US3891482A - Propellant instability modifier - Google Patents
Propellant instability modifier Download PDFInfo
- Publication number
- US3891482A US3891482A US489871A US48987174A US3891482A US 3891482 A US3891482 A US 3891482A US 489871 A US489871 A US 489871A US 48987174 A US48987174 A US 48987174A US 3891482 A US3891482 A US 3891482A
- Authority
- US
- United States
- Prior art keywords
- oxidizer
- propellant
- accordance
- parts
- ammonium perchlorate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003380 propellant Substances 0.000 title claims abstract description 23
- 239000003607 modifier Substances 0.000 title description 3
- 239000007800 oxidant agent Substances 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000011230 binding agent Substances 0.000 claims abstract description 12
- 239000001856 Ethyl cellulose Substances 0.000 claims abstract description 11
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229920001249 ethyl cellulose Polymers 0.000 claims abstract description 11
- 235000019325 ethyl cellulose Nutrition 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000002485 combustion reaction Methods 0.000 claims description 19
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical group FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000005062 Polybutadiene Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 229920002857 polybutadiene Polymers 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 230000006872 improvement Effects 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 abstract description 5
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 abstract description 5
- 229920002681 hypalon Polymers 0.000 abstract description 5
- 239000002131 composite material Substances 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 description 11
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000004449 solid propellant Substances 0.000 description 6
- 238000010406 interfacial reaction Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- -1 e.g. Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005316 response function Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- 241000183290 Scleropages leichardti Species 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/18—Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
- C06B45/30—Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component
- C06B45/32—Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component the coating containing an organic compound
Definitions
- ABSTRACT A composite propellant composition comprising an organic binder; and an oxidizer which has been coated with the following materials: a copolymer of vinylidine and hexafluoropropylene, chlorosulfonated polyethyl ene, and ethylcellulose.
- This invention relates in general to a solid propellant, and more particularly to a solid propellant comprising an oxidizer which has been coated with an inert material in order to stabilize the combustion of the propellant.
- the interfacial reactions at and within the surface release sufficient heat to expel partially combusted products, pyrolysis products, and fuel and oxidizer fragments into the gas phase zone above the surface where they intermix and burn completely.
- the maximum flame temperature is reached in the luminous zone where the largest portion of the heat is released.
- only a small amount of heat released in the luminous flame zone reaches the surface to supplement the heat generated by interfacial reactions.
- One method for controlling the contributions of interfacial reactions in the combustion process is to change the reactivity of the interface by coating the oxidizer particles with an inert material and preparing the propellant mix in the normal manner.
- the burning rate characteristics of the propellant are not seriously altered by the presence of the coating.
- the instability characteristics are substantially improved by this coating.
- the coatings utilized were selected from the group consisting of Viton A which is a trade name for a copolymer of vinylidine fluoride and hexafluoropropylene; Hypalon-30, a chlorosulfonated polyethylene; and ethylcellulose.
- ammonium perchlorate having an average particle size of microns was utilized as the oxidizer.
- other suitable oxidizers may be utilized.
- the oxidizer was coated with the polymer utilizing a solvent/nonsolvent technique as disclosed in patent application Ser. No. 727,340 by M. E. Steinle. In the process, the selected polymer is dissolved in a suitable solvent and the required amount of oxidizer is added to the solution in a mixer. The solvent is then evaporated from the mix until the gel state of the polymer is present. A second liquid that is a nonsolvent for the polymer is then added to the polymer solution at a slow rate. This forces the polymer out of solu tion and around the particles of the oxidizer. A sufficient quantity of the nonsolvent is added to harden the polymer. After stirring for a specified period of time, the liquid is decanted and the coated oxidizer dried.
- Freon l,l,2 trichloro-l,2,2, trifluoroethane is added slowly with agitation to bring the ethylcellulose out of solution and to coat the ammonium chloride.
- a hardening agent e.g. 0.06 gram of tetrabutyl titanate
- the agitation is stopped and the liquid phase removed.
- a second portion of Freon is added and the coated ammonium perchlorate agitated for a period of 10 minutes. Subsequently, the liquid phase is removed and the recovered wet polymer coated ammonium perchlorate dried.
- a conventional propellant composition comprising 78 parts by weight of ammonium perchlorate and 22 parts by weight of an organic binder, e.g., a carboxy terminated polybutadiene was prepared.
- Formulations were then prepared consisting of 78 parts by weight of ammonium perchlorate coated with l to 1.5 parts by weight of a polymer selected from the group consisting of: a copolymer of vinylidine fluoride and hexafluoropropylene, a chlorosulfonated polyethylene, and ethylcellulose.
- the coated ammonium perchlorate was then mixed with 22 parts by weight of a carboxyterminated polybutadiene and the propellant prepared in the conventional manner.
- acoustic admittanee is an expression of the instantaneous burning rate exponent as a function of the frequency.
- This type of apparatus which is utilized in industry for acoustic measurements. consists of a cylindrical combustion bomb with end burning charges of propellant in either or both end. By measuring the oscillating pressure at the ends of the burner. it is possible to derive the acoustic response function for the propellant under study.
- An example of said apparatus is disclosed by R. Stittmater, L. Watermeier and S. Pfaff, Virtual Specific Acoustic Admittance Measurements of Burning Solid Propellant Surface by a Resonant Tube Technique.” Ninth Symposium (International) on Combustion. New York: Academic Press l963) pp. 3l13l5.
- a propellant composition comprising an oxidizer and an organic binder component. the improvement wherein the oxidizer particle has been coated with ethylcellulose.
- composition in accordance with claim 1 wherein the oxidizer is ammonium perchlorate.
- composition in accordance with claim 2 wherein the binder is a carboxy-terminated polybutadiene.
- a composition in accordance with claim 3 that contains the materials in the approximate weight ratio of 78 parts of ammonium perchlorate to 22 parts of carboxy-terminated polybutadiene.
- a method of inhibiting the combustion instability characteristic of a non-aluminized propellant having an oxidizer and organic binder component comprising the coating of the oxidizer particles with ethylcellulose.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Paints Or Removers (AREA)
Abstract
A composite propellant composition comprising an organic binder; and an oxidizer which has been coated with the following materials: a copolymer of vinylidine and hexafluoropropylene, chlorosulfonated polyethylene, and ethylcellulose.
Description
United States Patent 11 1 Brown et al.
l l l PROPELLANT INSTABILITY MODIFIER Inventors: Robert S. Brown, Santa Clara;
Raymond J. Muzzy, Saratoga, both of Calif.
The United States of America as represented by the Secretary of the Army, Washington, DC.
Filed: July 18, 1974 Appl. No: 489,871
Related US. Application Data Assignee:
Continuation of Ser, No. 32,432, April 27, I970,
abandoned.
US. Cl 149/7; l49/76; ll7/l00 B; l49/l9.9; l49/l9.3
Int. Cl. C06B 45/34 Field of Search 149/7, 19.9, 76; l l7/l00 B References Cited UNITED STATES PATENTS 6/1965 Endcr 149/7 X OTHER PUBLICATIONS Chem. and Eng. News, Aug. 1, 1960, p. 35. Chem. and Eng. News, Aug. 8, I960, p. 53.
Primary Examiner-Benjamin R. Padgett Assistant Examiner-P. A. Nelson Attorney, Agent, or FirmR0bert P. Gibson; Nathan Edelberg [57] ABSTRACT A composite propellant composition comprising an organic binder; and an oxidizer which has been coated with the following materials: a copolymer of vinylidine and hexafluoropropylene, chlorosulfonated polyethyl ene, and ethylcellulose.
8 Claims, No Drawings PROPELLANT INSTABILITY MODIFIER This is a continuation of application Ser. No. 32,432, filed Apr. 27, i970 now abandoned.
This invention relates in general to a solid propellant, and more particularly to a solid propellant comprising an oxidizer which has been coated with an inert material in order to stabilize the combustion of the propellant.
Recent studies on the structure of the combustion zone of a propellant has presented evidence that there are significant exothermic processes which occur on and within the solid phase. The results of these studies indicate the combustion process is controlled by two interdependent exothermic reaction zones near and on the surface of the propellant. One zone is in the gas phase at a finite distance away from the solid propellant surface and is characterized by interdiffusion of gasified oxidizer and fuel species and combustion of particles of ejected matter from the surface. The second reaction zone occurs on and within the solid propellant surface. The primary release in this zone probably occurs from chemical reactions between the initial decomposition products of the solid oxidizer and the adjacent fuel surface. Transient and steady-state combustion studies indicate that much of the pressure dependent combustion process is associated with these interfacial reactions.
The interfacial reactions at and within the surface release sufficient heat to expel partially combusted products, pyrolysis products, and fuel and oxidizer fragments into the gas phase zone above the surface where they intermix and burn completely. The maximum flame temperature is reached in the luminous zone where the largest portion of the heat is released. However, because of the relatively large mass flow perpendicular to the surface, only a small amount of heat released in the luminous flame zone reaches the surface to supplement the heat generated by interfacial reactions.
Incorporation of the exothermic chemical processes on and within the solid phase represents an important addition to the analysis of propellant combustion phenomena. Previous theoretical treatments of steadystate combustion as well as combustion instability have considered the exothermic combustion reaction to occur only in the gas phase.
It is an object of this invention to provide and disclose a method for the controlling of the contributions of interfacial reactions to the combustion process.
Other objects and a fuller understanding of the invention may be had by referring to the following description and claims.
Combustion instability has been a serious problem in operational solid propellants. A method of solving this problem in several rocket systems has been the utiliza tion of aluminum in the propellant grain. ln rocket systems wherein nonmetallized grains are utilized, attempts to stabilize combustion has involved alterations to the basic combustion chamber or fuel grain. These alterations have in turn generally reduced the reliability of the overall rocket and lowered its performance.
One method for controlling the contributions of interfacial reactions in the combustion process is to change the reactivity of the interface by coating the oxidizer particles with an inert material and preparing the propellant mix in the normal manner. The burning rate characteristics of the propellant are not seriously altered by the presence of the coating. However, the instability characteristics are substantially improved by this coating.
The coatings utilized were selected from the group consisting of Viton A which is a trade name for a copolymer of vinylidine fluoride and hexafluoropropylene; Hypalon-30, a chlorosulfonated polyethylene; and ethylcellulose.
In the conducted experimentation, ammonium perchlorate having an average particle size of microns was utilized as the oxidizer. However, other suitable oxidizers may be utilized. The oxidizer was coated with the polymer utilizing a solvent/nonsolvent technique as disclosed in patent application Ser. No. 727,340 by M. E. Steinle. In the process, the selected polymer is dissolved in a suitable solvent and the required amount of oxidizer is added to the solution in a mixer. The solvent is then evaporated from the mix until the gel state of the polymer is present. A second liquid that is a nonsolvent for the polymer is then added to the polymer solution at a slow rate. This forces the polymer out of solu tion and around the particles of the oxidizer. A sufficient quantity of the nonsolvent is added to harden the polymer. After stirring for a specified period of time, the liquid is decanted and the coated oxidizer dried.
Specifically, 6 grams of a polymer, e.g., ethylcellulose, are dissolved in 300 grams of methylene chloride. The OH groups in the cellulose utilized have been partially or completely replaced by ethoxyl groups. The solution and 394 grams of ammonium perchlorate having a particle size of about 190 microns are added to a mixer bowl and agitated on a modified Hobart mixer at ambient temperature. During agitation. a nitrogen flush is utilized to draw off the excess methylene chloride. When the methylene chloride has been substantially removed and the mixture has the appearance of a thick gel, an initial portion of a total of 1000 ml. of Freon l,l,2 trichloro-l,2,2, trifluoroethane) is added slowly with agitation to bring the ethylcellulose out of solution and to coat the ammonium chloride. At this point a small amount of a hardening agent, e.g., 0.06 gram of tetrabutyl titanate, may be added. After the mixture is agitated for a period of 15 minutes, the agitation is stopped and the liquid phase removed. A second portion of Freon is added and the coated ammonium perchlorate agitated for a period of 10 minutes. Subsequently, the liquid phase is removed and the recovered wet polymer coated ammonium perchlorate dried.
In order to evaluate the effectiveness of the coated oxidizer, a conventional propellant composition comprising 78 parts by weight of ammonium perchlorate and 22 parts by weight of an organic binder, e.g., a carboxy terminated polybutadiene was prepared. Formulations were then prepared consisting of 78 parts by weight of ammonium perchlorate coated with l to 1.5 parts by weight of a polymer selected from the group consisting of: a copolymer of vinylidine fluoride and hexafluoropropylene, a chlorosulfonated polyethylene, and ethylcellulose. The coated ammonium perchlorate was then mixed with 22 parts by weight of a carboxyterminated polybutadiene and the propellant prepared in the conventional manner.
Experimentations were conducted utilizing a T- burner apparatus to study the instability properties of the above prepared propellants. A measurement of the acoustic admittance was obtained. Said acoustic admittanee is an expression of the instantaneous burning rate exponent as a function of the frequency. This type of apparatus, which is utilized in industry for acoustic measurements. consists of a cylindrical combustion bomb with end burning charges of propellant in either or both end. By measuring the oscillating pressure at the ends of the burner. it is possible to derive the acoustic response function for the propellant under study. An example of said apparatus is disclosed by R. Stittmater, L. Watermeier and S. Pfaff, Virtual Specific Acoustic Admittance Measurements of Burning Solid Propellant Surface by a Resonant Tube Technique." Ninth Symposium (International) on Combustion. New York: Academic Press l963) pp. 3l13l5.
It was found that the effects of the coatings tended to reduce the surface activity and thereby the pressure sensitivity of the propellant. It was found that coating the oxidizer with 1.5 parts by weight with a copolymer of vinylidine fluoride and hexafluoropropylene reduced the maximum value of the acoustic admittance by about 50% along with a shift in the frequency at which the maximum value occurred. These effects are considered to be due entirely to the coating of the oxidizer material and not to fact that an inert material was incorporated into the propellant mix. It was found that while a polymer of chlorosulfonated polyethylene or ethyl cellulose did not significantly alter the maximum response function. they altered the frequency at which the maximum response occurred.
Although we have described our invention with a certain degree of particularity, it is understood that the present disclosure has been made by way of example and that any appropriate combinations of oxidizer and binder components may be utilized in conjunction with the inert materials without departing from the spirit and scope of the invention.
Having described our invention we claim:
1. In a propellant composition comprising an oxidizer and an organic binder component. the improvement wherein the oxidizer particle has been coated with ethylcellulose.
2. A composition in accordance with claim 1 wherein the oxidizer is ammonium perchlorate.
3. A composition in accordance with claim 2 wherein the binder is a carboxy-terminated polybutadiene.
4. A composition in accordance with claim 3 that contains the materials in the approximate weight ratio of 78 parts of ammonium perchlorate to 22 parts of carboxy-terminated polybutadiene.
5. A method of inhibiting the combustion instability characteristic ofa non-aluminized propellant having an oxidizer and organic binder component; comprising the coating of the oxidizer particles with ethylcellulose.
6. A method in accordance with claim 5 wherein the oxidizer is ammonium perchlorate.
7. A method in accordance with claim 5 wherein the binder is a carboxy-terminated polybutadiene.
8. A method in accordance with claim 7 containing the approximate weight ratio of 78 parts of ammonium perchlorate to 22 parts of carboxy-terminated polybutadicne.
Claims (8)
1. IN A PROPELLANT COMPOSITION COMPRISING AN OXIDIZER AND AN ORGANIC BINDER COMPONENT, THE IMPROVEMENT WHEREIN THE OXIDIZER PARTICLE HAS BEEN COATED WITH ETHYLCELLULOSE.
2. A composition in accordance with claim 1 wherein the oxidizer is ammonium perchlorate.
3. A composition in accordance with claim 2 wherein the binder is a carboxy-terminated polybutadiene.
4. A composition in accordance with claim 3 that contains the materials in the approximate weight ratio of 78 parts of ammonium perchlorate to 22 parts of carboxy-terminated polybutadiene.
5. A method of inhibiting the combustion instability characteristic of a non-aluminized propellant having an oxidizer and organic binder component; comprising the coating of the oxidizer particles with ethylcellulose.
6. A method in accordance with claim 5 wherein the oxidizer is ammonium perchlorate.
7. A method in accordance with claim 5 wherein the binder is a carboxy-terminated polybutadiene.
8. A method in accordance with claim 7 containing the approximate weight ratio of 78 parts of ammonium perchlorate to 22 parts of carboxy-terminated polybutadiene.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US489871A US3891482A (en) | 1970-04-27 | 1974-07-18 | Propellant instability modifier |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3243270A | 1970-04-27 | 1970-04-27 | |
| US489871A US3891482A (en) | 1970-04-27 | 1974-07-18 | Propellant instability modifier |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3891482A true US3891482A (en) | 1975-06-24 |
Family
ID=26708419
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US489871A Expired - Lifetime US3891482A (en) | 1970-04-27 | 1974-07-18 | Propellant instability modifier |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3891482A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4094711A (en) * | 1977-09-01 | 1978-06-13 | Ford Aerospace & Communications Corporation | Tracer and composition |
| US5049212A (en) * | 1991-03-27 | 1991-09-17 | The United States Of America As Represented By The Secretary Of The Navy | High energy explosive yield enhancer using microencapsulation |
| US5753853A (en) * | 1986-02-20 | 1998-05-19 | Kenrich Petrochemicals, Inc. | Solid propellant with titanate bonding agent |
| US6132536A (en) * | 1997-08-20 | 2000-10-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Automated propellant blending |
| CN103086815A (en) * | 2013-01-31 | 2013-05-08 | 陕西师范大学 | Preparation method for styrene-coated ammonium perchlorate |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3190776A (en) * | 1960-11-14 | 1965-06-22 | Union Carbide Corp | Coated ammonium perchlorate and propellant compositions |
| US3332812A (en) * | 1961-03-08 | 1967-07-25 | Exxon Research Engineering Co | Polybutadiene-n2f4 addition product |
| US3441455A (en) * | 1961-01-13 | 1969-04-29 | Continental Oil Co | Encapsulated propellants and method for their preparation from fluorinated monomers using radiation |
| US3535172A (en) * | 1960-03-18 | 1970-10-20 | Exxon Research Engineering Co | Rocket propellants containing coated nitronium perchlorate |
| US3539377A (en) * | 1968-05-07 | 1970-11-10 | Us Army | Method for coating oxidizer particles with a polymer |
| US3551222A (en) * | 1967-03-06 | 1970-12-29 | Us Navy | Coated water soluble inorganic oxidizers |
-
1974
- 1974-07-18 US US489871A patent/US3891482A/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3535172A (en) * | 1960-03-18 | 1970-10-20 | Exxon Research Engineering Co | Rocket propellants containing coated nitronium perchlorate |
| US3190776A (en) * | 1960-11-14 | 1965-06-22 | Union Carbide Corp | Coated ammonium perchlorate and propellant compositions |
| US3441455A (en) * | 1961-01-13 | 1969-04-29 | Continental Oil Co | Encapsulated propellants and method for their preparation from fluorinated monomers using radiation |
| US3332812A (en) * | 1961-03-08 | 1967-07-25 | Exxon Research Engineering Co | Polybutadiene-n2f4 addition product |
| US3551222A (en) * | 1967-03-06 | 1970-12-29 | Us Navy | Coated water soluble inorganic oxidizers |
| US3539377A (en) * | 1968-05-07 | 1970-11-10 | Us Army | Method for coating oxidizer particles with a polymer |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4094711A (en) * | 1977-09-01 | 1978-06-13 | Ford Aerospace & Communications Corporation | Tracer and composition |
| US5753853A (en) * | 1986-02-20 | 1998-05-19 | Kenrich Petrochemicals, Inc. | Solid propellant with titanate bonding agent |
| US5049212A (en) * | 1991-03-27 | 1991-09-17 | The United States Of America As Represented By The Secretary Of The Navy | High energy explosive yield enhancer using microencapsulation |
| US6132536A (en) * | 1997-08-20 | 2000-10-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Automated propellant blending |
| CN103086815A (en) * | 2013-01-31 | 2013-05-08 | 陕西师范大学 | Preparation method for styrene-coated ammonium perchlorate |
| CN103086815B (en) * | 2013-01-31 | 2014-11-05 | 陕西师范大学 | Preparation method for styrene-coated ammonium perchlorate |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1070952A (en) | Gas forming deflagrating compositions and method | |
| US6652682B1 (en) | Propellant composition comprising nano-sized boron particles | |
| US5218166A (en) | Modified nitrocellulose based propellant composition | |
| US2690964A (en) | Process for gelling liquid nitroparaffins | |
| US3646174A (en) | Process for making spheroidal agglomerates | |
| US3707411A (en) | Primer composition for solid propellant charges | |
| US3794535A (en) | Pyrotechnic lacquer | |
| US4728376A (en) | Explosive composition and method | |
| Sims et al. | ADN solid propellants with high burning rates as booster material for hypersonic applications | |
| US3891482A (en) | Propellant instability modifier | |
| US4091729A (en) | Low vulnerability booster charge caseless ammunition | |
| US3764420A (en) | Suppression of combustion instability by means of pbi fibers | |
| US3539377A (en) | Method for coating oxidizer particles with a polymer | |
| US3976521A (en) | Method of coating boron particles with ammonium perchlorate | |
| US4570540A (en) | LOVA Type black powder propellant surrogate | |
| US4089716A (en) | Ignition enhancing propellant coatings | |
| US3923564A (en) | Double base propellant with thorium containing ballistic modifier | |
| Doriath | Energetic insensitive propellants for solid and ducted rockets | |
| US4094712A (en) | Consolidated charges incorporating integral ignition compounds | |
| US3473982A (en) | Nitrocellulose explosive containing a charcoal binder-oxidizer mixture | |
| US3017300A (en) | Pelleted igniter composition and method of manufacturing same | |
| US3419443A (en) | Hydrazine containing explosive compositions | |
| Akhavan | Explosives and propellants | |
| CA2301392C (en) | Desensitisation of energetic materials | |
| US3755019A (en) | Solid propellant compositions containing plasticized nitrocellulose and aluminum hydride |