shafts, disks, rings, BIC.
- crankwebs and pins which have been produced separately.
- Steel crankwebs are sand-cast, while crankpins are manufactured by forging ingots. After appropriate mechanical working, the webs are fitted with holes and the crankpins turned, whereupon they are shrink-fitted to obtain a crankshaft.
- the above technique is being used by the Danish company, Burmeister and Wain in producing crankshafts for ship diesel engines.
- the known process is disadvantageous in that, the production of welded construction in general, and vessel casings, gas and steam turbine rotors, etc., in particular, is a very labour-consuming operation and, first and foremost, an operation which involves a large volume of erection welding.
- crankshafts by joining together the crankwebs and pins with the use of a shrink-fit is not free of serious and disadvantages either.
- crankwebs and pins are shrink-fitted to join them together, is a very low metal use factor. This should be attributed to the fact that with a single view to providing a reliable connection between the crankweb and crankpin, it is necessary to have around the fit holes in the crankweb a considerable amount of metal, which actually does not take part in the web operation.
- crankshafts by coupling separate pre-cast or pre-forged cranks have also proved rather inadequate, since in either case they call for a substantial increase in both labour requirements and initial cost of the crankshafts.
- the present invention is in essence aimed at developing a method for fabricating complex-shaped metallic articles and a mould for casting one of the components of such an article, which would enable a substantially simplified technology of production along with a greatly improved quality of the articles.
- the said object is achieved by using a method for the production of metal articles of intricate profile with the aid of permanent connection, in which the components of a future article are joined together, in conformity with the invention, by fusion.
- the components to be fused are so arranged with respect to a mould that the sections to be fused face the mould working chamber, whereas the other component of the saidarticle is manufactured in the above mould by remelting a metal blank, partially submerged in the slag bath which is formed in the mould and adequately heated by the electric current, flowing through it, to melt the blank and to fuse the aforesaid components of the article to the piece being cast in the mould.
- the slag bath comes up to the section to be fused on one of the article components to be joined by fusion, it is possible to use a power circuit which includes the blank being remelted, the slag bath and the component to be fused.
- a filler may be introduced into the interior of such components prior to fusion.
- the aforesaid object is also achieved by using the mould for casting one of the components which, in conformity to the proposed method], is fitted with a hole located in the future fusion area of the component to be coupled by fusion to that being cast in said mould, with the geometric dimensions and shape of the above hole matingthose of the article section to be joined by fusion, the said hole being expanded from the mould interior to provide the formation of'the slag skin in the volume needed for a uniform heat removal from the fusion area.
- FIG. 1 is a schematic drawing showing the production of a valve body in accordance with the invention
- FIG. 2 is a graph displaying variation in the operating voltage while casting the valve body according to the invention.
- FIG. 3 is a schematic drawing illustrating the technique of production of a crankshaft according to the invention.
- FIG. 4 shows a modified version of a process for fabricating a crankshaft in accordance with the invention
- FIG. is a layout depicting a procedure for manufacturing a crankshaft according to the invention.
- FIG. 6 is a top view of the layout displayed in FIG. 5;
- FIG. 7 shows another modification of a procedure for manufacturing the crank of a crankshaft in accordance with the invention.
- FIG, 8 shows another modification of a procedure for manufacturing the crank of a crankshaft in accordance with the invention.
- the parts of the article to be joined together by fusion i.e., the pipe branches 1 and flange Z are set up in a cooled mould 3 at the point where the process of fusion should be effected so that the sections to be fuse d'face the interior of the working chamber of mould 3. Fusion is carried out directly in the-course of remelting metal blank 4 partially submerged in the slag bath which is formed in mould 3 and heated adequately by flowing through it an electric current in order to remelt blank 4 and fuse pipe branches 1 and flange 2 with valve body 5 being cast in mould 3.
- the quality ofjoints obtained by fusing pipe branches 1 and flange 2 substantially depends on the extent to which ,the sections to be fused are heated up prior to fusion. For that purpose, as soon as the slag bath reaches the section to be fused, e.g., branch 1, the electroslag remelting of blank 4 can be accomplished at voltage values for the current passing through the slag bath which are lower than the rated operating voltage. The most favorable value by which the voltage can be reduced in the fusion area ranges from to of the rated operating voltage.
- FIG. 2 The curve relating the operating voltage to the casting height during the casting of body 5 and the coupling to it of pipe branches 1 and flange 2 by fusion is shown in FIG. 2.
- the operating voltage is equal to the rated value.
- the voltage is increased to the rated value and maintained at that level during casting the wall of body 5 (section BC).
- section CA the voltage is lowered once more.
- the quality of fused joints produced when bonding separate components of the said article depends also on the current distribution in the article component being cast.
- Pipe branches 1 being hollow, to keep the geometric dimensions of the cavities constant prior to fusion pipe branches 1, their interiors are primed with tiller 7,
- Graphite or a flux with a higher melting point than the conventional flux employed in casting may also be used as a filler.
- a cooled core may replace the filler to preserve the cavities in fusing the pipe branches.
- the housing of a nuclear reactor may be manufactured with all the requisite connections in its flange portion.
- a propeller may be manufactured, in which case it is necessary to secure the blades to the hub being cast in the said mould by a fusion process, the blades having been installed beforehand in a certain position with respect to the mould.
- crankwebs 8 which are bonded to crankpin 9 by fusion when pin 9 is cast into the holes provided in webs 8 and in intermediate mould 10 by electroslag remelting of either mobile or fixed blank 4.
- the electroslag remelting is effected at lower voltage, as compared to the rated vale, but at an adequate voltage to ensure complete fusion.
- crankshaft by the electroslag remelting of blank 4 in order to cast crankwebs 8 in mould l0 and by coupling by fusion to the said webs of crankpins 9, one after another (FIG. 4).
- crankshafts from separate cranks made up by coupling the components of one type (webs or a pin) to the other one (a pin or webs) when the latter are being manufactured by casting.
- crankwebs 11 are set up at the point where they should be bonded by fusion to pin 12, the process being accomplished through holes 13 in mould 14 designed for casting pin 12. The latter is cast by the electroslag remelting of either mobile blank 15 or fixedblank 16 (FIG. 7).
- webs 11 are joined to itby fusion, forming the crank of a crankshaft with permanently connected web 11 and pin 12.
- a crankshaft may be made up of the cranks thus produced which are mounted on the journals by using a shrink-fit.
- FIG. 8 Shown in FIG. 8 is a modified technique for the manufacture of cranks by employing the proposed method.
- Pin 12 is arranged in mould 17 wherein webs 19 are being cast either in succession or at one and the same time by electroslag remelting of fixed blank 18 and pre set pin 12 is joined by fusion to the above webs.
- webs ll of the crank produced in conformity with the first version of the proposed procedure may be fitted with holes 20 in advance thus facilitating the machining of said cranks before they are assembled to form a crankshaft.
- crankshafts use may be made, if necessary, of the foregoing technological principles (variations in the operating voltage values, current lead in etc.).
- FIG. 1 An exemplary embodiment of he mould for producing the valve bodies for fittings of steam power stations through the use of the above technique is illustrated in FIG. 1.
- Mould 3 is fitted with holes 13 situated in the future fusion area where pipe branches 1 and flange 2 are to be joined by fusion to body 5 of the valve.
- the geometric dimensions and shape of said holes and branch 1 and flange 2 sections to be fused should match up.
- From the interior of mould 3 the holes have slot 21 whose geometric dimensions ensure the formation of a slag blanket in the volume needed for a uniform heat removal in the fusion area when casting is going on.
- Increased heat removal at the inner edge of the hole in mould 3 can give rise to defects in the form of poor fusion on the boundary line: branch 1 body 5 located on the exterior of valve body 5.
- the slot may be from 4 to 5 mm deep and from 20 to 25 mm.
- the slot may have another profile.
- mould 14 for casting cranks of crankshafts in accordance with the first version of the procedure proposed for the production of crankshafts may be a hollow cylinder with a lateral surface provided with two holes 13, whose shape and geometric dimensions match those of the web 11 sections to be fused as well as the spacing between holes 13 and webs 11.
- the mould profile may fit the contour of the component to be cast with the holes in the mould housing and the components to be fused spaced apart by the same distance, while the shape and geometrical dimensions of these holes correspond to those of the article components to be joined by the fusion process.
- the proposed technique of producing complexshaped metal articles from separate components affords the possibility of making them truly composite, i.e., the metal of the components to be fused and cast may differ in chemical composition and, accordingly, in strength properties. This in turn, enables manufacture of most heavily loaded pieces of the metal possessing better strength characteristics. For instance, by producing the crankshaft of composite construction, it is possible to decrease its dimensions and, consequently, its weight.
- the propeller blades being susceptible to heavy loads, can be made of steel with better wearresisting properties than the hub.
- the proposed technique makes it possible to implement still another method, when the component to be cast may have different chemical composition over its length, e.g., the working portions of the crankshaft journals and connecting rod bearings may be cast of metal with better strength properties than the as-cast crankweb sections. It is achieved by remelting the blanks made up of several parts, each or several of which differ in their properties.
- the proposed technique of the production of complex shaped articles represents a fundamentally novel solution in the art. It may be very easily carried into practice, being also dependable and advantageous from the point of view of economics.
- the foregoing method permits the production of articles ranging in weight from several hundred kilograms, such as valve bodies for fittings employed in steam power stations, to several hundred tons e.g., crankshafts for ship diesel engines.
- One of the irrefutable merits of the process of the invention is that it allows both the fabrication of single unique items, such as heavy crankshafts for superpower diesel engines and large-scale production of such pieces as valve bodies for fittings employed in steam power stations, pressure vessel casings, etc., without considerable capital expenditures.
- a method for the fabrication of complex-shaped metal articles from separate components joined through the use of a permanent connection which comprises arranging components of a future article to be bonded by fusion with respect: to a mould so that the sections to be fused face the mould working chamber by entering the mould through at least one side surface of the mould and comprise only a part of the side surface of the working chamber, and producing an additional component in said mould by forming a slag bath in the mould, partially submerging a metal blank in said slag bath and passing electric current through the said slag bath, said current generating heat needed for melting of the blank, filling the mould completely with metal and bonding by fusion of the said arranged components of the future article to the other component cast in the mould.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
A method for producing complex-shaped metal articles by bonding separate components of these articles through the use of fusion, is disclosed. Certain components of a future article to be bonded by fusion are arranged in the fusion area with respect to a mould and the fusion is accomplished directly during the casting of another article component, which is affected by electroslag remelting of a consumable electrode into a cooled mould. A mould for carrying into practice the method of the invention is also disclosed, the said mould having in the fusion area a hole fitted from the mould interior with a slot whose geometric dimensions ensure the formation of a slag blanket in the volume which is required for a uniform heat removal in the fusion area. The number of said holes correspond to the number of the article components to be joined by fusion and the geometric dimensions and contour of the said hole match up with those of the article components to be bonded by the application of the fusion process.
Description
United States Patent 11 1 Paton et al.
[451 July 15,1975
UTILIZING ELECTROSLAG REMELTING Inventors: Boris Evgenievich Paton, ulitsa Kotsjubinskogo, 9; Boris Izrailevich Medovar, Bulvar Lesi ukrainki, 2, kv. 8; Georgy Alexandrovich Boiko, ulitsa Vladimiro-Lybedskaya, 16, kv. 106; Ilya Iosifovich Kumysh, Vozdukhoflotsky prospekt, 42, kv. 51; Leonid Gustavovich Puzrin, ulitsa Vradimirskaya, 71, kv. 48; Vikior Alexandrovich Kovalev, ulitsa Ivana Kudri, 23/21, kv. 30; Georgy Sergeevich Marinsky, ulitsa Tatarskaya, lb, kv. l9; Alexandr Petrovich Beloglazov, ulitsa Ushinskogo, 5a, all of Kiev; Pavel Osipovich Siry, ulitsa Kotelnaya, 1/15, kv. 285, Moscow; Alexandr Ivanovich Sapozhnikov, ulitsa Mosfilmovskaya, 17/25, kv. 63, Moscow; Valentin Alexandrovich Nosanov, prospekt Bolshevikov, 37/1, kv. l3, Leningrad; Volf Iudovich Rabinovich, ulitsa Gagarina, 74, kv. 27, Chekhof; Lev Vasililvich Popov, ulitsa Kharkovskaya, 2, kv. 21, Bryansk; Sergei Mikhailovich Shelkov, ulitsa Bryanskoi proletarskoi divizii, 9, kv. 33, Bryansk; Vladimir Nikolaevich Strukov, ulitsa Kuibysheva, l3, kv. l7, Bryansk; Boris Markovich Babich, ulitsa Bryanskoi proletarskoi divizii, 26, kv. 19, Bryansk, all of U.S.S.R.
Filed: Jan. 10, 1974 Appl. No.: 432,154
Related U.S. Application Data Continuation of Scr. No. 323,379, Jan. 15, 1973, abandoned. which is a continuation of Scr. No.
120,141, March 2, 1971, abandoned.
[52] U.S. Cl 164/52; 164/108 [51] Int. Cl B22d 27/02 [58] Field of Search 164/52, 98, 105, 108, 110, 164/112, 252, 332, 333; 249/97; 219/73 [56] References Cited UNITED STATES PATENTS 3,291,955 12/1966 Shrubsall et a1. 219/73 3,558,845 1/1971 NorCl'oss 219/73 FOREIGN PATENTS OR APPLICATIONS 855,348 11/1970 Canada 219/73 805,679 12/1958 United Kingdom 1,230,197 4/1971 United Kingdom 164/52 1,588,520 4/1970 France 164/252 Primary Examiner-Francis S. Husar Assistant Examiner-John E. Roethel Attorney, Agent, or FirmHolman & Stern [57] ABSTRACT A method for producing complex-shaped metal articles by bonding separate components of these articles through the use of fusion, is disclosed. Certain components of a future article to be bonded by fusion are arranged in the fusion area with respect to a mould and the fusion is accomplished directly during the casting of another article component, which is affected by electroslag remelting of a consumable electrode into a cooled mould, A mould for carrying into practice the method of the invention is also disclosed, the said mould having in the fusion area a hole fitted from the mould interior with a slot whose geometric dimensions ensure the formation of a slag blanket in the volume which is required for a uniform heat removal in the fusion area. The number of said holes correspond to the number of the article components to be joined by fusion and the geometric dimensions and contour of the said hole match up with those of the article components to be bonded by the application of the fusion process.
4 Claims, 8 Drawing Figures METHOD FUR FRODUCING COMPLEX-SHAPED METAL ARTIGLES UTILIZING ELECTROSLAG REMELTING This is a continuation, of application Ser. No. 323,379, filed Jan. 15, 1973 and now abandoned, which in turn is a Continuation of Ser. No. 120,141, filed Mar. 2, 1971, now abandoned.
The present invention relates to the procedures for manufacturing metal articles of intricate profile by permanent connection of their components which may be effected by various methods, such as: welding together, shrink-fit, etc., and to moulds for casting one of the components of such an article.
The present invention can find application in the production of, e.g., fitting valve bodies for power plants of steam power stations, crankshafts and connecting rods for high-duty diesel engines, propellers, pressure vessels with pipe-branches, heavy pieces of variable crosssection, made conventionally from forged blanks, etc.
Known in the art is a method for manufacturing complex-shaped articles by welding together separate components. For example, vessel casings may be made up from individual prefabricated parts including shells, bottoms and connecting pieces; gas or steam turbine rotors may be made from separate shafts, disks, rings, BIC.
Also known is a procedure for the fabrication of heavy-size crankshafts by joining together crankwebs and pins, which have been produced separately. Steel crankwebs are sand-cast, while crankpins are manufactured by forging ingots. After appropriate mechanical working, the webs are fitted with holes and the crankpins turned, whereupon they are shrink-fitted to obtain a crankshaft. The above technique is being used by the Danish company, Burmeister and Wain in producing crankshafts for ship diesel engines.
Well known are moulds for casting various articles or their components by electroslag remelting of, say, a consumable electrode (see, for example, G. Bhat, Current Progress with Electroslag Remelting. Scientific Problems of Welding and Special Electrical Metallurgy, Pt. 4 Naukova Dumka, Kiev, 1970).
However, the known process is disadvantageous in that, the production of welded construction in general, and vessel casings, gas and steam turbine rotors, etc., in particular, is a very labour-consuming operation and, first and foremost, an operation which involves a large volume of erection welding. The process of welding wide pre-fabricated parts of, e.g., alloyed steels, becomes a problem, since it requires preheating prior to welding. At the present time some high-tensile steel grades do not lend themselves to welding at all.
The known method of manufacturing crankshafts by joining together the crankwebs and pins with the use of a shrink-fit is not free of serious and disadvantages either.
Firstly, in sand-casting of crankwebs a large percentage of rejects may occur. In the second place, as-cast metal features rather inferior mechanical properties, especially in terms of its ductility. Thirdly, inherent in the foregoing technique, according to which crankwebs and pins are shrink-fitted to join them together, is a very low metal use factor. This should be attributed to the fact that with a single view to providing a reliable connection between the crankweb and crankpin, it is necessary to have around the fit holes in the crankweb a considerable amount of metal, which actually does not take part in the web operation.
Attempts to produce crankshafts by coupling separate pre-cast or pre-forged cranks have also proved rather inadequate, since in either case they call for a substantial increase in both labour requirements and initial cost of the crankshafts.
It is an object of the present invention to eliminate the above disadvantages.
The present invention is in essence aimed at developing a method for fabricating complex-shaped metallic articles and a mould for casting one of the components of such an article, which would enable a substantially simplified technology of production along with a greatly improved quality of the articles.
The said object is achieved by using a method for the production of metal articles of intricate profile with the aid of permanent connection, in which the components of a future article are joined together, in conformity with the invention, by fusion. To do this, the components to be fused are so arranged with respect to a mould that the sections to be fused face the mould working chamber, whereas the other component of the saidarticle is manufactured in the above mould by remelting a metal blank, partially submerged in the slag bath which is formed in the mould and adequately heated by the electric current, flowing through it, to melt the blank and to fuse the aforesaid components of the article to the piece being cast in the mould.
As soon as the slag bath reaches the section of one ofthe. components subject to bonding by the application of a fusion process, it would be expedient to lower the line voltage passed through the molten slag below the rated operating voltage value.
According to the present invention, as the slag bath comes up to the section to be fused on one of the article components to be joined by fusion, it is possible to use a power circuit which includes the blank being remelted, the slag bath and the component to be fused.
Where hollow components are to be joined by fusion to the piece being cast, a filler may be introduced into the interior of such components prior to fusion.
The aforesaid object is also achieved by using the mould for casting one of the components which, in conformity to the proposed method], is fitted with a hole located in the future fusion area of the component to be coupled by fusion to that being cast in said mould, with the geometric dimensions and shape of the above hole matingthose of the article section to be joined by fusion, the said hole being expanded from the mould interior to provide the formation of'the slag skin in the volume needed for a uniform heat removal from the fusion area.
Further on, the present invention is illustrated by the exemplary embodiments, to be considered with reference to the accompanying drawings, wherein:
FIG. 1 is a schematic drawing showing the production of a valve body in accordance with the invention;
FIG. 2 is a graph displaying variation in the operating voltage while casting the valve body according to the invention;
FIG. 3 is a schematic drawing illustrating the technique of production of a crankshaft according to the invention;
FIG. 4 shows a modified version of a process for fabricating a crankshaft in accordance with the invention;
FIG. is a layout depicting a procedure for manufacturing a crankshaft according to the invention;
FIG. 6 is a top view of the layout displayed in FIG. 5;
FIG. 7 shows another modification of a procedure for manufacturing the crank of a crankshaft in accordance with the invention;
FIG, 8 shows another modification ofa procedure for manufacturing the crank of a crankshaft in accordance with the invention.
To make the proposed procedure easier to comprehend, it will be described in connection with specific examples of producing complex-shaped articles, such as the valve body for fittings employed in power plants of steam power stations.-
As shown in FIG. 1, the parts of the article to be joined together by fusion, i.e., the pipe branches 1 and flange Z are set up in a cooled mould 3 at the point where the process of fusion should be effected so that the sections to be fuse d'face the interior of the working chamber of mould 3. Fusion is carried out directly in the-course of remelting metal blank 4 partially submerged in the slag bath which is formed in mould 3 and heated adequately by flowing through it an electric current in order to remelt blank 4 and fuse pipe branches 1 and flange 2 with valve body 5 being cast in mould 3.
The quality ofjoints obtained by fusing pipe branches 1 and flange 2 substantially depends on the extent to which ,the sections to be fused are heated up prior to fusion. For that purpose, as soon as the slag bath reaches the section to be fused, e.g., branch 1, the electroslag remelting of blank 4 can be accomplished at voltage values for the current passing through the slag bath which are lower than the rated operating voltage. The most favorable value by which the voltage can be reduced in the fusion area ranges from to of the rated operating voltage.
The curve relating the operating voltage to the casting height during the casting of body 5 and the coupling to it of pipe branches 1 and flange 2 by fusion is shown in FIG. 2. In casting the bottom of body 5 (section in FIG. 2) the operating voltage is equal to the rated value. As the fusion of pipe branches 1 is started, the operating voltage is lowered and remains at that level (section AB) until fusion is accomplished. On completion of the fusion of pipe branches 1, the voltage is increased to the rated value and maintained at that level during casting the wall of body 5 (section BC). At the moment when flange 2 is being joined by fusion the voltage is lowered once more (section CA)..
The quality of fused joints produced when bonding separate components of the said article depends also on the current distribution in the article component being cast. The most favorable conditions for the fusion process when all the power consumed or at least its major portion passes through the section of the component of the future article to be joined by fusion. Consequently, in casting body 5 and in connecting pipe branches 1 and flange 2 to that body by fusion the circuit which includes blank 4 and base plate (starter-bar) 6 is broken, the current being passed instead through a new circuit which includes blank 4, slag bath, pipe branches 1 and flange 2.
which may be, for example, flux employed in casting one of the components of the article through the use of the electroslag remelting'process. Graphite or a flux with a higher melting point than the conventional flux employed in casting, may also be used as a filler. In dealing with the interiors of comparatively simple shape, such as cylindrical holes, a cooled core may replace the filler to preserve the cavities in fusing the pipe branches.
It is quite obvious that the pieces to be fused may have any other, and sometimes far more complex, profile. However, a similar operational sequence must be used in producing the entire article.
Thus, by using the above technique the housing of a nuclear reactor may be manufactured with all the requisite connections in its flange portion. Also a propeller may be manufactured, in which case it is necessary to secure the blades to the hub being cast in the said mould by a fusion process, the blades having been installed beforehand in a certain position with respect to the mould.
Fabrication of the crankshafts for heavy-duty naval diesel engines may serve as another example illustrating the production of complex shaped parts by the proposed method.
Referring to FIG. 3 in the fusion area there are arranged two crankwebs 8 which are bonded to crankpin 9 by fusion when pin 9 is cast into the holes provided in webs 8 and in intermediate mould 10 by electroslag remelting of either mobile or fixed blank 4.
In order to provide high-quality fused joints by electroslag remelting, in the fusion area where crankwebs 8 are coupled by fusion to crankpin 9, the electroslag remelting is effected at lower voltage, as compared to the rated vale, but at an adequate voltage to ensure complete fusion.
In the course of casting crankpin 9 and bonding crankwebs 8 to it by fusion, the electric circuit which includes blank 4 and base plate 6 is broken and the operating current flows through the circuit which includes blank 4 and web 8 (at first one and then the other).
It is also possible to manufacture a crankshaft by the electroslag remelting of blank 4 in order to cast crankwebs 8 in mould l0 and by coupling by fusion to the said webs of crankpins 9, one after another (FIG. 4).
In this case one may change, as required, the values of the operating voltage in the fusion area where pins 9 would be coupled by fusion to web 8 being cast, following which the which includes blank 4 and base plate 6 would be broken and the operating current would be passed through a new circuit blank 4 slag bath and pin 9 in fusing it to crankweb 8 being cast by the electroslag remelting process.
The most simple method and that which is most readily implemented from the technological point of view is the fabrication of crankshafts from separate cranks made up by coupling the components of one type (webs or a pin) to the other one (a pin or webs) when the latter are being manufactured by casting.
As shown in FIGS. 5 and 6, crankwebs 11 are set up at the point where they should be bonded by fusion to pin 12, the process being accomplished through holes 13 in mould 14 designed for casting pin 12. The latter is cast by the electroslag remelting of either mobile blank 15 or fixedblank 16 (FIG. 7). As crankpin 12 is being cast, webs 11 are joined to itby fusion, forming the crank of a crankshaft with permanently connected web 11 and pin 12. A crankshaft may be made up of the cranks thus produced which are mounted on the journals by using a shrink-fit.
Shown in FIG. 8 is a modified technique for the manufacture of cranks by employing the proposed method. Pin 12 is arranged in mould 17 wherein webs 19 are being cast either in succession or at one and the same time by electroslag remelting of fixed blank 18 and pre set pin 12 is joined by fusion to the above webs.
As shown in FIGS. 5 and 6, webs ll of the crank produced in conformity with the first version of the proposed procedure, may be fitted with holes 20 in advance thus facilitating the machining of said cranks before they are assembled to form a crankshaft.
In the production of crankshafts use may be made, if necessary, of the foregoing technological principles (variations in the operating voltage values, current lead in etc.).
An exemplary embodiment of he mould for producing the valve bodies for fittings of steam power stations through the use of the above technique is illustrated in FIG. 1. Mould 3 is fitted with holes 13 situated in the future fusion area where pipe branches 1 and flange 2 are to be joined by fusion to body 5 of the valve. The geometric dimensions and shape of said holes and branch 1 and flange 2 sections to be fused should match up. From the interior of mould 3 the holes have slot 21 whose geometric dimensions ensure the formation of a slag blanket in the volume needed for a uniform heat removal in the fusion area when casting is going on. Increased heat removal at the inner edge of the hole in mould 3 can give rise to defects in the form of poor fusion on the boundary line: branch 1 body 5 located on the exterior of valve body 5.
Thus, for branches of 200 mm outer diameter and walls 50 mm thick, the slot may be from 4 to 5 mm deep and from 20 to 25 mm. Depending on the configuration of the article section to be fused (in the fusion area) the slot may have another profile.
Referring to FIG. 5, mould 14 for casting cranks of crankshafts in accordance with the first version of the procedure proposed for the production of crankshafts may be a hollow cylinder with a lateral surface provided with two holes 13, whose shape and geometric dimensions match those of the web 11 sections to be fused as well as the spacing between holes 13 and webs 11.
In each particular case the mould profile may fit the contour of the component to be cast with the holes in the mould housing and the components to be fused spaced apart by the same distance, while the shape and geometrical dimensions of these holes correspond to those of the article components to be joined by the fusion process.
The proposed technique of producing complexshaped metal articles from separate components affords the possibility of making them truly composite, i.e., the metal of the components to be fused and cast may differ in chemical composition and, accordingly, in strength properties. This in turn, enables manufacture of most heavily loaded pieces of the metal possessing better strength characteristics. For instance, by producing the crankshaft of composite construction, it is possible to decrease its dimensions and, consequently, its weight. The propeller blades, being susceptible to heavy loads, can be made of steel with better wearresisting properties than the hub.
The use of composite articles is highly expedient in terms of cost reduction, since there is no further need to make them totally from expensive or critical materials.
The proposed technique makes it possible to implement still another method, when the component to be cast may have different chemical composition over its length, e.g., the working portions of the crankshaft journals and connecting rod bearings may be cast of metal with better strength properties than the as-cast crankweb sections. It is achieved by remelting the blanks made up of several parts, each or several of which differ in their properties.
The proposed technique of the production of complex shaped articles represents a fundamentally novel solution in the art. It may be very easily carried into practice, being also dependable and advantageous from the point of view of economics. The foregoing method permits the production of articles ranging in weight from several hundred kilograms, such as valve bodies for fittings employed in steam power stations, to several hundred tons e.g., crankshafts for ship diesel engines.
One of the irrefutable merits of the process of the invention is that it allows both the fabrication of single unique items, such as heavy crankshafts for superpower diesel engines and large-scale production of such pieces as valve bodies for fittings employed in steam power stations, pressure vessel casings, etc., without considerable capital expenditures.
We claim:
1. A method for the fabrication of complex-shaped metal articles from separate components joined through the use of a permanent connection which comprises arranging components of a future article to be bonded by fusion with respect: to a mould so that the sections to be fused face the mould working chamber by entering the mould through at least one side surface of the mould and comprise only a part of the side surface of the working chamber, and producing an additional component in said mould by forming a slag bath in the mould, partially submerging a metal blank in said slag bath and passing electric current through the said slag bath, said current generating heat needed for melting of the blank, filling the mould completely with metal and bonding by fusion of the said arranged components of the future article to the other component cast in the mould.
2. The method as claimed in claim 1, in which as soon as the said slag bath reaches said fusion area of one of the components to be coupled by fusion, the voltage of the current passed through the aforementioned slag bath is reduced to a value lower than the rated operating voltage.
3. The method as claimed in claim 2, in which as soon as said slag bath reaches said fusion area of one of the components to be joined by fusion, the electric current is passed exclusively through the circuit which includes the said blank to be remelted, the slag bath and the component to be joined by fusion.
4. The method as claimed in claim 1, in which hollow components to be bonded by fusion have their interiors primed with a filler prior to fusion.
Claims (4)
1. A method for the fabrication of complex-shaped metal articles from separate components joined through the use of a permanent connection which comprises arranging components of a future article to be bonded by fusion with respect to a mould so that the sections to be fused face the mould working chamber by entering the mould through at least one side surface of the mould and comprise only a part of the side surface of the working chamber, and producing an additional component in said mould by forming a slag bath in the mould, partially submerging a metal blank in said slag bath and passing electric current through the said slag bath, said current generating heat needed for melting of the blank, filling the mould completely with metal and bonding by fusion of the said arranged components of the future article to the other component cast in the mould.
2. The method as claimed in claim 1, in which as soon as the said slag bath reaches said fusion area of one of the components to be coupled by fusion, the voltage of the current passed through the aforementioned slag bath is reduced to a value lower than the rated operating voltage.
3. The method as claimed in claim 2, in which as soon as said slag bath reaches said fusion area of one of the components to be joined by fusion, the electric current is passed exclusively through the circuit which includes the said blank to be remelted, the slag bath and the component to be joined by fusion.
4. The method as claimed in claim 1, in which hollow components to be bonded by fusion have their interiors primed with a filler prior to fusion.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US432154A US3894574A (en) | 1973-01-15 | 1974-01-10 | Method for producing complex-shaped metal articles utilizing electroslag remelting |
| US05/548,032 US3979101A (en) | 1974-01-10 | 1975-02-07 | Mould for casting at least one component of complex-shaped metal articles |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US32337973A | 1973-01-15 | 1973-01-15 | |
| US432154A US3894574A (en) | 1973-01-15 | 1974-01-10 | Method for producing complex-shaped metal articles utilizing electroslag remelting |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US32337973A Continuation | 1973-01-15 | 1973-01-15 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/548,032 Division US3979101A (en) | 1974-01-10 | 1975-02-07 | Mould for casting at least one component of complex-shaped metal articles |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3894574A true US3894574A (en) | 1975-07-15 |
Family
ID=26983931
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US432154A Expired - Lifetime US3894574A (en) | 1973-01-15 | 1974-01-10 | Method for producing complex-shaped metal articles utilizing electroslag remelting |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3894574A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4016923A (en) * | 1974-08-23 | 1977-04-12 | August Thyssen-Hutte Ag | Process for hot topping by electro-slag-remelting |
| US4047557A (en) * | 1976-06-01 | 1977-09-13 | Wright James H | Electroslag remelting apparatus for rebuilding grouser bars |
| US4177058A (en) * | 1977-09-22 | 1979-12-04 | Institut Elektrosvarki Imeni E.O. Patona Akademii Nauk Ukrainskoi Ssr | Method for producing a non-split metal workpiece formed as a cast hollow billet with a bottom part |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3291955A (en) * | 1963-02-25 | 1966-12-13 | Union Carbide Corp | Submerged melt welding process and apparatus |
| US3558845A (en) * | 1969-03-26 | 1971-01-26 | Arcos Corp | Electroslag welding nozzle and process |
-
1974
- 1974-01-10 US US432154A patent/US3894574A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3291955A (en) * | 1963-02-25 | 1966-12-13 | Union Carbide Corp | Submerged melt welding process and apparatus |
| US3558845A (en) * | 1969-03-26 | 1971-01-26 | Arcos Corp | Electroslag welding nozzle and process |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4016923A (en) * | 1974-08-23 | 1977-04-12 | August Thyssen-Hutte Ag | Process for hot topping by electro-slag-remelting |
| US4047557A (en) * | 1976-06-01 | 1977-09-13 | Wright James H | Electroslag remelting apparatus for rebuilding grouser bars |
| US4177058A (en) * | 1977-09-22 | 1979-12-04 | Institut Elektrosvarki Imeni E.O. Patona Akademii Nauk Ukrainskoi Ssr | Method for producing a non-split metal workpiece formed as a cast hollow billet with a bottom part |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5161950A (en) | Dual alloy turbine disk | |
| US4074616A (en) | Aluminum piston with steel reinforced piston ring grooves | |
| KR100646718B1 (en) | Die cast nickel base superalloy articles | |
| EP2312123B1 (en) | Multiple alloy turbine rotor section, welded turbine rotor incorporating the same and methods of their manufacture | |
| JP2013518726A5 (en) | ||
| US20090057287A1 (en) | Method and apparatus related to joining dissimilar metal | |
| US9856735B2 (en) | Method of manufacturing steam turbine rotor and steam turbine rotor | |
| Howes | Ceramic-reinforced MMC fabricated by squeeze casting | |
| US3894574A (en) | Method for producing complex-shaped metal articles utilizing electroslag remelting | |
| Kafle et al. | A review on casting technology with the prospects on its application for hydro turbines | |
| CN108097854A (en) | A kind of band large-scale metal component high uniformity short route manufacturing process | |
| US3979101A (en) | Mould for casting at least one component of complex-shaped metal articles | |
| CN106636794A (en) | Auto spare part die-casting technique | |
| RU2148094C1 (en) | Method of preparing consumable electrode of electroslag remelting | |
| Sjöberg | Casting superalloys for structural applications | |
| CN1125649A (en) | Electroslag casting guide blade technological process and equipment | |
| JPH01313602A (en) | Manufacture of turbine blade having air hole | |
| Ma et al. | Manufacturing of herringbone gear model by 3D printing assisted investment casting | |
| RU2302921C2 (en) | Flawless forged pieces forging method for producing elongated articles such as rotors or shafts | |
| US2362745A (en) | Method of and apparatus for making airplane propeller blades | |
| RU2410194C2 (en) | Method of producing consumable electrodes | |
| Li et al. | Research and Development Status of Selective Laser melting (SLM) | |
| CN116197383B (en) | Electroslag cast welding manufacturing method for impact rotating wheel | |
| Li et al. | Process modelings and simulations of heavy castings and forgings | |
| JPS6082251A (en) | Production of piston ring |