US3879205A - Method of preparing photosensitive silver halide emulsions - Google Patents
Method of preparing photosensitive silver halide emulsions Download PDFInfo
- Publication number
- US3879205A US3879205A US390767A US39076773A US3879205A US 3879205 A US3879205 A US 3879205A US 390767 A US390767 A US 390767A US 39076773 A US39076773 A US 39076773A US 3879205 A US3879205 A US 3879205A
- Authority
- US
- United States
- Prior art keywords
- acrylamide
- dimethylamino
- polymer
- silver halide
- ethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000839 emulsion Substances 0.000 title claims abstract description 53
- -1 silver halide Chemical class 0.000 title claims abstract description 40
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 29
- 239000004332 silver Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 31
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 49
- 229920000642 polymer Polymers 0.000 claims description 49
- 108010010803 Gelatin Proteins 0.000 claims description 22
- 229920000159 gelatin Polymers 0.000 claims description 22
- 239000008273 gelatin Substances 0.000 claims description 22
- 235000019322 gelatine Nutrition 0.000 claims description 22
- 235000011852 gelatine desserts Nutrition 0.000 claims description 22
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 14
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 14
- 239000000178 monomer Substances 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 8
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical group CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 4
- GVGGWUXGMRTNIK-UHFFFAOYSA-N n-(2-amino-2-oxoethyl)prop-2-enamide Chemical group NC(=O)CNC(=O)C=C GVGGWUXGMRTNIK-UHFFFAOYSA-N 0.000 claims description 3
- ZAJDVLMXBATHQI-UHFFFAOYSA-N n-(diethylaminomethyl)prop-2-enamide Chemical group CCN(CC)CNC(=O)C=C ZAJDVLMXBATHQI-UHFFFAOYSA-N 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 abstract description 8
- 229920006322 acrylamide copolymer Polymers 0.000 abstract description 6
- 229920002401 polyacrylamide Polymers 0.000 abstract description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 23
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- 229920001059 synthetic polymer Polymers 0.000 description 4
- LPNSCOVIJFIXTJ-UHFFFAOYSA-N 2-methylidenebutanamide Chemical compound CCC(=C)C(N)=O LPNSCOVIJFIXTJ-UHFFFAOYSA-N 0.000 description 3
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 125000002993 cycloalkylene group Chemical group 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 2
- HBQGCOWNLUOCBU-ARJAWSKDSA-N (z)-4-(ethylamino)-4-oxobut-2-enoic acid Chemical compound CCNC(=O)\C=C/C(O)=O HBQGCOWNLUOCBU-ARJAWSKDSA-N 0.000 description 2
- UDJZTGMLYITLIQ-UHFFFAOYSA-N 1-ethenylpyrrolidine Chemical compound C=CN1CCCC1 UDJZTGMLYITLIQ-UHFFFAOYSA-N 0.000 description 2
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229920002678 cellulose Chemical class 0.000 description 2
- 239000001913 cellulose Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 125000002346 iodo group Chemical group I* 0.000 description 2
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- ZRFQAEAQYZWGSN-UHFFFAOYSA-N tert-butyl(ethenyl)carbamic acid Chemical compound CC(C)(C)N(C=C)C(O)=O ZRFQAEAQYZWGSN-UHFFFAOYSA-N 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 150000003754 zirconium Chemical class 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- POAWTYXNXPEWCO-OWOJBTEDSA-N (e)-3-bromoprop-2-enoic acid Chemical compound OC(=O)\C=C\Br POAWTYXNXPEWCO-OWOJBTEDSA-N 0.000 description 1
- UJGVUACWGCQEAO-UHFFFAOYSA-N 1-ethylaziridine Chemical compound CCN1CC1 UJGVUACWGCQEAO-UHFFFAOYSA-N 0.000 description 1
- VYONOYYDEFODAJ-UHFFFAOYSA-N 2-(1-Aziridinyl)ethanol Chemical compound OCCN1CC1 VYONOYYDEFODAJ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- OUZLDCCUOMNCON-UHFFFAOYSA-N 3-(aziridin-1-yl)propanenitrile Chemical compound N#CCCN1CC1 OUZLDCCUOMNCON-UHFFFAOYSA-N 0.000 description 1
- VWXZFDWVWMQRQR-UHFFFAOYSA-N 3-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC(C=C)=C1 VWXZFDWVWMQRQR-UHFFFAOYSA-N 0.000 description 1
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- UGZICOVULPINFH-UHFFFAOYSA-N acetic acid;butanoic acid Chemical compound CC(O)=O.CCCC(O)=O UGZICOVULPINFH-UHFFFAOYSA-N 0.000 description 1
- AVMNFQHJOOYCAP-UHFFFAOYSA-N acetic acid;propanoic acid Chemical compound CC(O)=O.CCC(O)=O AVMNFQHJOOYCAP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- FYIBGDKNYYMMAG-UHFFFAOYSA-N ethane-1,2-diol;terephthalic acid Chemical class OCCO.OC(=O)C1=CC=C(C(O)=O)C=C1 FYIBGDKNYYMMAG-UHFFFAOYSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- PZWRHDSUKRJIDJ-UHFFFAOYSA-N n-(2-amino-2-oxoethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCC(N)=O PZWRHDSUKRJIDJ-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000000837 restrainer Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/04—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
- G03C1/053—Polymers obtained by reactions involving only carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
Definitions
- ABSTRACT A photosensitive silver halide emulsion wherein the emulsion binder comprises an amine-acrylamide polymer or copolymer.
- This invention relates to photography and more particularly, to novel photosensitive photographic elements, particularly novel photosensitive emulsions.
- a class of synthetic polymers has now been found which is not susceptible to the deficiencies of the prior art and which may replace gelatin entirely in photosensitive silver halide emulsions.
- R is hydrogen, lower alkyl group, e.g., 1-4 carbon alkyl group, preferably methyl or ethyl, or halogen, e.g., chloro, bromo, or iodo;
- R is hydrogen, lower alkyl, e.g., 1-4 carbon alkyl, halogen or cyano;
- R R and R each is hydrogen, lower alkyl or cycloalkyl;
- Y is lower alkylene or cycloalkylene, e.g., 1-4 carbon atoms; and n is a positive integer greater than 1.
- the above-described polymer comprises only a portion of the binder, the remainder constituting gelatin or a second synthetic polymer.
- the present invention is directed to photosensitive silver halide emulsions wherein photosensitive silver halide crystals are disposed in a synthetic polymer binder comprising a polymer having in'its structure repeating units represented by the formula:
- R is hydrogen, lower alkyl group, e.g., 1-4 carbon alkyl group, preferably methyl or ethyl, or halogen, e.g.,chloro, bromo or iodo;
- R is hydrogen, lower alkyl, e.g., 1-4 carbon alkyl, halogen or cyano;
- r;,, R, and R each is hydrogen, lower alkyl, or cycloalkyl;
- Y is lower alkylene or cycloalkylene, e.g., 1-6 carbon atoms; and
- n is a positive integer greater than 1.
- Such polymers have been found to substantially provide all of the basic requirements for a gelatin substitute, as delineated above.
- the emulsions of the present invention are readily sensitized by conventional sensitizing agents and are characterized by excellent latent image stability and excellent film speed.
- the emulsions of the present invention are more stable against degradation, particularly hydrolysis and the growth of microorganisms than gelatin.
- a water-soluble silver salt such as silver nitrate, may be reacted with at least one water-soluble halide, such as potassium, sodium, or ammonium bromide, preferably together with potassium, sodium or ammonium iodide, in an aqueous solution of the above-described polymer.
- the emulsion of silver halide thus-formed contains water-soluble salts, as a by-product of the double decomposition reaction in addition to any unreacted excess of the initial salts. To remove these soluble materials, the emulsion may be centrifuged and washed with distilled water to a low conductance. The emulsion may then be redispersed in distilled water.
- a solution of bodying or thickening polymer such as polyvinyl alcohol having an average molecular weight of about 100,000 (commercially available from E. l. duPont deNemours & Company, Wilmington, Del., designated Type 72-60).
- a surfactant such as dioctyl ester of sodium sulfosuccinic acid, designated Aerosol OT, (commercially available from American Cyanamid Company, New York, N.Y.), may be added and the emulsion slot coated onto a base of cellulose triacetate sheet 5 mls. thick having a coating of 30 mg./sq. ft. of hardened gelatin.
- the soluble salts may be removed by adding to the emulsion a solution of polyacid such as 1:1 ethylenezmaleic acid copolymer and lowering the pH to below 5, thereby bringing about precipitation of the polyacid carrying the silver halide grains along with the precipitate, and then to wash and resuspend the resulting precipitate by redissolving the polyacid at pH 6-7.
- polyacid such as 1:1 ethylenezmaleic acid copolymer and lowering the pH to below 5, thereby bringing about precipitation of the polyacid carrying the silver halide grains along with the precipitate, and then to wash and resuspend the resulting precipitate by redissolving the polyacid at pH 6-7.
- the emulsions may be chemically sensitized with sulfur compounds such as sodium thiosulfate or thiourea, with reducing substances such as stannous chloride; with salts of noble metals such as gold, rhodium and platinum; with amines and polyamines; with quaternary ammonium compounds such as alkyl a-picolinium bromide; and with polyethylene glycols and derivatives thereof.
- sulfur compounds such as sodium thiosulfate or thiourea
- reducing substances such as stannous chloride
- salts of noble metals such as gold, rhodium and platinum
- with amines and polyamines with quaternary ammonium compounds such as alkyl a-picolinium bromide
- polyethylene glycols and derivatives thereof The emulsions of the present invention require only 5 percent as much gold for chemical sensitization as do gelatin emulsions.
- polymers employed as the binders in the emulsions of the present invention may be cross-linked according to conventional procedures.
- polymers containing amine groups may be crosslinked with zirconium salts under alkaline conditions wherein amine-containing polymer is coated with a zirconium salt, for example, zirconium sulfate, and the pH is raised cross-linking the polymer.
- the emulsions of the present invention may also be optically sensitized with cyanine and merocyanine dyes more easily than are gelatin emulsions. Cyanine dyes tend to aggregate less on the polymers of the instant invention than with gelatin providing less light filtering and speed loss. Where desired, suitable antifoggants, toners, restrainers, developers, accelerators, preservatives, coating aids, plasticizers, hardeners and/or stabilizers may be included in the composition of the emul sion.
- the emulsions of this invention may be coated and processed according to conventional procedures of the art. They may be coated, for example, onto various types of rigid or flexible supports, such as glass, paper, metal, and polymeric films of both the synthetic type and those derived from naturally occurring products.
- rigid or flexible supports such as glass, paper, metal, and polymeric films of both the synthetic type and those derived from naturally occurring products.
- specific materials which may serve as supports mention may be made of paper, aluminum, polymethacrylic acid, methyl and ethyl esters, vinylchloride polymers, polyvinyl acetal, polyamides such as nylon, polyesters such as polymeric film derived from ethylene glycol terephthalic acid, and cellulose derivatives such as cellulose acetate, triacetate, nitrate, propionate, butyrate, acetate propionate, and acetate butyrate.
- These novel emulsions of the instant invention have been found to adhere to supports in a most satisfactory manner.
- the polymers employed in the practice of the instant invention may contain from 5-100 mole percent of the above-indicated repeating units.
- the specific amount employed may be selected by the operator depending upon the grain particle size and habit desired.
- the instant copolymers may be made to be compatible with all watersoluble bodying polymers. Emulsions made from these novel polymers, may be bodied with any water-soluble polymers, overcoming the disadvantage encountered with gelatin which is only compatible with a very few polymers in a most limited pH range.
- gelatin polyvinyl alcohol, polyacrylamide, polyalkylacrylamides, polyvinyl pyrrolidone, polymethacrylamidoacetamide, vinyl alcohol/N-vinylpyrrolidone copolymers, poly-N-ethylaziridine, poly-N-( 2- hydroxyethyl) aziridine, poly-N-(2-cyanoethyl)aziridine, poly(B-hydroxyethyl acrylate), polyethylene imine and cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and methyl cellulose. It has been found that using only a small amount of one or more of the instant polymers, large amounts of photosensitive silver halide grains may be obtained.
- An emulsion made from one of these polymers of the instant invention may therefore be bodied with a watersoluble polymer such that the polymeric constitution of the resulting emulsion comprises a relatively large percentage of the bodying polymer.
- copolymers with selected diffusion characteristics may be prepared.
- the instant polymers containing acidic comonomers may be pH flocculated in order to remove the soluble salts formed as a byproduct of the double decomposition reaction between the water-soluble silver salt and the water-soluble halide, in addition to any unreacted excess of the initial salts.
- an acid copolymer may be precipitated by lowering the pH below and then washed and resuspended by raising the pH to above 7.
- Procedure A A solution of 4.15 g. of the dry polymer in 266 ml. of distilled water was adjusted to pH 6.30 with dilute nitric acid and maintained at a temperature of 55 C. To this solution, 44.0 g. of dry potassium bromide and 0.50 g. of dry potassium idoide were added.
- a solution of 55 g. of silver nitrate in 500 ml. of distilled water was prepared. From this silver nitrate solution, 100 ml. was rapidly added with continuous agitation to the polymer-halide solution and an additional 396 ml. was added over a period of 22 minutes. Thereafter, the emulsion was ripened for 30 minutes at 55 C., and then rapidly cooled to below 20 C.
- Procedure B In an alternative procedure for preparing the emulsion, the pH of the polymer solution was adjusted to 3.0; the amount of dry potassium bromide used was 88.0 g. and the amount of dry potassium iodide used was 1.0 g. In addition, the emulsion was ripened for 60 minutes instead of for 30 minutes.
- the emulsion mixture in both procedures was centrifuged and washed with water to a low conductance. The emulsion was then redispersed in distilled water. To an aliquot of this emulsion was added a known quantity of a solution of bodying or thickening polymer of polyvinyl alcohol having an average molecular weight of about 100,000 (commercially available from E. I. duPont de Nemours & Company, Wilmington, Del.. designated Type 72-60). A surfactant, such as Aerosol OT, was added and the emulsion was slot coated onto a base of cellulose triacetate sheet 5 mils thick having a coating of 30 mg./sq. ft.
- a surfactant such as Aerosol OT
- the following table shows densitometer readings obtained on positives prepared from emulsions within the scope of the present invention.
- emulsions of the present invention also show a significant shortening of processing time as compared with conventional silver halide emulsions.
- an emulsion prepared with a 5 :1 acrylamide/N-[B- (dimethylamino) ethyl]acrylamide copolymer as the grain growing polymer and polyvinyl alcohol as the bodying polymer (silver polymer ratio 1.36 and silver coverage 6.43 mgs./ft.
- Type 107C processing composition and receiving sheet (Polaroid Corporation, Cambridge, Mass.) showed a D, of 1.31 and a D of 0.02 after 10 seconds of processing while a conventional Type 107C film unit showed 21 D of 0.36 and D, of 0.01 after 10 seconds.
- photosensitive and other terms of similar import are herein employed in the generic sense to describe materials possessing physical and chemical properties which enable them to form usable images when photoexposed by radiation.
- a method of preparing a photosensitive silver halide emulsion which comprises reacting in the absence of gelatin a water-soluble silver salt with a watersoluble halide salt in an aqueous solution containing a polymer having in its structure repeating units of the formula:
- R and R together may be chemically joined to form a cycloalkyl group;
- Y is selected from the group con sisting of alkylene or cycloalkylene; and
- n is a positive integer greater than 1.
- aqueous solution further comprises polyvinyl alcohol as a bodying polymer.
- aqueous solution further comprises hydroxyethyl cellulose as a bodying polymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A photosensitive silver halide emulsion wherein the emulsion binder comprises an amine-acrylamide polymer or copolymer.
Description
United States Patent 1191 Fitzgerald et al.
[ METHOD OF PREPARING PHOTOSENSITIVE SILVER HALIDE EMULSIONS [75] Inventors: Maurice J. Fitzgerald, Canton:
Lloyd D. Taylor. Lexington. both of Mass.
[73] Assignee: Polaroid Corporation, Cambridge.
Mass.
[22] Filed: Aug. 23, 1973 [211 Appl. No.: 390,767
Related US. Application Data [63] Continuation-impart of Ser. No. 187,852. Oct. 8,
1971, abandoned.
[52] US. Cl 96/114; 96/94 [5 1] Int. Cl. G03c 1/04 1 Apr. 22, 1975 Primary E.\'amt'nerRonald H. Smith Attorney, Agent, or FirmPhilip G. Kiely; Mart C. Matthews [57] ABSTRACT A photosensitive silver halide emulsion wherein the emulsion binder comprises an amine-acrylamide polymer or copolymer.
9 Claims, No Drawings METHOD OF PREPARING PHOTOSENSITIVE SILVER HALIDE EMULSIONS CROSS-REFERENCE TO OTHER APPLICATIONS This application is a continuation-in-part of U5. application Ser. No. 187,852, filed Oct. 8, I971, now abandoned.
BACKGROUND OF THE INVENTION This invention relates to photography and more particularly, to novel photosensitive photographic elements, particularly novel photosensitive emulsions.
As a result of the known disadvantages of gelatin, in particular, its variable photographic properties and its fixed physical properties, for example, its diffusion characteristics; much effort has been expended in the past in order to replace gelatin with a suitable synthetic colloid binder for photographic silver halide emulsions, Many synthetic polymeric materials have heretofore been suggested as peptizers for silver halide emulsions, however, these have generally not functioned satisfactorily and frequently have not fulfilled all of the basic requirements for a photosensitive silver halide emulsion binder listed following:
1. absent (or constant) photographic activity;
2. ability to form an adsorption layer on microcrystals of silver halide permitting stable suspensions to be obtained;
3. ability to form adsorption layers as described in (2) above which do not prevent growth of silver halide microcrystals during physical ripening; and
4. solubility in water solution.
In addition, hithertofore, much emphasis has been placed on the ability of the synthetic polymeric material to mix with gelatin, as this property has been critical for employment in partial substitution reactions with gelatin.
Consequently, many synthetic polymers of the prior art have been materials which allow for the growth of silver halide crystals only in the presence of gelatin.
A class of synthetic polymers has now been found which is not susceptible to the deficiencies of the prior art and which may replace gelatin entirely in photosensitive silver halide emulsions.
SUMMARY OF THE INVENTION The present invention is directed to a photosensitive silver halide emulsion wherein the silver halide crystals are disposed in a synthetic polymeric binder comprising a polymer having in its structure repeating units represented by the formula:
wherein R is hydrogen, lower alkyl group, e.g., 1-4 carbon alkyl group, preferably methyl or ethyl, or halogen, e.g., chloro, bromo, or iodo; R is hydrogen, lower alkyl, e.g., 1-4 carbon alkyl, halogen or cyano; R R and R each is hydrogen, lower alkyl or cycloalkyl;
Y is lower alkylene or cycloalkylene, e.g., 1-4 carbon atoms; and n is a positive integer greater than 1. In an alternative embodiment, the above-described polymer comprises only a portion of the binder, the remainder constituting gelatin or a second synthetic polymer.
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to photosensitive silver halide emulsions wherein photosensitive silver halide crystals are disposed in a synthetic polymer binder comprising a polymer having in'its structure repeating units represented by the formula:
wherein R, is hydrogen, lower alkyl group, e.g., 1-4 carbon alkyl group, preferably methyl or ethyl, or halogen, e.g.,chloro, bromo or iodo; R is hydrogen, lower alkyl, e.g., 1-4 carbon alkyl, halogen or cyano; r;,, R, and R each is hydrogen, lower alkyl, or cycloalkyl; Y is lower alkylene or cycloalkylene, e.g., 1-6 carbon atoms; and n is a positive integer greater than 1.
Such polymers have been found to substantially provide all of the basic requirements for a gelatin substitute, as delineated above. The emulsions of the present invention are readily sensitized by conventional sensitizing agents and are characterized by excellent latent image stability and excellent film speed. In addition, the emulsions of the present invention are more stable against degradation, particularly hydrolysis and the growth of microorganisms than gelatin.
As examples of monomers represented by the formula:
suitable for providing the amine-acrylamide polymers, mention may be made of the following:
N-[3-(dimethylamin0methy1)cyclobutyllacrylamide N-(n-propyD-N-(ethylmethylaminomethyl)-,3-bromo-methacrylamide N -cyelopropyl-N -[2- (isopropylamino) prop-2-yl]acrylamidc Hz Hz C H2 C H3 N- (n-butyl) -N- (cyclopropylaminomethyl) acrylamide N -cyclobuty1-N-[fl-(cyclobutylmethylamino)ethyllmethacrylamide N -[2'-(dimethylamino)cyclopropyllacrylamide The instant polymers may be homopolymers or interpolymers having, in addition to the repeating units defined above, any compatible repeating unit or various repeating units which are not detrimental to photographic silver halide emulsions and which allow the resultant polymer to be soluble in water. Examples of typical comonomers which may be employed in forming the polymers suitable for use in the present invention include the following ethylenically-unsaturated monomers:
(14) CH2=CH-COOH acrylic acid C HF-C O O H methacrylic acid GH2=( 3C O OH a-chloroacrylic acid 0 H2=( J-C O 0 H a-bromoacrylic acid (18) CHaCH=CH-COOH crotonic acid CHaCH=CH-COOH isocrotonic acid (20) ClCH=CH-COOH fi-ehloroacrylic acid BrCH=CH-OOOH B-bromoacrylic acid Cl-OH=OO O OH fl-chloromethacrylic acid (23) CH2=CH-CO O-CH3 methyl acrylate (24) C Ha CHz --C O OCH2CH3 ethyl methacrylate CHz=( ]C O O-GHzCH-zCHg n-propyl-a-chlcroacrylate (26) BrCH=CHCOOCH CH isopropyl-fl-bromoacrylate CH2=(JC O O-CH2CHOHa) isobutyl methacrylatc (28) CH=CHCOOCH2CH2OH B-hydroxyethyl acrylate (29) CHz=CHCOO-CH2CH2CH2OH a-hydroxypropyl acrylate CH=-C O O-CHzCHCHs 2-hydroxy-n-propyl methacrylate (31) OII2=CHC O-NH:
acrylamide C lIz 3C ONHz a-chloroacrylamide 2-crotonamido-N-methylpropionamide Z-acrylamidopropionamide CH3 CH3 Z-methacrylamidopropionamide Z-(a-chloroacrylamido )-3-methylbutyramide CH =CHCONH--CH NHCOCH N-(acetamidomethyl)acrylamide N-( propionamidomethyl)methacrylamide N-( n-butyramidomethyl)a-chloroacrylamide 'maleic anhydride (82) HOOCCH=CHCOOH maleic acid (83) HOOCCH=CHCO-NH maleic acid amide HOOCCH=CHCONHCH CH N-ethylmaleic acid amide (85) CH OOCCH=CHCONHCH N-methyl methylmaleate amide (86) CH2=CHOOCH vinylformate (87) CHz=CH-0 O C-C H3 vinyl acetate (88) CH2=CHOH (obtained by hydrolyzing copolymerized vinyl alcohol vinyl acetate) (89) CHFC0OCCH2BI isopropenyl bromoaeetate (90 CH2=CH-OOCC{CH3) vinyl pivalate a (91) CHz=GH-NHCOOC\CHa)3 N-vinyl-tertiary butylcarbamate (92) CHz=CCH2COO-CH2CHa C 0 OH ethyl-B-carboxy-Zi-butenato CHz=CH- OJ a-vinylfuran aacryloyloxymethyl tetrahydrofuran p-hydroxystyrene nl-hydroxystyrene C H 2: C H- l OH o-hydroxystyrone CH2=CH COOH p-carboxystyrene 0 0 H m-carboxystyrene C O OH o'carhoxystyreno O N-VInyI-Z-pyrrolidone C 0 OH N-acryloy1valine C O OH N-acry1oylmethionine C O-NH: N-acryloylmethionamide Polymerization of the indicated monomers is achieved by conventional free radical polymerization techniques.
The following non-limiting example illustrates the preparation of polymers within the scope of the present invention.
EXAMPLE 2:1 copolymer of acrylamide/N-[B-(dimethylamino) ethyl]acrylamide 1 7.1 g. of acrylamide and 7.1 g. of N-[B- (dimethylamino) ethyl]acrylamide were added to 200 ml. of distilled water under nitrogen. The pH was adjusted to 6.3 with nitriclacid and then 0.03 g. of potassium persulfate and 0.03 g. of sodium bisulfite were added. The polymerization was carried out at 25 C. for
4 hours. The thus-formed polymer was precipitated into acetone, washed, dried and redissolved for use in making an emulsion.
Other polymers within the scope of the present invention were prepared by similar procedures. As illustrative examples of such polymers, mention may be made of:
1:1 N-ethylacrylamide/N-[B (dimethylamino)ethylIacrylamide 9:1 acrylamide/N-[B-(dimethylamino)ethyl]acrylamide :1 acrylamide/N-[B-(dimethylamino)ethyllacrylamide :9: 1 acrylamide/N-B-(dimethylamino)ethyl]acrylamide/N-acryloylvaline 3:1 N-isopropylacrylamide/N-[B-(dimethylamino) ethyl acrylamide 4:1 acrylamide/N-[B-(dimethylamino)ethyl]acrylamide l .65: 1 acrylamide/N-{fi- (diethylamino)methyl]acrylamide The following general procedure may be used for preparing photographic emulsions using the polymers of the instant invention as the colloid binders.
A water-soluble silver salt, such as silver nitrate, may be reacted with at least one water-soluble halide, such as potassium, sodium, or ammonium bromide, preferably together with potassium, sodium or ammonium iodide, in an aqueous solution of the above-described polymer. The emulsion of silver halide thus-formed contains water-soluble salts, as a by-product of the double decomposition reaction in addition to any unreacted excess of the initial salts. To remove these soluble materials, the emulsion may be centrifuged and washed with distilled water to a low conductance. The emulsion may then be redispersed in distilled water. To an aliquot of this emulsion may be added a known quantity of a solution of bodying or thickening polymer, such as polyvinyl alcohol having an average molecular weight of about 100,000 (commercially available from E. l. duPont deNemours & Company, Wilmington, Del., designated Type 72-60). A surfactant, such as dioctyl ester of sodium sulfosuccinic acid, designated Aerosol OT, (commercially available from American Cyanamid Company, New York, N.Y.), may be added and the emulsion slot coated onto a base of cellulose triacetate sheet 5 mls. thick having a coating of 30 mg./sq. ft. of hardened gelatin.
Alternatively, the soluble salts may be removed by adding to the emulsion a solution of polyacid such as 1:1 ethylenezmaleic acid copolymer and lowering the pH to below 5, thereby bringing about precipitation of the polyacid carrying the silver halide grains along with the precipitate, and then to wash and resuspend the resulting precipitate by redissolving the polyacid at pH 6-7.
The emulsions may be chemically sensitized with sulfur compounds such as sodium thiosulfate or thiourea, with reducing substances such as stannous chloride; with salts of noble metals such as gold, rhodium and platinum; with amines and polyamines; with quaternary ammonium compounds such as alkyl a-picolinium bromide; and with polyethylene glycols and derivatives thereof. The emulsions of the present invention require only 5 percent as much gold for chemical sensitization as do gelatin emulsions.
The polymers employed as the binders in the emulsions of the present invention may be cross-linked according to conventional procedures. As an example, polymers containing amine groups may be crosslinked with zirconium salts under alkaline conditions wherein amine-containing polymer is coated with a zirconium salt, for example, zirconium sulfate, and the pH is raised cross-linking the polymer.
The emulsions of the present invention may also be optically sensitized with cyanine and merocyanine dyes more easily than are gelatin emulsions. Cyanine dyes tend to aggregate less on the polymers of the instant invention than with gelatin providing less light filtering and speed loss. Where desired, suitable antifoggants, toners, restrainers, developers, accelerators, preservatives, coating aids, plasticizers, hardeners and/or stabilizers may be included in the composition of the emul sion.
The emulsions of this invention may be coated and processed according to conventional procedures of the art. They may be coated, for example, onto various types of rigid or flexible supports, such as glass, paper, metal, and polymeric films of both the synthetic type and those derived from naturally occurring products. As examples of specific materials which may serve as supports, mention may be made of paper, aluminum, polymethacrylic acid, methyl and ethyl esters, vinylchloride polymers, polyvinyl acetal, polyamides such as nylon, polyesters such as polymeric film derived from ethylene glycol terephthalic acid, and cellulose derivatives such as cellulose acetate, triacetate, nitrate, propionate, butyrate, acetate propionate, and acetate butyrate. These novel emulsions of the instant invention have been found to adhere to supports in a most satisfactory manner.
The polymers employed in the practice of the instant invention may contain from 5-100 mole percent of the above-indicated repeating units. The specific amount employed may be selected by the operator depending upon the grain particle size and habit desired.
By selecting appropriate comonomers, the instant copolymers may be made to be compatible with all watersoluble bodying polymers. Emulsions made from these novel polymers, may be bodied with any water-soluble polymers, overcoming the disadvantage encountered with gelatin which is only compatible with a very few polymers in a most limited pH range. As examples of specific materials which may serve as bodying polymers are gelatin, polyvinyl alcohol, polyacrylamide, polyalkylacrylamides, polyvinyl pyrrolidone, polymethacrylamidoacetamide, vinyl alcohol/N-vinylpyrrolidone copolymers, poly-N-ethylaziridine, poly-N-( 2- hydroxyethyl) aziridine, poly-N-(2-cyanoethyl)aziridine, poly(B-hydroxyethyl acrylate), polyethylene imine and cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and methyl cellulose. It has been found that using only a small amount of one or more of the instant polymers, large amounts of photosensitive silver halide grains may be obtained.
An emulsion made from one of these polymers of the instant invention may therefore be bodied with a watersoluble polymer such that the polymeric constitution of the resulting emulsion comprises a relatively large percentage of the bodying polymer.
By selecting appropriate comonomers, copolymers with selected diffusion characteristics may be prepared.
The instant polymers containing acidic comonomers may be pH flocculated in order to remove the soluble salts formed as a byproduct of the double decomposition reaction between the water-soluble silver salt and the water-soluble halide, in addition to any unreacted excess of the initial salts. As an example, an acid copolymer may be precipitated by lowering the pH below and then washed and resuspended by raising the pH to above 7.
The instant invention will be further illustrated by reference to the following nonlimiting examples in which the preparation of the emulsion was carried out in the following general manner.
Procedure A A solution of 4.15 g. of the dry polymer in 266 ml. of distilled water was adjusted to pH 6.30 with dilute nitric acid and maintained at a temperature of 55 C. To this solution, 44.0 g. of dry potassium bromide and 0.50 g. of dry potassium idoide were added.
A solution of 55 g. of silver nitrate in 500 ml. of distilled water was prepared. From this silver nitrate solution, 100 ml. was rapidly added with continuous agitation to the polymer-halide solution and an additional 396 ml. was added over a period of 22 minutes. Thereafter, the emulsion was ripened for 30 minutes at 55 C., and then rapidly cooled to below 20 C. Procedure B In an alternative procedure for preparing the emulsion, the pH of the polymer solution was adjusted to 3.0; the amount of dry potassium bromide used was 88.0 g. and the amount of dry potassium iodide used was 1.0 g. In addition, the emulsion was ripened for 60 minutes instead of for 30 minutes.
The emulsion mixture in both procedures was centrifuged and washed with water to a low conductance. The emulsion was then redispersed in distilled water. To an aliquot of this emulsion was added a known quantity of a solution of bodying or thickening polymer of polyvinyl alcohol having an average molecular weight of about 100,000 (commercially available from E. I. duPont de Nemours & Company, Wilmington, Del.. designated Type 72-60). A surfactant, such as Aerosol OT, was added and the emulsion was slot coated onto a base of cellulose triacetate sheet 5 mils thick having a coating of 30 mg./sq. ft. of hardened gelatin, (Celfa, commercially available from Instar Supply Company, New York N.Y.). This film so prepared was air dried, exposed on a sensitometer. and processed with a processing solution and an image-receiving sheet from a Type 107 film assembly (Polaroid Corporation, Cambridge, Mass). The negative and image-receiving element were maintained in superposed position for 15 seconds, after which they were stripped apart. The photographic characteristics of the resulting positive print were measured on an automatic recording densitometer.
The following table summarizes silver halide grain sizes obtained in emulsions prepared with polymers of the present invention.
TABLE l-Continued Grain Size (microns) Polymer Range Average 2:1 acrylamidelN-[B-(dimethylamino )ethyl lacrylamide 0. l-l 0.5
lzl acrylamide/N-[B-(dimethylamino)ethyl]acrylamide 0.4-5 2 4:! acrylamide/N-[B-(dimelhylamino)ethyl]acrylamide 0.2-2 0.8
9:l acrylamide/N-Ifl-(dimethylamino)ethyl]acrylamide 0.3-2.5 0.8
3:2 N-isopropylacrylamide/N- [IS-(dimethylamino )ethyl lacrylamide 0.8-1.2 l
9:] N-isopropylacrylamide/N- [B-(dimethylamino)ethyllacrylamide 0.2-0.6 0.4
l9: 1 N-isopropylacrylamide/N- [B-(dimethylamino)ethyllacrylamide 0.8
1:] N-methylacrylamide/N-[B- (dimethylamino)ethyl1acrylamide 0.1-2.5 l
H diacetoneacrylamide/N-[B- (dimethylamino)ethyllacrylamide 0.6-1.2 l
4:] methacrylamidoacetamide/N-[B (dimethylamino )ethyl lacrylamide 0.3-2. 3 1.2
M ethylacrylamide/N-[B-(dimethylamino )ethyl1acrylamide 0. l-3 l 8: l :l acrylamide/acryloylvaline/N- [B-(dimethylamino)ethyl]acrylamide 0.3-7.0 3.0
9:2:9 acrylamide/methacryloylmethionine/N-[B-(dimethylamino) ethyllacrylamide 02-] 0.6
16:1 :l6 acrylamide/methacryloylmethionine/NI B-( dimethylamino) ethyllacrylamide 0.2-1 .5 0.7
1:1 acrylamidoacetamide/N-[B- (dimethylamino)ethyllacrylamide 0.2-2.2 0.9
99: 1 :99 acrylamide/N-acryloylmethionineamide/N-[B- (dimethylamino )ethyl lacrylamide 0.3-2. 1 l
10:] :9 acrylamide/N-acryloylvaline/N-[B-(dimethylamino) ethyllacrylamide 0.2-3.8 2
17:3 N-isopropylacrylamide/N- [B-( dimethylamino )ethyl] acrylamide 0.2-l .4 0.4
Poly-N-[B-(dimethylamino)ethyl] acrylamide 0.3-2 0.6
l l ethylacrylamide/N-[B- (dimethylamino)ethyl Iacrylamide 0. l-3 l l:2 N,N-dimethylacrylumide/N-[B- (dimethylamino)ethyllacrylamide 0.4-2.4 0.9
l:2 N-t-butylacrylamide/N-[B- (dimethylamino )ethyl lacrylamide 0.4-3 L3 1:3 N.N-diethylacrylamide/N-[fi- (dimethylamino)ethyl lacrylamide 0.3-3.2 1.5
111 acrylamidoacetamidelN-l B- (dimethylamino)ethyl lacrylamide 0.4-2 1.2
The following table shows densitometer readings obtained on positives prepared from emulsions within the scope of the present invention.
TABLE 2 Grain Growing Bodying Silver/ Polymer Silver Polymer Polymer Ratio mg/ft. "max "min A" 2:1 acrylamide/N-[B- none 11 69.4 1.58 0.25 1.33 (dimethy1amino)ethy1] acrylamidc 2:1 acrylamide/N-[B- 7:3 vinyl 1.24 72.4 1.32 0.90 0.42 (dimethylamino)ethyl1 alcohol/N- acrylumide vinylpyrrolidine copolymcr 2:1 acrylamide/N-[B- 2:1 acrylamide/N- 0.77 138.0 1.09 0.07 1.02 (dimethylaminolethyll [B-(dimethylamino) acrylamidc ethyljacrylate 2:1 acrylamide/N-IB- polyvinyl alcohol 0.77 69.2 1.40 0.65 0.75 ldimethylaminmethyl] acrylamidc 2:1 acrylamidc/N-lfipoly-N-(Z-cyano- 0.77 74.2 0.20 0.07 0.13 (dimethylamino )ethyl] ethyl )aziridinc acrylamidc 2:1 acrylamidc/N-IB- poly-N-vinyl 0.77 39.7 1.45 1.15 0.30 (dimethylaminolethyll pyrrolidinc acrylamidc 2:1 acrylamidc/N-lfigelatin 0.79 79.4 1.88 0.56 1.32 (dimcthylamino)ethyl] acrylamidc 1:1 N-cthylacrylamide/ 7:3 vinyl alcohol/ 1.24 149.3 0.92 0.16 0.76 N-Ifi-(dimethylamino) N-vinylpyrrolidine ethyllacrylaniidc 9:1 acrylamidc/N-IB- polyvinyl alcohol 1.36 121.8 1.25 0.50 0.75 (dimethylaminolethyfl acrylamidc 5:1 acrylamidc/N-lfil none 1 144.1 1.52 0.05 1.47 (dimethylaminolethyll acrylamidc 5:1 acrylamide/N-IB- polyvinyl alcohol 0.68 134.0 1.75 0.05 1.70 (dimethylaminmethyll acrylamidc 5:1 ucrylamide/N-l [3' gelatin 0.92 184.1 1.77 0.26 1.51 (dimethylamino)ethyl| acrylumide 5:1 acrylamide/N-[fi- 1:1 acrylamide/ 4.1 81.3 1.19 0.19 1.00 (dimethylamino )ethyl] N-acryloylvaline acrylamide copolymer 5:1 acrylamidc/N-[B- 1:1 acrylamide/ 1.36 64.3 1.48 0.00 1.48 (dimethylamino)cthyl]N acryloylvaline acrylamide copolymer and polyvinyl alcohol 5:1 acrylamide/Nlfi- 1:1 acrylamide/ 0.92 43.6 1.38 0.17 1.21 (dimethylamino)ethyl] N-acryloylvaline acrylamide copolymer and gelatin 10:9:1 acrylamidc/N- polyvinyl alcohol 0.68 127.6 0.92 0.18 0.74 lfi-(dimethylamino)ethyl1 acrylamide/N-acryloylvalinc 3:1 N-isopropylacrylamide/ polyvinyl alcohol 1.36 85.3 0.96 0.31 0.65 N-1B-(dimethylamino)ethyll acrylamide 4:1 acrylamide/N-[B- polyvinyl alcohol 0.91 57.2 0.92 0.20 0.72 (dimethylamino)ethyl] acrylamide 1:65:l acrylamide/N- polyvinyl alcohol 1.36 98.1 1.84 0.20 1.64
1B-dimethylamin0) ethyllacrylamide The emulsions of the present invention also show a significant shortening of processing time as compared with conventional silver halide emulsions. For example, an emulsion prepared with a 5 :1 acrylamide/N-[B- (dimethylamino) ethyl]acrylamide copolymer as the grain growing polymer and polyvinyl alcohol as the bodying polymer (silver polymer ratio 1.36 and silver coverage 6.43 mgs./ft. when exposed and processed with Type 107C processing composition and receiving sheet (Polaroid Corporation, Cambridge, Mass.) showed a D, of 1.31 and a D of 0.02 after 10 seconds of processing while a conventional Type 107C film unit showed 21 D of 0.36 and D, of 0.01 after 10 seconds.
In certain photographic applications, it may be desirable to replace part, but not all, of the gelatin in the photosensitive emulsion. In view of the characteristics of these polymers described above, and further, in view of their compatability with gelatin in substantially all proportions, it will be obvious that these polymers are ideally suited for such work.
The term photosensitive and other terms of similar import are herein employed in the generic sense to describe materials possessing physical and chemical properties which enable them to form usable images when photoexposed by radiation.
Since certain changes may be made in the above products and processes without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description shall be interpreted as illustrative only and not in a limiting sense.
What is claimed is:
l. A method of preparing a photosensitive silver halide emulsion which comprises reacting in the absence of gelatin a water-soluble silver salt with a watersoluble halide salt in an aqueous solution containing a polymer having in its structure repeating units of the formula:
R and R together may be chemically joined to form a cycloalkyl group; Y is selected from the group con sisting of alkylene or cycloalkylene; and n is a positive integer greater than 1.
2. The method as defined in claim 1 wherein said polymer comprises a copolymer of a first monomer of the formula:
and a second ethylenically unsaturated monomer.
3. The method as defined in claim 2 wherein said first monomer is N-[B-(dimethylamino)ethyl]acrylamide.
4. The method as defined in claim 2 wherein said first monomer is N-(diethylaminomethyl)acrylamide.
5. The method as defined in claim 2 wherein said comonomer is acrylamide.
6. The method as defined in claim 2 wherein said comonomer is N-isopropylacrylamide.
7. The method as defined in claim 2 wherein said comonomer is acrylamidoacetamide.
8. The method as defined in claim I wherein said aqueous solution further comprises polyvinyl alcohol as a bodying polymer.
9. The method as defined in claim 1 wherein said aqueous solution further comprises hydroxyethyl cellulose as a bodying polymer.
Claims (9)
1. A METHOD OF PREPARING A PHOTOSENSITIVE SILVER HALIDE
1. A method of preparing a photosensitive silver halide emulsion which comprises reacting in the absence of gelatin a water-soluble silver salt with a water-soluble halide salt in an aqueous solution containing a polymer having in its structure repeating units of the formula:
2. The method as defined in claim 1 wherein said polymer comprises a copolymer of a first monomer of the formula:
3. The method as defined in claim 2 wherein said first monomer is N-( Beta -(dimethylamino)ethyl)acrylamide.
4. The method as defined in claim 2 wherein said first monomer is N-(diethylaminomethyl)acrylamide.
5. The method as defined in claim 2 wherein said comonomer is acrylamide.
6. The method as defined in claim 2 wherein said comonomer is N-isopropylacrylamide.
7. The method as defined in claim 2 wherein said comonomer is acrylamidoacetamide.
8. The method as defined in claim 1 wherein said aqueous solution further comprises polyvinyl alcohol as a bodying polymer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US390767A US3879205A (en) | 1971-10-08 | 1973-08-23 | Method of preparing photosensitive silver halide emulsions |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18785271A | 1971-10-08 | 1971-10-08 | |
| US390767A US3879205A (en) | 1971-10-08 | 1973-08-23 | Method of preparing photosensitive silver halide emulsions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3879205A true US3879205A (en) | 1975-04-22 |
Family
ID=26883466
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US390767A Expired - Lifetime US3879205A (en) | 1971-10-08 | 1973-08-23 | Method of preparing photosensitive silver halide emulsions |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3879205A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4022623A (en) * | 1975-10-28 | 1977-05-10 | Polaroid Corporation | Photosensitive emulsion containing polyvinyl aminimide polymers |
| US4033772A (en) * | 1975-12-09 | 1977-07-05 | Gaf Corporation | Amphoteric maleic anhydride copolymers and photographic emulsions employing the same |
| US4065435A (en) * | 1973-12-21 | 1977-12-27 | Fuji Photo Film Co., Ltd. | Water-soluble polymers and process for producing the same |
| US4278759A (en) * | 1975-02-15 | 1981-07-14 | Agfa-Gevaert A.G. | Process of preparing photographic silver halide emulsion |
| US4315071A (en) * | 1981-03-30 | 1982-02-09 | Polaroid Corporation | Polystyryl amine polymeric binders for photographic emulsions |
| US4350759A (en) * | 1981-03-30 | 1982-09-21 | Polaroid Corporation | Allyl amine polymeric binders for photographic emulsions |
| US4604451A (en) * | 1983-11-15 | 1986-08-05 | Nitto Boseki Co., Ltd. | Novel functionalized resin derived from polyallylamine |
| US4980437A (en) * | 1987-01-26 | 1990-12-25 | Chemische Fabrik Stockhausen Gmbh | Acrylic copolymers for re-tanning |
| EP0631185A1 (en) | 1993-06-11 | 1994-12-28 | Fuji Photo Film Co., Ltd. | Method for continuously processing silver halide color photosensitive material |
| US5432245A (en) * | 1990-04-02 | 1995-07-11 | Eastman Kodak Company | Method of coating thermoreversible heat-thickening polyacrylamides |
| US5478715A (en) * | 1992-07-24 | 1995-12-26 | Fuji Photo Film Co., Ltd. | Silver halide photographic material |
| DE4445006A1 (en) * | 1994-12-16 | 1996-06-20 | Mitsubishi Paper Mills Ltd | Photographic silver halide material giving super-high contrast |
| US5691107A (en) * | 1994-12-07 | 1997-11-25 | Mitsubishi Paper Mills Limited | Silver halide photographic photosensitive material |
| US5698367A (en) * | 1994-12-08 | 1997-12-16 | Mitsubishi Paper Mills, Limited | Lithographic printing plate |
| EP0874868A4 (en) * | 1996-01-19 | 2000-07-12 | Aclara Biosciences Inc | THERMOREVERSIBLE HYDROGELS CONTAINING LINEAR COPOLYMERS AND THEIR USE IN ELECTROPHORESIS |
| US20020042377A1 (en) * | 1995-06-07 | 2002-04-11 | Steiner Joseph P. | Rotamase enzyme activity inhibitors |
| US20020052410A1 (en) * | 1995-06-07 | 2002-05-02 | Steiner Joseph P. | Rotamase enzyme activity inhibitors |
| WO2014030066A2 (en) | 2012-08-22 | 2014-02-27 | Bernitz Mats Nilsson | Methods for identifying nucleic acid sequences |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3681079A (en) * | 1971-01-22 | 1972-08-01 | Polaroid Corp | Photosensitive emulsion comprising graft copolymer of amino alkyl acrylate |
| US3702249A (en) * | 1970-08-03 | 1972-11-07 | Eastman Kodak Co | Photographic element comprising amine-containing polymers |
| US3713834A (en) * | 1971-07-06 | 1973-01-30 | Polaroid Corp | Polymeric binders for photographic emulsions |
-
1973
- 1973-08-23 US US390767A patent/US3879205A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3702249A (en) * | 1970-08-03 | 1972-11-07 | Eastman Kodak Co | Photographic element comprising amine-containing polymers |
| US3681079A (en) * | 1971-01-22 | 1972-08-01 | Polaroid Corp | Photosensitive emulsion comprising graft copolymer of amino alkyl acrylate |
| US3713834A (en) * | 1971-07-06 | 1973-01-30 | Polaroid Corp | Polymeric binders for photographic emulsions |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4065435A (en) * | 1973-12-21 | 1977-12-27 | Fuji Photo Film Co., Ltd. | Water-soluble polymers and process for producing the same |
| US4278759A (en) * | 1975-02-15 | 1981-07-14 | Agfa-Gevaert A.G. | Process of preparing photographic silver halide emulsion |
| US4022623A (en) * | 1975-10-28 | 1977-05-10 | Polaroid Corporation | Photosensitive emulsion containing polyvinyl aminimide polymers |
| US4033772A (en) * | 1975-12-09 | 1977-07-05 | Gaf Corporation | Amphoteric maleic anhydride copolymers and photographic emulsions employing the same |
| US4315071A (en) * | 1981-03-30 | 1982-02-09 | Polaroid Corporation | Polystyryl amine polymeric binders for photographic emulsions |
| US4350759A (en) * | 1981-03-30 | 1982-09-21 | Polaroid Corporation | Allyl amine polymeric binders for photographic emulsions |
| US4604451A (en) * | 1983-11-15 | 1986-08-05 | Nitto Boseki Co., Ltd. | Novel functionalized resin derived from polyallylamine |
| US4687817A (en) * | 1983-11-15 | 1987-08-18 | Nitto Boseki Co. Ltd. | Novel functionalized resin derived from polyallylamine |
| US4980437A (en) * | 1987-01-26 | 1990-12-25 | Chemische Fabrik Stockhausen Gmbh | Acrylic copolymers for re-tanning |
| US5432245A (en) * | 1990-04-02 | 1995-07-11 | Eastman Kodak Company | Method of coating thermoreversible heat-thickening polyacrylamides |
| US5478715A (en) * | 1992-07-24 | 1995-12-26 | Fuji Photo Film Co., Ltd. | Silver halide photographic material |
| EP0631185A1 (en) | 1993-06-11 | 1994-12-28 | Fuji Photo Film Co., Ltd. | Method for continuously processing silver halide color photosensitive material |
| US5691107A (en) * | 1994-12-07 | 1997-11-25 | Mitsubishi Paper Mills Limited | Silver halide photographic photosensitive material |
| US5698367A (en) * | 1994-12-08 | 1997-12-16 | Mitsubishi Paper Mills, Limited | Lithographic printing plate |
| DE4445006A1 (en) * | 1994-12-16 | 1996-06-20 | Mitsubishi Paper Mills Ltd | Photographic silver halide material giving super-high contrast |
| DE4445006C2 (en) * | 1994-12-16 | 2000-05-25 | Mitsubishi Paper Mills Ltd | Photosensitive silver halide photographic material |
| US20020042377A1 (en) * | 1995-06-07 | 2002-04-11 | Steiner Joseph P. | Rotamase enzyme activity inhibitors |
| US20020052410A1 (en) * | 1995-06-07 | 2002-05-02 | Steiner Joseph P. | Rotamase enzyme activity inhibitors |
| US7056935B2 (en) | 1995-06-07 | 2006-06-06 | Gpi Nil Holdings, Inc. | Rotamase enzyme activity inhibitors |
| EP0874868A4 (en) * | 1996-01-19 | 2000-07-12 | Aclara Biosciences Inc | THERMOREVERSIBLE HYDROGELS CONTAINING LINEAR COPOLYMERS AND THEIR USE IN ELECTROPHORESIS |
| WO2014030066A2 (en) | 2012-08-22 | 2014-02-27 | Bernitz Mats Nilsson | Methods for identifying nucleic acid sequences |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3879205A (en) | Method of preparing photosensitive silver halide emulsions | |
| US3713834A (en) | Polymeric binders for photographic emulsions | |
| US3459790A (en) | Polymerizable acrylic acid esters containing active methylene groups | |
| US3658878A (en) | Ethylenically unsaturated cyano group containing compounds | |
| US3488708A (en) | Photographic materials containing novel polymers | |
| US3554987A (en) | Novel compounds and photographic materials containing said compounds | |
| US3411911A (en) | Novel photographic materials containing water insoluble interpolymers | |
| US3411912A (en) | Novel polymers and their use in photographic applications | |
| US3615624A (en) | Peptizers for silver halide emulsions useful in photography | |
| JPS6061742A (en) | Silver halide photosensitive material | |
| US3241971A (en) | Photographic silver halide emulsions | |
| US3852073A (en) | Silver halide emulsions comprising polymeric peptizers | |
| US3721565A (en) | Polymeric binders for photographic emulsions | |
| DE3329746A1 (en) | PHOTOGRAPHIC LIGHT-SENSITIVE SILVER HALOGENIDE MATERIAL AND METHOD FOR WEAKENING THE MATERIAL | |
| US4560638A (en) | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides | |
| US3681079A (en) | Photosensitive emulsion comprising graft copolymer of amino alkyl acrylate | |
| US3536491A (en) | Photographic materials containing polymers | |
| US4120727A (en) | Polymeric cyanoalkyl acrylate silver halide peptizer | |
| US4350759A (en) | Allyl amine polymeric binders for photographic emulsions | |
| US3816129A (en) | Synthetic silver halide emulsion binder | |
| US3576628A (en) | Photographic diffusion transfer process | |
| US4022623A (en) | Photosensitive emulsion containing polyvinyl aminimide polymers | |
| US3925083A (en) | Synthetic silver halide emulsion binder | |
| US3746548A (en) | Silver halide emulsion with graft copolymer binders | |
| GB2190510A (en) | Silver halide photographic material and image-forming method using the same |