[go: up one dir, main page]

US3890929A - Xerographic developing apparatus - Google Patents

Xerographic developing apparatus Download PDF

Info

Publication number
US3890929A
US3890929A US473027A US47302774A US3890929A US 3890929 A US3890929 A US 3890929A US 473027 A US473027 A US 473027A US 47302774 A US47302774 A US 47302774A US 3890929 A US3890929 A US 3890929A
Authority
US
United States
Prior art keywords
donor
image
development
toner
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US473027A
Inventor
Lewis E Walkup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US473027A priority Critical patent/US3890929A/en
Application granted granted Critical
Publication of US3890929A publication Critical patent/US3890929A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/065Arrangements for controlling the potential of the developing electrode

Definitions

  • the development device comprises a toner supporting donor member adjacent. and in spaced relationship to, an image retaining member. ln addition, there is provided a means to introduce a pulsed electrical field across the gap between the donor and image retaining member whereby the electroscopic particles are made more readily available to the charged image thereby resulting in fine image development.
  • a xerographic plate comprising a layer of photoconducting and insulating material on a conducting backing is given a uniform electric charge over its entire surface and is then exposed to the sub ject matter to be reproduced usually by conventional projection techniques. This exposure results in discharge of the photoconductive plate whereby an electrostatic latent image is formed.
  • Development of the latent charge pattern is effected with an electrostati cally charged, finely divided material such as an electroscopic powder, that is brought into surface contact with the photoconductivc layer and is held thereon clectrostatically in a pattern corresponding to the electrostatic latent image. Thereafter, the developed image may be fixed by any suitable means to the surface on which it has been developed or may be transferred to a secondary support surface to which it may be fixed or utilized by means known in the art.
  • any method employed for forming electrostatic images they are usually made visible by a development step.
  • Various developing systems are well known and include cascade, brush development, magnetic brush, powder cloud and liquid developments, to cite a few.
  • a conductive control electrode as, for example. disclosed in US. Pat. Nos. 2,808,023. 2,777,418. 2.573.88l and others. is highly effective in influencing electrostatic gradients to develop images having varying charge gradients and having relatively large solid image areas.
  • superior results are generally obtainable without the electrode in place.
  • transfer development broadly involves bringing a layer of toner to an imaged photoconductor where toner particles will be transferred from the layer to the imaged areas.
  • the layer of toner particles is applied to a donor member which is capable of retaining the particles on its surface and then the donor member is brought into close proximity to the surface of the photoconductor. In the closely spaced position, particles of toner in the toner layer on the donor member, are attracted to the photoconductor by the electrostatic charge on the photoconductor so that development takes place.
  • the toner particles must traverse an air gap to reach the imaged regions of the photoconductor.
  • the toner-laden donor actually contacts the imaged photoreceptor and no air gap is involved.
  • the toner laden donor is rolled in non-slip relationship into and out of contact with the electrostatic latent image to develop the image in a single rapid step.
  • the tonerladen donor is skidded across the xerographic surface. Skidding the toner by as much as the width of the thinnest line will double the amount of toner available for development of a line which is perpendicular to the skid direction and the amount of skidding can be increased to achieve greater density or greater area coverage.
  • transfer de velopment is generic to development techniques where (l) the toner layer is out of contact with the imaged photoconductor and the toner particles must traverse an air gap to effect development, (2) the toner layer is brought into rolling contact with the imaged photoconductor to effect development, and (3) the toner layer is brought into contact with the imaged photoconductor and skidded across the imaged surface to effect development. Transfer development has also come to be known as touchdown development.
  • electrostatic force field associated with the latent image still remains the predominant mechanism by which the toner particles are both activated and attracted to the imaged area of the photoconductive surface.
  • FIG. 1 is a cross-sectional view of a continuous auto matic xerographic copying machine utilizing the developing technique of this invention.
  • FIG. 2 is a graphic illustration of the characteristics of the controlled pulsation technique utilized in the instant invention.
  • FIG. 3 is a cross-sectional view of a donor and photoconductive surface system utilized for developing a latent electrostatic image according to the method of this invention.
  • FIG. I there is illustrated a continuous xerographic machine adapted to form an electrostatic reproduction of a copy onto a paper sheet. web or the like.
  • the apparatus includes the xerographic plate I0 in the form of a cylindrical drum which comprises the photoconductive insulating peripheral surface [2 on a conductive substrate II.
  • the drum is mounted on an axle I5 for rotation. and driven by a motor I6 through belt 17 connected to pulley I8 secured to the shaft or axle I5.
  • a charging element 21 Positioned adjacent the path of motion ofthe surface ofthe drum I0 is a charging element 21 comprising. for
  • an exposure station 23 Subsequent to the charging station in the direction of rotation of the drum. is an exposure station 23 generally comprising suitable means for imposing a radiation pattern reflected or projected from an original copy 24 or to the surface of the xerographic drum. To effect exposure. the exposure station is shown to include a projection lens 25 or other exposure mechanism as is conventional in the art. preferably operating with slit projection methods to focus the moving image at the exposure slit 26.
  • a developing station for rendering the latent image visible.
  • a transfer station 31 adapted to transfer a developed image from the surface of the drum to a transfer web 32 that is advanced from supply roll 33 into contact with the surface of the xerographic drum at a point beneath a transfer electrode 34.
  • the web desirably continues through a fusing or fixing device 35 onto a take-up roll 36 being driven through a slip clutch arrangement 37 from motor I6.
  • electrode 34 has a corona dis charge operably connected to a high-voltage source 40 whereby a powder image developed on the surface of the drum is transferred to the web surface.
  • Fusing device 35 primarily fixes the transferred powder image onto the web to yield a xerographic print. After transfer. the xerographic drum It) continues to rotate past a cleaning station 41 in which residual powder on the drum"s surface is removed. This may include. for example, a rotating brush 42 driven by a motor 43 through a belt 44 whereby the brush bristles bear against the surface of the drum to remove residual developer therefrom. Optionally. further charging means. illumination means. or the like. may effect electrical or controlled operations.
  • a donor member in the form of a cylindrical roll. as will be further described. which revolves about a center axis 51. Rotation of the donor is effected by means of an axle 51 being driven by a motor 55 operating through a belt 56, preferably to drive the cylinder in the same direction as the surface rotation of the drum.
  • the speeds of the donor member and drum may be substan tially the same or the donor member can travel at speeds as high as 5 to 10 times as fast as the peripheral speed of the drum to effect a greater development in imaged areas.
  • Affixed to the donor member 50 is a high-voltage means for applying a potential between the cylindrical donor S0 and the photoconductive plate [2.
  • spacial gap which. within the purview ofthe present invention. can be maintained up to 6 or 7 mils (1 mil equals l/l000 of an inch).
  • the actual development step within the purview of the instant invention is achieved maintaining a close gap between the rotating donor and photoreceptor using a properly pulsed electrical potential between the plate and the donor to establish the proper field relationships whereby optimum line and solid development is effected with a minimum of background deposition.
  • a powder loading station Adjacent one portion of the path of motion of the developer donor member 50 is a powder loading station which may, for example, comprise a developer hopper 57 containing a quantity ofdevcloper product 58 which may he a form of a two-component developer mixer as disclosed in LES. Pat. No. 2,638,416.
  • the hopper opens against the donor member whereby the cylinder passes in contact with the developer's supply and is coacted uniformly with the toner powder component of the mixture as the donor passes through developer.
  • Other loading mechanisms and developer compositions may. of course. he employed including dusting brush or the like, as is known in the art.
  • One preferred donor element of the present invention is a microfield donor consisting of a milled aluminum cylinder over which a thin layer of insulated enamel is placed, in which enamel layer there is etched a thinner layer of an electrical conductor, such as copper, in the form of a grid pattern.
  • the enamel layer generally has a thickness of about 2 X It) inches, while the copper grid layer would be in the order of 5 X inches in thickness.
  • the typical grid pattern on a donor member of this type generally has from about to 150 lines per inch with the ratio of insulator-to-grid surface areas being about 1.25 to 1.0.
  • a donor member In order that a donor member function in accordance with the instant invention, it must first be characterized by sufficient strength and durability to be employed for continuous recycling, and in addition should preferably comprise an electrical insulator or at least possess sufficient high electrical insulator or at least possess sufficient high electrical resistance of approximately 10 ohm-cm or greater. This is not to be considered an absolute limitation. since the resistivity requirement will become less than about 10" ohm-cm and below with reduced time period of exposure between the particular incremental area of the donor and the xerographic plate. For development speeds giving shorter contact times. materials of lower resistivity may be used. Materials found suitable for this purpose include Teflon, polyethylene terephthalate (Mylar). and polyethylene.
  • a micro field donor of the type described above is used as memher 50 of FIG. 1.
  • the four basic steps in carrying out a development process are loading of the donor with toner. corona charging the toner (see corona charging element 7] of FIG. I). passing the toner to the electrostatic latent image on the photoconductive surface. and cleaning residual toner from the donor member so as to allow repetition of the process.
  • there are additional steps such as agglomerate toner removal and corona discharge of the donor member, which steps are auxiliary to the development process.
  • a bias is applied to the grid which establishes strong electrical fringe l'ields between the copper grid and the grounded aluminum substrate.
  • the donor is rotated through a bed of vibrating toner containing both negative and positively charged toner. these fields collect toner on the donor in both grid and the enamel insulator areas.
  • the entire layer of toner is then charged negatively using a negative corona (see 71 of FIG. I).
  • an electrical pulse is applied to the donor thereby creating an oscillating electrical field between the donor 10 so as to create a bias on the negatively charged toner particles. As the donor approaches the plate.
  • a typical pulse cycle is dem onstrated. Basically. the single pulse cycle is considered in two components. namely, a non-activating zero potential part which operates for a time T,, and a positive part described as development transfer, defined by a potential V, which operated for a time T,,.
  • the number of times per second a pulse cycle is repeated is defined as the repetition rate.
  • the zero volt reference is used for the V,, voltage level.
  • the pulse is not perfectly rectangular in shape; however, rise times are small enough so that they can be neglected.
  • the potential is usually applied to the donor thereby creating a field between the donor 50 and the photoconductive plate, the latter being considered the ground for the applied voltage.
  • the potential is usually applied to the donor thereby creating a field between the donor 50 and the photoconductive plate, the latter being considered the ground for the applied voltage.
  • the potential is usually applied to the donor thereby creating a field between the donor 50 and the photoconductive plate, the latter being considered the ground for the applied voltage.
  • the potential is usually applied
  • drum element 10 could be the source and the donor the ground for the application ofa field to effect removal of the toner and its deposition onto the imaged areas of the plate.
  • the bias level during the inactive or zero potential, portion of the pulse is such that the negative toner particles experience only a field force engendered by the charged areas ofthe photoreceptor l0 and comprised ofa substrate 11 and photoconductive layer 12.
  • the potential is applied to the toner particles experience a greater field force which is sufficient to loosen and motivate them from donor element 50 into the space gap.
  • the potential is reduced to zero by pulsing those loosened electroscopic particles in the field of the charge image continue towards deposition while those in the non-imaged areas are drawn back to the donor.
  • the overall effect of the pulsing is enhanced development in image areas and nondevelopment in background areas.
  • the duration of the potential as well as the magnitude of the space gap have to be spacially considered in optimizing all the parameters of the development system.
  • the experimental work carried out in developing the instant invention utilized simple bench-type apparatus.
  • a Xerox 813 size cylindrical donor containing a grid of 120 lines per inch was loaded by rotating through a vibrating tray of toner and then charged negatively.
  • the actual transfer development step was completed by rolling the donor over a halogen doped selenium plate.
  • the donor-to-photoreceptivc spacing was maintained by plastic shim stock placed on the edges of the plate. Nominal spacings of up to I78 microns were used on all tests. Since the primary objective of the experimen tation was to investigate development variables, the charging and loading functions were kept reasonably constant. Typical toner layers were 2 to 2% mils thick and were checked optically. The charge on the toner layer was monitored by reading the potential above the toner layer after charging. Then the measurements were made on semimicro densitometer systems and pulse variables were set and monitored on an oscilloscope at all phases of experimentation.
  • An apparatus for developing a latent electrostatic image recorded on an image retaining member comprising:
  • a donor member for supporting a uniform layer of electroscopic developing material adjacent the image retaining member. said donor member and image retaining member being spacially disposed as to create a space gap l -l.'l ⁇ ULli b th members;
  • b. means to introduce a pul e electrical bia across said gap.
  • said pulse being of a strength and a dura tion sufficient to enable the deposition of the elcctroscopic material onto the charged image areas and prevent the development of non-image areas.
  • spacial gap between the donor and the photoreceptor measures up to 7 mils.
  • cylindrical donor comprises an aluminum substrate and an enamel surface layer supporting an etched layer of copper in the form of a grid pattern.
  • a cylindrical donor member being adapted to support a uniform layer of finely divided toner on the surface thereof. said donor being spacially positioned adjacent said image retaining member by means of a small space gap;
  • c. means to periodically pulse said bias potential to a zero potential whereby toner not in the field of the charged image areas returns to the donor member.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

An apparatus for developing a latent xerographic image is disclosed. The development device comprises a toner supporting donor member adjacent, and in spaced relationship to, an image retaining member. In addition, there is provided a means to introduce a pulsed electrical field across the gap between the donor and image retaining member whereby the electroscopic particles are made more readily available to the charged image thereby resulting in fine image development.

Description

1 June 24, 1975 1 1 XEROGRAPHIC DEVELOPING APPARATUS [75] lnventor: Lewis E. Walkup, Honolulu, Hawaii [73} Assignee: Xerox Corporation, Stamford,
Conn.
[22] Filed: May 24, I974 121] App]. No.: 473,027
Related US. Application Data (63] Continuation-impart of Ser. No. 332,851. Feb. 15.
[52] US. Cl 118/637; 355/3 DD [51] Int. Cl G03g 13/06 [58] Field of Search 118/637; 117/175; 346/74 ES; 355/3 DD. 3 R
[56] References Cited UNITED STATES PATENTS 3.662.711 5/1972 Hudson 118/637 HIGH VOLTAGE SOURCE VOLTAGE SOURCE 3.703.157 11/1972 Maksymiak ct a1 118/637 3.739.748 6/1972 Rittler et a1 355/3 DD X 3.759.222 9/1973 Maksymiak 118/637 3.850.662 11/1974 Jahn 1 18/637 Primer E.raminerRonald Feldbaum [57] ABSTRACT An apparatus for developing a latent xerographic image is disclosed. The development device comprises a toner supporting donor member adjacent. and in spaced relationship to, an image retaining member. ln addition, there is provided a means to introduce a pulsed electrical field across the gap between the donor and image retaining member whereby the electroscopic particles are made more readily available to the charged image thereby resulting in fine image development.
8 Claims, 3 Drawing Figures PAYEN FEB JUN 24 ms VOLTAGE V 1a) SOURCE ,2 42 :1: M1 43 VOLTAGE SOURCE F7612 F7613 1Q r I l;++++
169696696696 GGQ F A SOURCE X EROGRAPHIC DEVELOPING APPARATUS This is a continuation-in-part of copending application Ser. No. 332.85] filed on Feb. I5. 1973.
BACKGROUND OF THE INVENTION In the art of xerography as disclosed in US. Pat. No. 2.297.69l to Carlson, a xerographic plate comprising a layer of photoconducting and insulating material on a conducting backing is given a uniform electric charge over its entire surface and is then exposed to the sub ject matter to be reproduced usually by conventional projection techniques. This exposure results in discharge of the photoconductive plate whereby an electrostatic latent image is formed. Development of the latent charge pattern is effected with an electrostati cally charged, finely divided material such as an electroscopic powder, that is brought into surface contact with the photoconductivc layer and is held thereon clectrostatically in a pattern corresponding to the electrostatic latent image. Thereafter, the developed image may be fixed by any suitable means to the surface on which it has been developed or may be transferred to a secondary support surface to which it may be fixed or utilized by means known in the art.
In any method employed for forming electrostatic images, they are usually made visible by a development step. Various developing systems are well known and include cascade, brush development, magnetic brush, powder cloud and liquid developments, to cite a few. In connection with these various developing systems, it is known that a conductive control electrode as, for example. disclosed in US. Pat. Nos. 2,808,023. 2,777,418. 2.573.88l and others. is highly effective in influencing electrostatic gradients to develop images having varying charge gradients and having relatively large solid image areas. At the same time, when developing images generally devoid of solid areas and consisting primarily of Iined-copy images, superior results are generally obtainable without the electrode in place.
Another important development technique is disclosed in US. Pat. No. 2,895,847 issued to Mayo. This particular development process employs a support member such as a web, sheet or other member termed a donor" which carries a releasable layer of electroscopic marking particles to be brought into close contact with an image bearing plate for deposit in COIL formity with the electrostatic image to be developed. In donor or transfer development of this type, the electrical properties of the donor are a factor for development in response to the area characteristics of the latent charge image. Specifically, electrically insulating donors respond best with line copy, while electrically conductive donors respond best with solid areas in a manner comparable to the control electrode. Accordingly. prior attempts to provide development flexibility on a practical basis for development of any kind of im' age, such as solid area versus line copy, have met with difficulty. This has resulted in limitations on the usual copying system and has necessitated selectivity with regard to particular materials to be reproduced.
As mentioned above. transfer development broadly involves bringing a layer of toner to an imaged photoconductor where toner particles will be transferred from the layer to the imaged areas. In one transfer development technique, the layer of toner particles is applied to a donor member which is capable of retaining the particles on its surface and then the donor member is brought into close proximity to the surface of the photoconductor. In the closely spaced position, particles of toner in the toner layer on the donor member, are attracted to the photoconductor by the electrostatic charge on the photoconductor so that development takes place. In this technique the toner particles must traverse an air gap to reach the imaged regions of the photoconductor. In two other transfer techniques the toner-laden donor actually contacts the imaged photoreceptor and no air gap is involved. In one such technique, the toner laden donor is rolled in non-slip relationship into and out of contact with the electrostatic latent image to develop the image in a single rapid step. In another such technique. the tonerladen donor is skidded across the xerographic surface. Skidding the toner by as much as the width of the thinnest line will double the amount of toner available for development of a line which is perpendicular to the skid direction and the amount of skidding can be increased to achieve greater density or greater area coverage.
It is to be noted, therefore, that the term "transfer de velopment is generic to development techniques where (l) the toner layer is out of contact with the imaged photoconductor and the toner particles must traverse an air gap to effect development, (2) the toner layer is brought into rolling contact with the imaged photoconductor to effect development, and (3) the toner layer is brought into contact with the imaged photoconductor and skidded across the imaged surface to effect development. Transfer development has also come to be known as touchdown development.
In connection with transfer type development, it is known that by applying a controlled bias to a donor member characterized by appropriate electrical resistance while in contact with a plate being developed, that the donor functions to effect results similar to a control electrode described above. That is, by applying a bias potential to the rear surface of the donor mem her when presenting developer into contact with an electrostatic latent image, it becomes much more effec tive than an insulating or highly resistive unbiased donor for developing images having relatively large solid areas, as well as the various gradations of charge commonly associated with continuous tone images. At the same time, when developing images generally devoid of solid areas and gradations in tone and consisting primarily of line copy images, substantially greater image exposure latitude can still be obtained by developing with the donor in its inherently more resistive state without the benefit of the corona bias applied thereto.
A number of transfer type development systems were advanced in which background development was minimized. In US. Pat. No. 3.232.190 to Wilmott,atrans for type development system is disclosed in which the charged toner particles are typically stored on a donor member and development is accomplished by transferring the toner from the donor to the image regions on the photoconductive surface across a finite air gap caused by the spacial disposition of said donor and image surface. Activation of the toner particles, i.e., removal from the donor surface. and attraction onto the image regions (development) was primarily due to the influence ofthe electrostatic force field associated with the charged photoconductive plate surface. For this reason, the spacial positioning of the two coacting members [donors and photoconducting surface) in relation to each other was critical. Should the members be in too close proximity excessive background development occurs. while too great a distance results in inadequate development.
In the application of an electrical field to a transfer development system. a problem of background development arose. This was due to the fact that. while applying a bias across the development zone enhanced the deposition of the clectroscopic particles onto the charge image pattern. the charged toner was also motivated onto the uncharged or background areas of the pattern. thereby resulting in a background development.
In US. Pat. No. 2.289.400 t Moncrieff-Yeates. there is disclosed an out of contact transfer development system in which a continuous and uniform force field is established within the transfer Zone and assists the electrostatic force field associated with the charged imaging element during activation and development. The application of this type of electrical force field can not. however, simply permit the toner particles to be transported over a wider gap. Because the force field is continuous and uniform. no additional control is afforded over the development process. Therefore. the
electrostatic force field associated with the latent image still remains the predominant mechanism by which the toner particles are both activated and attracted to the imaged area of the photoconductive surface.
As can be ascertained from the above. the art of xerographic development, and in particular transfer development. would be significantly advanced if a pulsed bias could be used to improve both line and continuous tone quality in transfer development.
BRIEF DESCRIPTION OF THE DRAWINGS The above and still further features and advantages of the present invention will become apparent upon consideration of the following detailed disclosure. along with specific embodiments of the invention, especially when taken in conjunction with the accompanying drawings herein.
FIG. 1 is a cross-sectional view of a continuous auto matic xerographic copying machine utilizing the developing technique of this invention.
FIG. 2 is a graphic illustration of the characteristics of the controlled pulsation technique utilized in the instant invention.
FIG. 3 is a cross-sectional view of a donor and photoconductive surface system utilized for developing a latent electrostatic image according to the method of this invention.
DETAILED DESCRIPTION OF THE DRAWINGS Referring now specifically to FIG. I, there is illustrated a continuous xerographic machine adapted to form an electrostatic reproduction of a copy onto a paper sheet. web or the like. The apparatus includes the xerographic plate I0 in the form of a cylindrical drum which comprises the photoconductive insulating peripheral surface [2 on a conductive substrate II. The drum is mounted on an axle I5 for rotation. and driven by a motor I6 through belt 17 connected to pulley I8 secured to the shaft or axle I5.
Positioned adjacent the path of motion ofthe surface ofthe drum I0 is a charging element 21 comprising. for
example. a positiu: polarity corona discharge electrode consisting of fine wire suitable connected to a high voltage source 22 or potentially high enough to cause a corona discharge from the electrode onto the surface of the drum I0. Subsequent to the charging station in the direction of rotation of the drum. is an exposure station 23 generally comprising suitable means for imposing a radiation pattern reflected or projected from an original copy 24 or to the surface of the xerographic drum. To effect exposure. the exposure station is shown to include a projection lens 25 or other exposure mechanism as is conventional in the art. preferably operating with slit projection methods to focus the moving image at the exposure slit 26.
Subsequent to the exposure station is a developing station, generally designated 30, as will be further de scribed below. for rendering the latent image visible. Beyond the developing station is a transfer station 31 adapted to transfer a developed image from the surface of the drum to a transfer web 32 that is advanced from supply roll 33 into contact with the surface of the xerographic drum at a point beneath a transfer electrode 34. After transfer. the web desirably continues through a fusing or fixing device 35 onto a take-up roll 36 being driven through a slip clutch arrangement 37 from motor I6. Desirably. electrode 34 has a corona dis charge operably connected to a high-voltage source 40 whereby a powder image developed on the surface of the drum is transferred to the web surface. Fusing device 35 primarily fixes the transferred powder image onto the web to yield a xerographic print. After transfer. the xerographic drum It) continues to rotate past a cleaning station 41 in which residual powder on the drum"s surface is removed. This may include. for example, a rotating brush 42 driven by a motor 43 through a belt 44 whereby the brush bristles bear against the surface of the drum to remove residual developer therefrom. Optionally. further charging means. illumination means. or the like. may effect electrical or controlled operations.
Operative at the developing station 30 is a donor member in the form of a cylindrical roll. as will be further described. which revolves about a center axis 51. Rotation of the donor is effected by means of an axle 51 being driven by a motor 55 operating through a belt 56, preferably to drive the cylinder in the same direction as the surface rotation of the drum. The speeds of the donor member and drum may be substan tially the same or the donor member can travel at speeds as high as 5 to 10 times as fast as the peripheral speed of the drum to effect a greater development in imaged areas. Affixed to the donor member 50 is a high-voltage means for applying a potential between the cylindrical donor S0 and the photoconductive plate [2.
Between the donor member 50 and the drum I0 there is maintained a spacial gap which. within the purview ofthe present invention. can be maintained up to 6 or 7 mils (1 mil equals l/l000 of an inch). The actual development step within the purview of the instant invention is achieved maintaining a close gap between the rotating donor and photoreceptor using a properly pulsed electrical potential between the plate and the donor to establish the proper field relationships whereby optimum line and solid development is effected with a minimum of background deposition.
Adjacent one portion of the path of motion of the developer donor member 50 is a powder loading station which may, for example, comprise a developer hopper 57 containing a quantity ofdevcloper product 58 which may he a form of a two-component developer mixer as disclosed in LES. Pat. No. 2,638,416. The hopper opens against the donor member whereby the cylinder passes in contact with the developer's supply and is coacted uniformly with the toner powder component of the mixture as the donor passes through developer. Other loading mechanisms and developer compositions may. of course. he employed including dusting brush or the like, as is known in the art.
While the donor member of FIG. I has been described in the terms of a cylindrical elemcnt, it is to be understood that said donor may be in the form of web. belt. or roll. or any other structure capable of operating within the purview of the instant invention. One preferred donor element of the present invention is a microfield donor consisting of a milled aluminum cylinder over which a thin layer of insulated enamel is placed, in which enamel layer there is etched a thinner layer of an electrical conductor, such as copper, in the form of a grid pattern. The enamel layer generally has a thickness of about 2 X It) inches, while the copper grid layer would be in the order of 5 X inches in thickness. The typical grid pattern on a donor member of this type generally has from about to 150 lines per inch with the ratio of insulator-to-grid surface areas being about 1.25 to 1.0.
In order that a donor member function in accordance with the instant invention, it must first be characterized by sufficient strength and durability to be employed for continuous recycling, and in addition should preferably comprise an electrical insulator or at least possess sufficient high electrical insulator or at least possess sufficient high electrical resistance of approximately 10 ohm-cm or greater. This is not to be considered an absolute limitation. since the resistivity requirement will become less than about 10" ohm-cm and below with reduced time period of exposure between the particular incremental area of the donor and the xerographic plate. For development speeds giving shorter contact times. materials of lower resistivity may be used. Materials found suitable for this purpose include Teflon, polyethylene terephthalate (Mylar). and polyethylene.
In carrying out a preferred method of development within the purview of the present invention, a micro field donor of the type described above is used as memher 50 of FIG. 1. Generally. the four basic steps in carrying out a development process are loading of the donor with toner. corona charging the toner (see corona charging element 7] of FIG. I). passing the toner to the electrostatic latent image on the photoconductive surface. and cleaning residual toner from the donor member so as to allow repetition of the process. In the actual practice ol'development ofmost machines, there are additional steps such as agglomerate toner removal and corona discharge of the donor member, which steps are auxiliary to the development process.
In loading a microficld donor of the type described above. a bias is applied to the grid which establishes strong electrical fringe l'ields between the copper grid and the grounded aluminum substrate. As the donor is rotated through a bed of vibrating toner containing both negative and positively charged toner. these fields collect toner on the donor in both grid and the enamel insulator areas. In the next process step the entire layer of toner is then charged negatively using a negative corona (see 71 of FIG. I). As the toner passes peripherally adjacent the spacially disposed photoconductive layer having the electrostatic image disposed thereon. an electrical pulse is applied to the donor thereby creating an oscillating electrical field between the donor 10 so as to create a bias on the negatively charged toner particles. As the donor approaches the plate. the applied field between the donor and the plate induces the toner into the spaced gap. Upon the momentary cessation ofthe bias. those particles caught up in the field of the charged image areas of the plate will proceed to deposition, while those in the non-image areas will return to the donor,
Referring now to FIG. 2, a typical pulse cycle is dem onstrated. Basically. the single pulse cycle is considered in two components. namely, a non-activating zero potential part which operates for a time T,, and a positive part described as development transfer, defined by a potential V,, which operated for a time T,,. The number of times per second a pulse cycle is repeated is defined as the repetition rate. The zero volt reference is used for the V,, voltage level. In reality. the pulse is not perfectly rectangular in shape; however, rise times are small enough so that they can be neglected. In utilizing the particular development system described above, the potential is usually applied to the donor thereby creating a field between the donor 50 and the photoconductive plate, the latter being considered the ground for the applied voltage. However. it is to be understood that under certain conditions a potential may be applied to the drum element 10 to effect a bias on the toner to accomplish the same development results. In other words. the drum could be the source and the donor the ground for the application ofa field to effect removal of the toner and its deposition onto the imaged areas of the plate.
While not to be construed as limiting. a general description of possible mechanisms occurring at the development interface, i.e., the space gap between the donor and photoconductive surface, is shown in FIG. 3. As shown, the bias level during the inactive or zero potential, portion of the pulse is such that the negative toner particles experience only a field force engendered by the charged areas ofthe photoreceptor l0 and comprised ofa substrate 11 and photoconductive layer 12. When the potential is applied to the toner particles experience a greater field force which is sufficient to loosen and motivate them from donor element 50 into the space gap. When the potential is reduced to zero by pulsing those loosened electroscopic particles in the field of the charge image continue towards deposition while those in the non-imaged areas are drawn back to the donor. The overall effect of the pulsing is enhanced development in image areas and nondevelopment in background areas. As can be ascertained from the description of the mechanism. the duration of the potential as well as the magnitude of the space gap have to be spacially considered in optimizing all the parameters of the development system.
Through experimentation on the present development system utilizing a space-gap donor system in combination with a pulse bias, parameters of spacing and voltage have been ascertained. It has been found that a bias applied to the plate may range up to a value of about +750 volts. Further. it has been found that opti mum pulse frequencies occur in the radio irequency range of 10 to 3,000 ltilocyclcslscc. lltili/ing these \oltage and fre ia n:ics- IlCt Naps of up to 7 mils (1 mil equals 1/1000 of an inch] may be attained.
The experimental work carried out in developing the instant invention utilized simple bench-type apparatus. A Xerox 813 size cylindrical donor containing a grid of 120 lines per inch was loaded by rotating through a vibrating tray of toner and then charged negatively. The actual transfer development step was completed by rolling the donor over a halogen doped selenium plate. The donor-to-photoreceptivc spacing was maintained by plastic shim stock placed on the edges of the plate. Nominal spacings of up to I78 microns were used on all tests. Since the primary objective of the experimen tation was to investigate development variables, the charging and loading functions were kept reasonably constant. Typical toner layers were 2 to 2% mils thick and were checked optically. The charge on the toner layer was monitored by reading the potential above the toner layer after charging. Then the measurements were made on semimicro densitometer systems and pulse variables were set and monitored on an oscilloscope at all phases of experimentation.
Since many changes could be made, the above invention and many apparently widely different embodi ments of this invention could be made without departing from the scope thereof, it is intent that all matter contained in the drawings and specifications should be interpreted as illustrative and not, in any sense, limiting.
What is claimed is:
1. An apparatus for developing a latent electrostatic image recorded on an image retaining member comprising:
a. a donor member for supporting a uniform layer of electroscopic developing material adjacent the image retaining member. said donor member and image retaining member being spacially disposed as to create a space gap l -l.'l\\ULli b th members; and
b. means to introduce a pul e electrical bia across said gap. said pulse being of a strength and a dura tion sufficient to enable the deposition of the elcctroscopic material onto the charged image areas and prevent the development of non-image areas.
2. The apparatus ofclaim I wherein said pulse has a frequency of from about 10 to 3000 kilocycles/sec.
3. The apparatus of claim I wherein the spacial gap between the donor and the photoreceptor measures up to 7 mils.
4. The apparatus of claim I wherein the voltage range of the pulse bias is up to about +750 volts.
5. The apparatus of claim I wherein the donor mem her is in the form of a rotatable cylinder.
6. The apparatus of claim 5 wherein the cylindrical donor comprises an aluminum substrate and an enamel surface layer supporting an etched layer of copper in the form of a grid pattern.
7. The apparatus ofclaim 6 wherein the grid contains [20 to 150 lines per inch.
8. An apparatus for developing a latent electrostatic image recorded on an image retaining member com prising:
a. a cylindrical donor member being adapted to support a uniform layer of finely divided toner on the surface thereof. said donor being spacially positioned adjacent said image retaining member by means of a small space gap;
b. means to apply bias potential across the space gap to effect removal of the toner particles from the donor and onto the charged areas of the photoconductive plate; and
c. means to periodically pulse said bias potential to a zero potential whereby toner not in the field of the charged image areas returns to the donor member.

Claims (8)

1. An apparatus for developing a latent electrostatic image recorded on an image retaining member comprising: a. a donor member for supporting a uniform layer of electroscopic developing material adjacent the image retaining member, said donor member and image retaining member being spacially disposed as to create a space gap between both members; and b. means to introduce a pulse electRical bias across said gap, said pulse being of a strength and a duration sufficient to enable the deposition of the electroscopic material onto the charged image areas and prevent the development of non-image areas.
2. The apparatus of claim 1 wherein said pulse has a frequency of from about 10 to 3000 kilocycles/sec.
3. The apparatus of claim 1 wherein the spacial gap between the donor and the photoreceptor measures up to 7 mils.
4. The apparatus of claim 1 wherein the voltage range of the pulse bias is up to about +750 volts.
5. The apparatus of claim 1 wherein the donor member is in the form of a rotatable cylinder.
6. The apparatus of claim 5 wherein the cylindrical donor comprises an aluminum substrate and an enamel surface layer supporting an etched layer of copper in the form of a grid pattern.
7. The apparatus of claim 6 wherein the grid contains 120 to 150 lines per inch.
8. An apparatus for developing a latent electrostatic image recorded on an image retaining member comprising: a. a cylindrical donor member being adapted to support a uniform layer of finely divided toner on the surface thereof, said donor being spacially positioned adjacent said image retaining member by means of a small space gap; b. means to apply bias potential across the space gap to effect removal of the toner particles from the donor and onto the charged areas of the photoconductive plate; and c. means to periodically pulse said bias potential to a zero potential whereby toner not in the field of the charged image areas returns to the donor member.
US473027A 1973-02-15 1974-05-24 Xerographic developing apparatus Expired - Lifetime US3890929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US473027A US3890929A (en) 1973-02-15 1974-05-24 Xerographic developing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33285173A 1973-02-15 1973-02-15
US473027A US3890929A (en) 1973-02-15 1974-05-24 Xerographic developing apparatus

Publications (1)

Publication Number Publication Date
US3890929A true US3890929A (en) 1975-06-24

Family

ID=26988424

Family Applications (1)

Application Number Title Priority Date Filing Date
US473027A Expired - Lifetime US3890929A (en) 1973-02-15 1974-05-24 Xerographic developing apparatus

Country Status (1)

Country Link
US (1) US3890929A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999849A (en) * 1974-12-09 1976-12-28 Xerox Corporation Touchdown ambipolar development
US4144061A (en) * 1977-06-27 1979-03-13 Xerox Corporation Transfer development using a fluid spaced donor member
JPS5518656A (en) * 1978-07-28 1980-02-08 Canon Inc Electrophotographic developing method
JPS5614266A (en) * 1979-07-16 1981-02-12 Canon Inc Toner image forming method
US4292387A (en) * 1978-07-28 1981-09-29 Canon Kabushiki Kaisha Magnetic developing method under A.C. electrical bias and apparatus therefor
US4356245A (en) * 1977-09-10 1982-10-26 Canon Kabushiki Kaisha Method and apparatus for electrophotographic, image development with magnetic toner
US4368687A (en) * 1980-01-28 1983-01-18 Canon Kabushiki Kaisha Method and apparatus for developing magnetic latent image
US4386577A (en) * 1977-09-10 1983-06-07 Canon Kabushiki Kaisha Developing apparatus for electrostatic image
US4395476A (en) * 1978-07-28 1983-07-26 Canon Kabushiki Kaisha Developing method for developer transfer under A.C. electrical bias and apparatus therefor
US4444864A (en) * 1979-07-16 1984-04-24 Canon Kabushiki Kaisha Method for effecting development by applying an electric field of bias
US4473627A (en) * 1978-07-28 1984-09-25 Canon Kabushiki Kaisha Developing method for developer transfer under electrical bias and apparatus therefor
JPS62968A (en) * 1986-05-16 1987-01-06 Canon Inc Method and apparatus for developing
US4662311A (en) * 1985-03-28 1987-05-05 Fuji Xerox Company, Limited Developing device
US4675267A (en) * 1981-02-25 1987-06-23 Konishiroku Photo Industry Co., Ltd. Method of developing electrostatic images using two component developer and AC charging
US4707428A (en) * 1984-05-31 1987-11-17 Fuji Xerox Co., Ltd. Electrostatic latent image developing method
US5030996A (en) * 1989-08-31 1991-07-09 Canon Kabushiki Kaisha Image forming apparatus with AC bias voltages for preventing developer mixture
US5032485A (en) * 1978-07-28 1991-07-16 Canon Kabushiki Kaisha Developing method for one-component developer
US5175070A (en) * 1989-09-27 1992-12-29 Canon Kabushiki Kaisha Image forming method and image forming apparatus
US5194359A (en) * 1978-07-28 1993-03-16 Canon Kabushiki Kaisha Developing method for one component developer
US5202731A (en) * 1989-09-27 1993-04-13 Canon Kabushiki Kaisha Image forming apparatus having an alternating bias electric field
EP0541113A1 (en) 1991-11-08 1993-05-12 Canon Kabushiki Kaisha Monocomponent-type developer for developing electrostatic image and image forming method
US5338894A (en) * 1990-09-21 1994-08-16 Canon Kabushiki Kaisha Image forming method with improved development
US5550619A (en) * 1993-01-13 1996-08-27 Matsushita Electric Industrial Co., Ltd. Electrophotographic apparatus of improved low image density

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662711A (en) * 1970-03-19 1972-05-16 Xerox Corp Development apparatus
US3703157A (en) * 1971-01-06 1972-11-21 Xerox Corp Method and apparatus for forming a uniform layer of powder developer on a surface
US3739748A (en) * 1970-12-15 1973-06-19 Xerox Corp Donor for touchdown development
US3759222A (en) * 1971-03-04 1973-09-18 Xerox Corp Microfield donor with continuously reversing microfields
US3850662A (en) * 1971-09-10 1974-11-26 Kalle Ag Electrophotographic developing process and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662711A (en) * 1970-03-19 1972-05-16 Xerox Corp Development apparatus
US3739748A (en) * 1970-12-15 1973-06-19 Xerox Corp Donor for touchdown development
US3703157A (en) * 1971-01-06 1972-11-21 Xerox Corp Method and apparatus for forming a uniform layer of powder developer on a surface
US3759222A (en) * 1971-03-04 1973-09-18 Xerox Corp Microfield donor with continuously reversing microfields
US3850662A (en) * 1971-09-10 1974-11-26 Kalle Ag Electrophotographic developing process and apparatus

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999849A (en) * 1974-12-09 1976-12-28 Xerox Corporation Touchdown ambipolar development
US4144061A (en) * 1977-06-27 1979-03-13 Xerox Corporation Transfer development using a fluid spaced donor member
US4356245A (en) * 1977-09-10 1982-10-26 Canon Kabushiki Kaisha Method and apparatus for electrophotographic, image development with magnetic toner
US4386577A (en) * 1977-09-10 1983-06-07 Canon Kabushiki Kaisha Developing apparatus for electrostatic image
US4395476A (en) * 1978-07-28 1983-07-26 Canon Kabushiki Kaisha Developing method for developer transfer under A.C. electrical bias and apparatus therefor
US5194359A (en) * 1978-07-28 1993-03-16 Canon Kabushiki Kaisha Developing method for one component developer
US5044310A (en) * 1978-07-28 1991-09-03 Canon Kabushiki Kaisha Developing apparatus for non-magnetic developer
US4913088A (en) * 1978-07-28 1990-04-03 Canon Kabushiki Kaisha Apparatus for developer transfer under electrical bias
US5032485A (en) * 1978-07-28 1991-07-16 Canon Kabushiki Kaisha Developing method for one-component developer
JPS5518656A (en) * 1978-07-28 1980-02-08 Canon Inc Electrophotographic developing method
US4473627A (en) * 1978-07-28 1984-09-25 Canon Kabushiki Kaisha Developing method for developer transfer under electrical bias and apparatus therefor
US4292387A (en) * 1978-07-28 1981-09-29 Canon Kabushiki Kaisha Magnetic developing method under A.C. electrical bias and apparatus therefor
US5096798A (en) * 1978-07-28 1992-03-17 Canon Kabushiki Kaisha Developing method for one-component developer
US4444864A (en) * 1979-07-16 1984-04-24 Canon Kabushiki Kaisha Method for effecting development by applying an electric field of bias
JPS5614266A (en) * 1979-07-16 1981-02-12 Canon Inc Toner image forming method
US4368687A (en) * 1980-01-28 1983-01-18 Canon Kabushiki Kaisha Method and apparatus for developing magnetic latent image
US4675267A (en) * 1981-02-25 1987-06-23 Konishiroku Photo Industry Co., Ltd. Method of developing electrostatic images using two component developer and AC charging
US4792512A (en) * 1981-02-25 1988-12-20 Konishiroku Photo Industry, Co., Ltd. Method of developing electrostatic images using two component developer and AC charging
US4707428A (en) * 1984-05-31 1987-11-17 Fuji Xerox Co., Ltd. Electrostatic latent image developing method
US4662311A (en) * 1985-03-28 1987-05-05 Fuji Xerox Company, Limited Developing device
JPS62968A (en) * 1986-05-16 1987-01-06 Canon Inc Method and apparatus for developing
US5030996A (en) * 1989-08-31 1991-07-09 Canon Kabushiki Kaisha Image forming apparatus with AC bias voltages for preventing developer mixture
US5175070A (en) * 1989-09-27 1992-12-29 Canon Kabushiki Kaisha Image forming method and image forming apparatus
US5202731A (en) * 1989-09-27 1993-04-13 Canon Kabushiki Kaisha Image forming apparatus having an alternating bias electric field
US5338894A (en) * 1990-09-21 1994-08-16 Canon Kabushiki Kaisha Image forming method with improved development
US5504272A (en) * 1990-09-21 1996-04-02 Canon Kabushiki Kaisha Magnetic toner having defined particle distribution
EP0541113A1 (en) 1991-11-08 1993-05-12 Canon Kabushiki Kaisha Monocomponent-type developer for developing electrostatic image and image forming method
US5348829A (en) * 1991-11-08 1994-09-20 Canon Kabushiki Kaisha Monocomponent-type developer for developing electrostatic image and image forming method
US5550619A (en) * 1993-01-13 1996-08-27 Matsushita Electric Industrial Co., Ltd. Electrophotographic apparatus of improved low image density

Similar Documents

Publication Publication Date Title
US3866574A (en) Xerographic developing apparatus
US3890929A (en) Xerographic developing apparatus
US3893418A (en) Xerographic developing apparatus
US2901374A (en) Development of electrostatic image and apparatus therefor
US3634077A (en) Method and apparatus for removing a residual image in an electrostatic copying system
US3759222A (en) Microfield donor with continuously reversing microfields
US3186838A (en) Xerographic plate cleaning method utilizing the relative movement of a cleaning web
US3782818A (en) System for reducing background developer deposition in an electrostatic copier
US4810604A (en) Combination xerographic and direct electrostatic printing apparatus for highlight color imaging
EP0549195B1 (en) Apparatus for transferring toner particles to a substrate
US4508052A (en) Developing device
US4876575A (en) Printing apparatus including apparatus and method for charging and metering toner particles
US3103445A (en) Method of developing an electrostatic
US3332396A (en) Xerographic developing apparatus with controlled corona means
US3739748A (en) Donor for touchdown development
US5394225A (en) Optical switching scheme for SCD donor roll bias
US3599605A (en) Self-biasing development electrode for electrophotography
US3011473A (en) Xerographic apparatus
US3703157A (en) Method and apparatus for forming a uniform layer of powder developer on a surface
US4021106A (en) Apparatus for electrostatic reproduction using plural charges
US2784694A (en) Segmented development electrode
US4990958A (en) Reload member for a single component development housing
GB2074903A (en) Developing latent images
US3464818A (en) Method of photoelectric copying
US4136637A (en) Continuous contrast development system