US3877495A - Method of manufacturing improved filaments for fluorescent lamps - Google Patents
Method of manufacturing improved filaments for fluorescent lamps Download PDFInfo
- Publication number
- US3877495A US3877495A US447481A US44748174A US3877495A US 3877495 A US3877495 A US 3877495A US 447481 A US447481 A US 447481A US 44748174 A US44748174 A US 44748174A US 3877495 A US3877495 A US 3877495A
- Authority
- US
- United States
- Prior art keywords
- mandrel
- coil
- wire
- tungsten
- filament
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 19
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000012535 impurity Substances 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 58
- 239000011248 coating agent Substances 0.000 claims description 41
- 238000000576 coating method Methods 0.000 claims description 41
- 238000000137 annealing Methods 0.000 claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 34
- 229910052802 copper Inorganic materials 0.000 claims description 34
- 239000010949 copper Substances 0.000 claims description 34
- 229910052742 iron Inorganic materials 0.000 claims description 29
- 229910052721 tungsten Inorganic materials 0.000 abstract description 43
- 239000010937 tungsten Substances 0.000 abstract description 43
- 239000000463 material Substances 0.000 abstract description 28
- 230000001681 protective effect Effects 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 36
- 239000010959 steel Substances 0.000 description 36
- 239000011162 core material Substances 0.000 description 19
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 10
- 229910017604 nitric acid Inorganic materials 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229910000881 Cu alloy Inorganic materials 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- ZODDGFAZWTZOSI-UHFFFAOYSA-N nitric acid;sulfuric acid Chemical compound O[N+]([O-])=O.OS(O)(=O)=O ZODDGFAZWTZOSI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K3/00—Apparatus or processes adapted to the manufacture, installing, removal, or maintenance of incandescent lamps or parts thereof
- H01K3/02—Manufacture of incandescent bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F3/00—Coiling wire into particular forms
- B21F3/02—Coiling wire into particular forms helically
- B21F3/04—Coiling wire into particular forms helically externally on a mandrel or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/02—Incandescent bodies
- H01K1/04—Incandescent bodies characterised by the material thereof
- H01K1/08—Metallic bodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4981—Utilizing transitory attached element or associated separate material
- Y10T29/49812—Temporary protective coating, impregnation, or cast layer
Definitions
- tungsten wire Filaments of tungsten wire are in widespread use for incandescent and fluorescent lamps.
- lamp manufacturers take extraordinary steps to produce tungsten wire having a minimum amount of residual impurities.
- tungsten ore of the highest purity is used, and, to prevent impurity contamination during processing, the reduction of tungsten oxide is generally carried out in tungsten boats.
- impurity analyses are carried out on the material at various tages of the powder-metallurgy pro c'ess.
- Tungsten filaments for electric lamps are commonly manufactured in the form of coils or coiled coils, the latter comprising a coil which is itself coiled.
- the most commonly used method for making such filament coils comprises the following steps: (1) winding tungsten wire as a coil on an elongated mandrel; (2) annealing the coil while still on the mandrel by passing it through a hydrogen furnace maintained at an elevated temperature, usually about l,20,0C.; (3) cutting the mandrel and coil to the desired length of the individual filaments; (4) dissolving away the individual mandrels in a suitable acid such as hydrochloric acid; and (5) reannealing the tungsten wire in wet hydrogen at an elevated temperature, usually around l300C, for cleanmg.
- mandrels in common use throughout the lamp industry are steel and molybdenum. Aside from economics, the choice of mandrel material is severly limited by a large number of technical requirements. The most significant of these requirements for the mandrel are: (1) high tensile strength is required for filament winding and annealing under tension without plastic deformation of the mandrel; (2) the melting point of the mandrel must be above the annealing temperature required to set the filament coil prior to cutting; (3) the temperature coefficient of expansion of the mandrel should be Close to that of the filament coil at the annealing temperature; (4) an adequate amount of bonding is needed between the filament coil and the mandrel during annealing to assure the retention of coil geometry upon subsequent cutting of the mandrel into individual filaments; and (5) the mandrel must be capable of being dissolved chemically without affecting the tungsten coil.
- substitutional diffusion of elements, such as iron, in tungsten occurs much more rapidly along sub-boundaries and grain boundaries of the tungsten than within the grains through the normal lattice sites. Since the activation energy for volume diffusion (within the grains) being around 120 Kcal/mole for iron in tungsten is several times higher than that for interfacial diffusion (along boundaries), an appreicable amount of interfacial diffusion can occur readily at temperatures less than one-half that of the tungsten. Therefore for tungsten. which has a high concentration of sub-boundaries and grain boundaries per unit volume when formed as heavily drawn wire used in filaments, a substantial amount of iron diffuses into the tungsten preferentially along the boundaries during annealing at a relatively low temperature. Furthermore, a concentration gradient of iron in the tungsten coil also exists, which decreases from the inner coil surface, in contact with the mandrel, to the outer coil surface, which is never in contact with the mandrel.
- tungsten filaments made by conventional methods on a steel mandrel it has been substantiated, by impurity analyses on annealed coils made after dissolving away the steel mandrel, that an appreciable amount of iron diffuses into the filament coil.
- the amount of iron present after annealing varies from one coil segment to another, and depends upon the prior history of the tungsten wire.
- annealing in the manner described above typically results in an increase in iron concentration up to 50-100 ppm (by weight), as compared with 10 ppm or less of iron in the wire prior to annealing.
- Analyses of the surface material etched off from the annealed coil shows concentrations of iron substantially above ppm.
- Tungsten wire filament coils have excessive segregation of iron are also brittle and contribute to shrinkage (rejects) in the manufacture of electric lamps. Fracture of the filaments frequently occurs at the inner side of the coil being clamped by the leads during mounting of the coil in a lamp. This is indicative of the strong embrittlement effect of localized iron, since the compressive stresses at the inner side of the coil should favor plastic flow instead of crack initiation.
- Incandescent lamp filaments arenormally doped with small quantities of aluminum, silicon, and potassium compounds to raise the recrystallization temperature and to develop an interlocking grain structure characteristic of sag resistant tungsten at elevated temperatures. It is well known that iron diffused into doped tungsten reduces the recrystallization temperature and develops a non-interlocking equi-axed grain structure, paritally nullifying the effect of dopants in producing a non-sag material.
- a new type mandrel is utilized for forming filament coils as well as a new method for manufacturing filament coils. These provide a filament in which the amount of impurities introduced therein during manufacture can be controlled and reduced. Filaments made in accordance with the subject invention have been found to have greatly improved operating characteristics, due to the reduction in the impurity content.
- a material which has a lower melting point that the filament material and does not alloy therewith is coated over an inner core of the mandrel.
- the coil is then wound over the coated mandrel and is annealed.
- the annealed coil is cut into desired lengths and the mandrel is dissolved from the core.
- the coating material forms a strong bond with the coil and serves as a barrier to the diffusion of the inner core material into the filament coil. This produces a filament having substantially no additional impurities diffused therein from what was present in the filament material prior to annealing.
- the coating material on the mandrel also eliminates the formation of slivers on and the embrittlement of the annealed coil. Further, the coating material also aids in speeding the dissolving process.
- copper or a copper alloy is used as the coating material over an inner mandrel core of steel.
- the copper or copper alloy melts during the annealing of the filament coil] and forms a bond therewith to provide a better geometrical set.
- the mandrels also can be dissolved very rapidly from the coils using a suitable acid, such as nitric acid.
- the coating material can be applied to the wire rather than to the mandrel.
- a further object is to provide an improved tungsten filament for an electric lamp which, after annealing, has substantially the same amount of impurties present as before annealing.
- FIG. 1 is a persepective view of the mandrel of the subject invention showing the filament coil wound thereon;
- FIG. 2 is a cross-section of an annealed coil shown on a mandrel.
- FIG. 3 is a cross-sectional view of an annelaed coil according to another embodiment of the invention.
- a mandrel 10 has an inner core 12 on which is coated a thin layer of a suitable material 14.
- the core 12 is steel and the material of the coating 14 is copper. Alloys of copper also can be used as is described below. Where steel is used as the inner core and copper or a copper alloy as the coating material, the latter can be plated or clad on to the inner core.
- a coil 16 of filament wire is wound on the outer layer 14 out of direct contact with the mandrel inner core 12.
- the wire is, for example, of tungsten material and any suitable number of turns per inch of the coil can be wound. Copper is used as the preferred coating material when working with a tungsten.
- the choice of copper in conjunction with tungsten wire is advantageous in that copper readily wets tungsten but has no detectable solubility in tungsten.
- the copper or a copper alloy is coated onto a steel wire core which is initially at a relatively large diameter wire size.
- the wire is in the order of 0.1 inch in diameter and the thickness of the coating is 0.003 inch.
- the coated steel wire is then drawn to Adjuste wire size, for example, in the order ob 0.01 inch in diameter with the coating layer having a thickness of about 0.0003 inch.
- the copper or copper alloy becomes sufficiently work-hardened to the extent that it resists deformation during winding of the coil on the mandrel.
- the thickness of the coating needed depends in large measure upon the mandrel diameter.
- a coil of tungsten wire is wound on the mandrel with the desired number of turns per inch.
- the tungsten coil on the mandrel is then annealed at a temperature about l,l00C by passing it through a tube type furnace containing a non-oxidizing atmosphere of hydrogen or nitrogen.
- the mandrel and coil are then cooled to room temperature.
- the coil and the mandrel are cut to desired lengths.
- the individual cut mandrels are then dissolved from the coils.
- the individual coils and mandrels are placed in a container which is partially filled with water at room temperature.
- Concentrated nitric acid is then added to the water to attain the acid concentration of 25 to 35 percent or, preferably, the acid is mixed to the desired concentration before the coils are placed in the container.
- the entire mandrel is dissolved rapidly in this solution leaving the coil.
- the tungsten coils are ready to be used as filaments after they are removed from the acid bath and washed.
- the present invention has numerous advantages with respect to the copper-coated mandrel itself. Copper has a melting point within the temperature range required to set the tungsten coil by annealing. Visual inspection of the annealed coils made in accordance with the invention showed that the copper was molten during the annealing process (the melting point of copper is l,083C.) and that a strong bond was formed between the coil and the mandrel copper layer upon cooling. This is shown in FIG. 2 where bonding points 18 of the coil to the previously molten coating material 14 are shown. The bond has been found to be stronger than that normally obtained from a coil wound on a steel mandrel without copper coating.
- the reason for this is that the flow of molten copper partially around the tungsten wire provides a larger area of bonding between the tungsten wire and the copper coated mandrel.
- the stong bond formed between the filament coil and the copper upon melting and resolidifying of the copper aids in retaining the coil geometry upon cutting the annealed continuous coil into the desired lengths of individual'filaments.
- the surface tension of copper is sufficiently high so that the molten copper does not strip off during the annealing of the filament and remains as a layer over the steel core, the latter never being in contact with the tungsten coil.
- the bond is formed by resolidification of the molten copper coating 14 partially around the tungsten coil 16 at points 18 with a layer of copper 14 remaining over the inner steel core 12. It has been found that a copper coating of 0.0002 inch thick is sufficient to prevent the diffusion of any significant quantities of iron from the steel core to other impurities into the tungsten filament coil for annealing times on the order of ten seconds at l,lO0C.
- Another advantage of using copper-covered steel mandrel is the increase in efficiency of coil processing through the use of nitric acid in dissolving the mandrel.
- steel mandrels are dissolved in hydrochloric acid and require as long as over one hour for complete dissolution of mandrels of large diameter.
- the coppercovered mandrels are dissolved rapidly in nitric acid, preferably 25 percent nitric acid to which is added percent sulfuric acid.
- complete dissolution of steel mandrels 0.011 inch diameter in hydrochloric acid requires about 25 minutes, whereas copper-covered steel mandrels of the same size are completely dissolved in a nitric acid sulfuric acid bath within one minute.
- the use of the copper-covered steel mandrel and the process for dissolving the mandrels further improves the quality of the completed coiled filaments. Since the copper-covered steel mandrels can be dissolved within a few minutes without applying heat, the weight loss on coils which occurs during mandrel dissolving is substantially less than on coils processed with hydrochloric acid, typically the weight loss being reduced by 50 percent. The decrease in weight loss increases the uniformity of processed coils and the lumen output of the filament used in a lamp.
- An additional advantage of dissolving the coppercovered steel mandrel in nitric acid is that the aquadag coating on the tungsten coil is simultaneously removed.
- the aquadag remains on the tungsten coil and is removed by subsequent firing of the coils in wet hydrogen above l.400C.
- firing the coils for cleaning is often times no longer necessary.
- Coils from which the mandrels are dissolved away in nitric acid at temperatures above C are generally free of Aquadag and can be used in lamps without further cleaning. This contributes to a reduction in manufacturing cost.
- the present invention is not restricted to pure copper as the coating material and a specific type of steel as the inner core.
- Alloys of copper also can be used for the coating material.
- copper-base alloys coated on the steel mandrel can achieve the same results as are described above.
- the addition of l 5 percent of silver or indium into copper decreases the melting point of pure copper. Since alloys of these compositions exhibit a liquid-solid region extending through a wide temperature range, the alloys remain partially molten in a temperature range lower than the melting point of pure copper. This has two advantages over pure copper. First, control of the annealing temperature of the tungsten coil is less critical.
- the ability to form a bond between the coil and the mandrel at lower temperatures further improves the ductility of the tungsten since the inherent ductility of heavily drawn tungsten wire decreases with increasing anneal ing temperature.
- These alloying elements such as indium or silver, has no detrimental effect on the tungsten coil because of the lack of solubility of these elements in tungsten.
- Filament coils processed in the manner previously described on copper-covered or copper-alloyed mandrels have been inspected and have been found to be substantially completely free of slivers. This indicates the absence of diffusion of iron into the coil. The absence of slivering is also accompanied by a marked increase in ductility. The increase in ductility is most pronounced on coils which are fully recrystallized; that is. annealed or flashed at temperatures above 2,000C. Recrystallized coils processed on copper-covered steel mandrels can be stretched at room temperature for length several times greater than coils processed similarly on bare steel mandrels before fracture occurs. This not only improves the shrinkage, decreases waste in coil mounting during manufacturing, but also increase the cold-shock resistance of filaments when mounted in lamps.
- Filaments made in accordance with subject invention have been found to have substantially the same amounts of impurities after annealing as was present in the filament material prior to annealing. This is believed due to the fact that the coating material on the mandrel acts as a barrier against diffusion of the mandrel core material into the filament.
- Tungsten filament wire made in accordance with prior art techniques on a steel mandrel has an increase in iron concentration up to 50-100 ppm (by weight) as compared with 10 ppm or less of iron in the wire prior to annealing.
- Tungsten filament wire made in accordance with subject invention has substantially the same amount of iron and other impurities present after annealing as was present before annealing. In general, the iron concentration is normally less than 15 ppm.
- FIG. 3 shows another embodiment of the invention.
- the mandrel core 12, which is illustratively of steel is left uncoated.
- the core 12 is formed to the desired diameter by any suitable technique.
- the wire 16, which is illustratively tungsten, is provided with the protection coating 21, which is illustratively of copper or an alloy thereof as previously described.
- the wire 16 itself is first formed to the desired diameter, for example by drawing.
- the coating 21 is then applied to the desired thickness.
- One suitable process for applying the coating is by electroplating. Other conventional processes also can be used.
- FIG. 3 shows the wire over the mandrel at a time after the annealing has been carried out. As seen, an amount of the coating material 21 has melted during annealing from the wire to form the fillet shaped areas 22. However, an amount of coating material 21 remains between the mandrel core 12 and the wire 16 to prevent the impurities from entering the wire. The mandrel and coating are dissolved and the processing of the filament is completed in the manner previously described.
- the coating of either the filament wire or the mandrel, aids in preventing impurities from the mandrel and other sources from entering the filament wire.
- the present invention also finds application in the manufacture of coiled-coil filaments.
- the molybdenum mandrel is coated or the wire is coated.
- the acids used to dissolve the mandrel are selected accordingly.
- Tungsten filaments made in accordance with the subject invention also retain the high tensile strength and ductility characteristic of uncontaminated, unrecrystallized, heavily drawn tungsten wire.
- tungsten filaments made on uncoated steel mandrels become brittle and weak, the extent of embrittlement and weakening being a function of the amount of iron diffused into the tungsten wire coil during annealing.
- C-9 tungsten filaments made in accordance with the invention for 60 watt lamp have a uniformly high breaking load in tension in the range of 406 118 grams.
- Tungsten filaments processed on an uncoated steel mandrel exhibit breaking loads over a wide range, as low as 3l grams.
- a method of forming a filament for an electric lamp comprising the steps of winding a tungsten wire member in a coil on a mandrel containing iron, coating one of the wire and mandrel members with a coating containing copper,
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Wire Processing (AREA)
Abstract
A method for manufacturing an annealed tungsten filament wire for electric lamps with a reduced amount of impurities in which the filament wire is wound on a mandrel, either the wire or the mandrel is coated with a protective material, the wire is annealed at an elevated temperature, and the wire is removed from the mandrel.
Description
United States Patent Koo et al. Apr. 15, 1975 METHOD OF MANUFACTURING IMPROVED FILAMENTS FOR [56] References Cited FLUORESCENT LAMPS UNITED STATES PATENTS Inventors: Ronald C. Koo weehawken; Joel gem}; w paet gz gi ga gq 2,723,926 11/1955 Bellott l40/7l.5 g 3,303,859 2/1967 Ackermann eta]. 140/71.5 [73] Assignee: Duro-Test Corporation, North 3,662,789 5/1972 Koo et al. 140/715 Bergen, NJ. Primary Examiner-Lowell A. Larson [22] Flled 1974 Attorney, Agent, or FirmDarby & Darby [21] Appl. No.: 447,481
Related U.S. Application Data [57] ABS'FRACT Division of Ser No 223 607 F b 4 1972 Pat N A method for manufacturing an annealed tungsten fil- 3 812 393 whjhi n i ament wire for electric lamps with a reduced amount 25 3 ig g'gg of impurities in which the filament wire is wound on a mandrel, either the wire or the mandrel is coated with [52] U S C 140/71 29/424, 72/47 a protective material, the wire is annealed at an ele- [511 Bzlf 3/04 vated temperature, and the wire is removed from the 58 Field of Search 140/715; 72/47; 29/423, mandrel 6 Claims, 3 Drawing Figures PATENTEUAPR 1 5:975
METHOD OF MANUFACTURING IMPROVED FILAMENTS FOR FLUORESCENT LAMPS This application is a division of our prior copending application Ser. No. 223.607, filed Feb. 4, 1972 entitled Reduced Impurity Filament For Electric Lamps" now U.S. Pat. No. 3,812,393, which in turn is a continuation-in-part of our prior application Ser. No. 66,272, filed Aug. 24, 1970, now U.S. Pat. No. 3,662,789, dated May 16, 1972 entitled Mandrel For Manufacturing Filament Coils and Method for Manufacturing Filament Coils" which is assigned to the same assignee.
BACKGROUND OF THE INVENTION Filaments of tungsten wire are in widespread use for incandescent and fluorescent lamps. In recognition of the detrimental effects of impurities on the metallurgical properties of tungsten, lamp manufacturers take extraordinary steps to produce tungsten wire having a minimum amount of residual impurities. For example, tungsten ore of the highest purity is used, and, to prevent impurity contamination during processing, the reduction of tungsten oxide is generally carried out in tungsten boats. Furthermore, as a routine quality control procedure, impurity analyses are carried out on the material at various tages of the powder-metallurgy pro c'ess.
While a high degree of care is exercised in the manufacture of the filament wire, the manufacture of the filaments themselves has remained basically unchanged for the past forty years. The conventional manufacturing procedure, in general, does not take into account any impurities which are introduced into the filament nor the deleterious effects of these impurities.
Tungsten filaments for electric lamps are commonly manufactured in the form of coils or coiled coils, the latter comprising a coil which is itself coiled. the most commonly used method for making such filament coils comprises the following steps: (1) winding tungsten wire as a coil on an elongated mandrel; (2) annealing the coil while still on the mandrel by passing it through a hydrogen furnace maintained at an elevated temperature, usually about l,20,0C.; (3) cutting the mandrel and coil to the desired length of the individual filaments; (4) dissolving away the individual mandrels in a suitable acid such as hydrochloric acid; and (5) reannealing the tungsten wire in wet hydrogen at an elevated temperature, usually around l300C, for cleanmg.
The two materials for mandrels in common use throughout the lamp industry are steel and molybdenum. Aside from economics, the choice of mandrel material is severly limited by a large number of technical requirements. The most significant of these requirements for the mandrel are: (1) high tensile strength is required for filament winding and annealing under tension without plastic deformation of the mandrel; (2) the melting point of the mandrel must be above the annealing temperature required to set the filament coil prior to cutting; (3) the temperature coefficient of expansion of the mandrel should be Close to that of the filament coil at the annealing temperature; (4) an adequate amount of bonding is needed between the filament coil and the mandrel during annealing to assure the retention of coil geometry upon subsequent cutting of the mandrel into individual filaments; and (5) the mandrel must be capable of being dissolved chemically without affecting the tungsten coil. For the foregoing reasons steel mandrels have been and are currently being used almost universally for most coiled filaments while molybdenum mandrels are used for coiled-coil filaments which require annealing temperatures above the melting point of steel.
The use of steel for the mandrel material, although economical, is undesirable from the standpoint of quality of the filaments produced, since steel has an adverse effect on the metallurgical properties of the tungsten filament during the manufacturing process. The main reason is that in forming the bond between the coil and the mandrel during the annealing step, a small amount of iron inevitably diffuses into and embrittles the tungsten. To understand this it should be considered that in the heavily drawn tungsten wire used as lamp filaments, a fibrous substructure exists prior to recrystallization, the average subgrain size of this structure being less than one micron. It is well recognized that substitutional diffusion of elements, such as iron, in tungsten occurs much more rapidly along sub-boundaries and grain boundaries of the tungsten than within the grains through the normal lattice sites. Since the activation energy for volume diffusion (within the grains) being around 120 Kcal/mole for iron in tungsten is several times higher than that for interfacial diffusion (along boundaries), an appreicable amount of interfacial diffusion can occur readily at temperatures less than one-half that of the tungsten. Therefore for tungsten. which has a high concentration of sub-boundaries and grain boundaries per unit volume when formed as heavily drawn wire used in filaments, a substantial amount of iron diffuses into the tungsten preferentially along the boundaries during annealing at a relatively low temperature. Furthermore, a concentration gradient of iron in the tungsten coil also exists, which decreases from the inner coil surface, in contact with the mandrel, to the outer coil surface, which is never in contact with the mandrel.
For tungsten filaments made by conventional methods on a steel mandrel, it has been substantiated, by impurity analyses on annealed coils made after dissolving away the steel mandrel, that an appreciable amount of iron diffuses into the filament coil. The amount of iron present after annealing varies from one coil segment to another, and depends upon the prior history of the tungsten wire. For tungsten wire approximately 2.5 mils in diameter, annealing in the manner described above typically results in an increase in iron concentration up to 50-100 ppm (by weight), as compared with 10 ppm or less of iron in the wire prior to annealing. Analyses of the surface material etched off from the annealed coil shows concentrations of iron substantially above ppm.
The presence of localized segregations of iron diffused into a tungsten wire filament coil has been found to be responsible for the formation of numerous silvers of iron on annealed filament coils after the mandrel has been dissolved away. When the coil is stretched out, the slivers are evident on the inner surface of the coil at the areas where it was originally in contact with the steel mandrel. The amount of slivering increases with increasing concentration of iron, and is absent wherever the diffusion of iron into the tungsten wire coil is prevented.
Tungsten wire filament coils have excessive segregation of iron are also brittle and contribute to shrinkage (rejects) in the manufacture of electric lamps. Fracture of the filaments frequently occurs at the inner side of the coil being clamped by the leads during mounting of the coil in a lamp. This is indicative of the strong embrittlement effect of localized iron, since the compressive stresses at the inner side of the coil should favor plastic flow instead of crack initiation.
Another detrimental effect of iron is to reduce the advantages achieved by doping in non-sag filaments. Incandescent lamp filaments arenormally doped with small quantities of aluminum, silicon, and potassium compounds to raise the recrystallization temperature and to develop an interlocking grain structure characteristic of sag resistant tungsten at elevated temperatures. It is well known that iron diffused into doped tungsten reduces the recrystallization temperature and develops a non-interlocking equi-axed grain structure, paritally nullifying the effect of dopants in producing a non-sag material.
In accordance with the present invention a new type mandrel is utilized for forming filament coils as well as a new method for manufacturing filament coils. These provide a filament in which the amount of impurities introduced therein during manufacture can be controlled and reduced. Filaments made in accordance with the subject invention have been found to have greatly improved operating characteristics, due to the reduction in the impurity content.
In accordance with a preferred embodiment of the invention, a material which has a lower melting point that the filament material and does not alloy therewith is coated over an inner core of the mandrel. The coil is then wound over the coated mandrel and is annealed. The annealed coil is cut into desired lengths and the mandrel is dissolved from the core. Upon annealing of the filament, the coating material forms a strong bond with the coil and serves as a barrier to the diffusion of the inner core material into the filament coil. This produces a filament having substantially no additional impurities diffused therein from what was present in the filament material prior to annealing. The coating material on the mandrel also eliminates the formation of slivers on and the embrittlement of the annealed coil. Further, the coating material also aids in speeding the dissolving process.
In a preferred embodiment of the invention, copper or a copper alloy is used as the coating material over an inner mandrel core of steel. The copper or copper alloy melts during the annealing of the filament coil] and forms a bond therewith to provide a better geometrical set. The mandrels also can be dissolved very rapidly from the coils using a suitable acid, such as nitric acid.
As another aspect of the invention, the coating material can be applied to the wire rather than to the mandrel.
It is therefore an object of the present invention to provide an improved filament for use with electric lamps.
A further object is to provide an improved tungsten filament for an electric lamp which, after annealing, has substantially the same amount of impurties present as before annealing.
Other objects and advantages of the present invention will become more apparent upon reference to the following specification and annexed drawings, in which:
FIG. 1 is a persepective view of the mandrel of the subject invention showing the filament coil wound thereon;
FIG. 2 is a cross-section of an annealed coil shown on a mandrel; and
FIG. 3 is a cross-sectional view of an annelaed coil according to another embodiment of the invention.
Referring to FIG. 1, a mandrel 10 has an inner core 12 on which is coated a thin layer of a suitable material 14. In the preferred embodiment of the invention being described, the core 12 is steel and the material of the coating 14 is copper. Alloys of copper also can be used as is described below. Where steel is used as the inner core and copper or a copper alloy as the coating material, the latter can be plated or clad on to the inner core.
A coil 16 of filament wire is wound on the outer layer 14 out of direct contact with the mandrel inner core 12. The wire is, for example, of tungsten material and any suitable number of turns per inch of the coil can be wound. Copper is used as the preferred coating material when working with a tungsten. The choice of copper in conjunction with tungsten wire is advantageous in that copper readily wets tungsten but has no detectable solubility in tungsten.
Considering now the preferred embodiment of the manufacturing process for the mandrel shown in FIG. 1, the copper or a copper alloy is coated onto a steel wire core which is initially at a relatively large diameter wire size. For example, the wire is in the order of 0.1 inch in diameter and the thickness of the coating is 0.003 inch. The coated steel wire is then drawn to afine wire size, for example, in the order ob 0.01 inch in diameter with the coating layer having a thickness of about 0.0003 inch. By doing this the copper or copper alloy becomes sufficiently work-hardened to the extent that it resists deformation during winding of the coil on the mandrel. The thickness of the coating needed depends in large measure upon the mandrel diameter.
To produce the improved filament, in accordance with the preferred embodiment of the invention a coil of tungsten wire is wound on the mandrel with the desired number of turns per inch. The tungsten coil on the mandrel is then annealed at a temperature about l,l00C by passing it through a tube type furnace containing a non-oxidizing atmosphere of hydrogen or nitrogen. The mandrel and coil are then cooled to room temperature.
After the annealing and cooling, the coil and the mandrel are cut to desired lengths. The individual cut mandrels are then dissolved from the coils. To do the latter, the individual coils and mandrels are placed in a container which is partially filled with water at room temperature. Concentrated nitric acid is then added to the water to attain the acid concentration of 25 to 35 percent or, preferably, the acid is mixed to the desired concentration before the coils are placed in the container. The entire mandrel is dissolved rapidly in this solution leaving the coil. The tungsten coils are ready to be used as filaments after they are removed from the acid bath and washed.
The present invention has numerous advantages with respect to the copper-coated mandrel itself. Copper has a melting point within the temperature range required to set the tungsten coil by annealing. Visual inspection of the annealed coils made in accordance with the invention showed that the copper was molten during the annealing process (the melting point of copper is l,083C.) and that a strong bond was formed between the coil and the mandrel copper layer upon cooling. This is shown in FIG. 2 where bonding points 18 of the coil to the previously molten coating material 14 are shown. The bond has been found to be stronger than that normally obtained from a coil wound on a steel mandrel without copper coating. The reason for this is that the flow of molten copper partially around the tungsten wire provides a larger area of bonding between the tungsten wire and the copper coated mandrel. The stong bond formed between the filament coil and the copper upon melting and resolidifying of the copper aids in retaining the coil geometry upon cutting the annealed continuous coil into the desired lengths of individual'filaments.
As a further advantage, the surface tension of copper is sufficiently high so that the molten copper does not strip off during the annealing of the filament and remains as a layer over the steel core, the latter never being in contact with the tungsten coil. This is also illustrated in FIG. 2. The bond is formed by resolidification of the molten copper coating 14 partially around the tungsten coil 16 at points 18 with a layer of copper 14 remaining over the inner steel core 12. It has been found that a copper coating of 0.0002 inch thick is sufficient to prevent the diffusion of any significant quantities of iron from the steel core to other impurities into the tungsten filament coil for annealing times on the order of ten seconds at l,lO0C.
Another advantage of using copper-covered steel mandrel is the increase in efficiency of coil processing through the use of nitric acid in dissolving the mandrel. In the conventional prior art method, steel mandrels are dissolved in hydrochloric acid and require as long as over one hour for complete dissolution of mandrels of large diameter. In the present invention, the coppercovered mandrels are dissolved rapidly in nitric acid, preferably 25 percent nitric acid to which is added percent sulfuric acid. For example, complete dissolution of steel mandrels 0.011 inch diameter in hydrochloric acid requires about 25 minutes, whereas copper-covered steel mandrels of the same size are completely dissolved in a nitric acid sulfuric acid bath within one minute.
That the entire copper-covered mandrel can be dissolved rapidly in a relatively concentrated solution of nitric acid is attributed to the depassivating effect of the copper coating on the inner steel core. Without the copper coating, steel becomes passivated in nitric acid at concentrations above approximately 20 percent and resists attack by the acid. The copper-covered steel mandrels, however, are readily dissolved in nitric acid at concentrations up to 50 percent.
It has been found that the use of the copper-covered steel mandrel and the process for dissolving the mandrels further improves the quality of the completed coiled filaments. Since the copper-covered steel mandrels can be dissolved within a few minutes without applying heat, the weight loss on coils which occurs during mandrel dissolving is substantially less than on coils processed with hydrochloric acid, typically the weight loss being reduced by 50 percent. The decrease in weight loss increases the uniformity of processed coils and the lumen output of the filament used in a lamp.
An additional advantage of dissolving the coppercovered steel mandrel in nitric acid is that the aquadag coating on the tungsten coil is simultaneously removed. In the conventional method of dissolving the uncoated steel mandrel in hydrochloric acid, the aquadag remains on the tungsten coil and is removed by subsequent firing of the coils in wet hydrogen above l.400C. In the present invention, firing the coils for cleaning is often times no longer necessary.,Coils from which the mandrels are dissolved away in nitric acid at temperatures above C are generally free of Aquadag and can be used in lamps without further cleaning. This contributes to a reduction in manufacturing cost.
The present invention is not restricted to pure copper as the coating material and a specific type of steel as the inner core. Alloys of copper also can be used for the coating material. For example, copper-base alloys coated on the steel mandrel can achieve the same results as are described above. The addition of l 5 percent of silver or indium into copper decreases the melting point of pure copper. Since alloys of these compositions exhibit a liquid-solid region extending through a wide temperature range, the alloys remain partially molten in a temperature range lower than the melting point of pure copper. This has two advantages over pure copper. First, control of the annealing temperature of the tungsten coil is less critical. Second, the ability to form a bond between the coil and the mandrel at lower temperatures further improves the ductility of the tungsten since the inherent ductility of heavily drawn tungsten wire decreases with increasing anneal ing temperature. The presence of these alloying elements, such as indium or silver, has no detrimental effect on the tungsten coil because of the lack of solubility of these elements in tungsten.
Filament coils processed in the manner previously described on copper-covered or copper-alloyed mandrels have been inspected and have been found to be substantially completely free of slivers. This indicates the absence of diffusion of iron into the coil. The absence of slivering is also accompanied by a marked increase in ductility. The increase in ductility is most pronounced on coils which are fully recrystallized; that is. annealed or flashed at temperatures above 2,000C. Recrystallized coils processed on copper-covered steel mandrels can be stretched at room temperature for length several times greater than coils processed similarly on bare steel mandrels before fracture occurs. This not only improves the shrinkage, decreases waste in coil mounting during manufacturing, but also increase the cold-shock resistance of filaments when mounted in lamps.
Filaments made in accordance with subject invention have been found to have substantially the same amounts of impurities after annealing as was present in the filament material prior to annealing. This is believed due to the fact that the coating material on the mandrel acts as a barrier against diffusion of the mandrel core material into the filament. Tungsten filament wire made in accordance with prior art techniques on a steel mandrel has an increase in iron concentration up to 50-100 ppm (by weight) as compared with 10 ppm or less of iron in the wire prior to annealing. Tungsten filament wire made in accordance with subject invention has substantially the same amount of iron and other impurities present after annealing as was present before annealing. In general, the iron concentration is normally less than 15 ppm.
FIG. 3 shows another embodiment of the invention. Here, the mandrel core 12, which is illustratively of steel is left uncoated. The core 12 is formed to the desired diameter by any suitable technique. The wire 16, which is illustratively tungsten, is provided with the protection coating 21, which is illustratively of copper or an alloy thereof as previously described. To form the coated wire, the wire 16 itself is first formed to the desired diameter, for example by drawing. The coating 21 is then applied to the desired thickness. One suitable process for applying the coating is by electroplating. Other conventional processes also can be used.
The manufacture of filaments using the coated wire and the uncoated mandrel, of FIG. 3 is carried out in the same manner as previously described after the coated wire is wound over the mandrel. FIG. 3 shows the wire over the mandrel at a time after the annealing has been carried out. As seen, an amount of the coating material 21 has melted during annealing from the wire to form the fillet shaped areas 22. However, an amount of coating material 21 remains between the mandrel core 12 and the wire 16 to prevent the impurities from entering the wire. The mandrel and coating are dissolved and the processing of the filament is completed in the manner previously described.
in both of the embodiments of the invention described, it should be understood that the coating, of either the filament wire or the mandrel, aids in preventing impurities from the mandrel and other sources from entering the filament wire.
The present invention also finds application in the manufacture of coiled-coil filaments. Here, the molybdenum mandrel is coated or the wire is coated. The acids used to dissolve the mandrel are selected accordingly.
Tungsten filaments made in accordance with the subject invention also retain the high tensile strength and ductility characteristic of uncontaminated, unrecrystallized, heavily drawn tungsten wire. In contrast, tungsten filaments made on uncoated steel mandrels become brittle and weak, the extent of embrittlement and weakening being a function of the amount of iron diffused into the tungsten wire coil during annealing. As a typical example, C-9 tungsten filaments made in accordance with the invention for 60 watt lamp, have a uniformly high breaking load in tension in the range of 406 118 grams. Tungsten filaments processed on an uncoated steel mandrel exhibit breaking loads over a wide range, as low as 3l grams.
What is claimed is: l. A method of forming a filament for an electric lamp comprising the steps of winding a tungsten wire member in a coil on a mandrel containing iron, coating one of the wire and mandrel members with a coating containing copper,
annealing the tungsten wire on the mandrel at an elevated temperature to melt the coating for a period of time such that no significant amount of impurities diffuse into the wire, and
removing the mandrel from the coil.
2. The method of claim 1 wherein said annealing is carried out so that there is less than about 15 parts per million (by weight) of iron in the annealed filament coil.
3. The method of claim 1 further comprising the step of drawing the tungsten wire before it is wound over the mandrel.
4. The method of claim 2 further comprising the step of drawing the tungsten wire before it is wound over the mandrel.
S. The method of claim 1 wherein said coating step comprises coating said wire.
6. The method of claim I wherein said coating step comprises coating said mandrel.
Claims (6)
1. A METHOD OF FORMING A FILAMENT FOR AN ELECTRIC LAMP COMPRISING THE STEPS OF WINDING A TUNGSTEN WIRE MEMBER IN A COIL ON A MANDREL CONTAINING IRON, COATING ONE OF THE WIRE AND MANDREL MEMBERS WITH A COATING CONTAINING COPPER, ANNEALING THE TUNGSTEN WIRE ON THE MANDREL AT AN ELEVATED TEMPERATURE TO MELT THE COATING FOR A PERIOD OF TIME SUCH THAT NO SIGNIFICANT AMOUNT OF IMPURITIES DIFFUSE INTO THE WIRE, AND REMOVING THE MANDREL FROM THE COIL.
2. The method of claim 1 wherein said annealing is carried out so that there is less than about 15 parts per million (by weight) of iron in the annealed filament coil.
3. The method of claim 1 further comprising the step of drawing the tungsten wire before it is wound over the mandrel.
4. The method of claim 2 further comprising the step of drawing the tungsten wire before it is wound over the mandrel.
5. The method of claim 1 wherein said coating step comprises coating said wire.
6. The method of claim 1 wherein said coating step comprises coating said mandrel.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US447481A US3877495A (en) | 1972-02-04 | 1974-03-04 | Method of manufacturing improved filaments for fluorescent lamps |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00223607A US3812393A (en) | 1970-08-24 | 1972-02-04 | Reduced impurity filament for electric lamps |
| US447481A US3877495A (en) | 1972-02-04 | 1974-03-04 | Method of manufacturing improved filaments for fluorescent lamps |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3877495A true US3877495A (en) | 1975-04-15 |
Family
ID=26917948
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US447481A Expired - Lifetime US3877495A (en) | 1972-02-04 | 1974-03-04 | Method of manufacturing improved filaments for fluorescent lamps |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3877495A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4291444A (en) * | 1978-08-28 | 1981-09-29 | General Electric Company | Process of manufacturing a tungsten lamp filament |
| US4634042A (en) * | 1984-04-10 | 1987-01-06 | Cordis Corporation | Method of joining refractory metals to lower melting dissimilar metals |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1597189A (en) * | 1921-01-11 | 1926-08-24 | Westinghouse Lamp Co | Method of cold-drawing refractory materials |
| US2165310A (en) * | 1939-07-11 | Filament | ||
| US2723926A (en) * | 1952-10-30 | 1955-11-15 | Westinghouse Electric Corp | Method of winding a tungsten coil on an iron mandrel |
| US3303859A (en) * | 1964-05-07 | 1967-02-14 | Rca Corp | Method of manufacture of electron discharge tube grid electrodes |
| US3662789A (en) * | 1970-08-24 | 1972-05-16 | Duro Test Corp | Mandrel for manufacturing filament coils and method for manufacturing filament coils |
-
1974
- 1974-03-04 US US447481A patent/US3877495A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2165310A (en) * | 1939-07-11 | Filament | ||
| US1597189A (en) * | 1921-01-11 | 1926-08-24 | Westinghouse Lamp Co | Method of cold-drawing refractory materials |
| US2723926A (en) * | 1952-10-30 | 1955-11-15 | Westinghouse Electric Corp | Method of winding a tungsten coil on an iron mandrel |
| US3303859A (en) * | 1964-05-07 | 1967-02-14 | Rca Corp | Method of manufacture of electron discharge tube grid electrodes |
| US3662789A (en) * | 1970-08-24 | 1972-05-16 | Duro Test Corp | Mandrel for manufacturing filament coils and method for manufacturing filament coils |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4291444A (en) * | 1978-08-28 | 1981-09-29 | General Electric Company | Process of manufacturing a tungsten lamp filament |
| US4634042A (en) * | 1984-04-10 | 1987-01-06 | Cordis Corporation | Method of joining refractory metals to lower melting dissimilar metals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6306523B1 (en) | Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire | |
| GB1241197A (en) | Method of making non-sag filaments for electric lamps | |
| US3812393A (en) | Reduced impurity filament for electric lamps | |
| US3662789A (en) | Mandrel for manufacturing filament coils and method for manufacturing filament coils | |
| Leber et al. | Fracture modes in tungsten wire | |
| US3992201A (en) | Filaments for fluorescent lamps | |
| US3877495A (en) | Method of manufacturing improved filaments for fluorescent lamps | |
| FR2757878A1 (en) | STAINLESS STEEL TREFILE WIRE AND METHOD OF MANUFACTURE | |
| US3159460A (en) | Composite material | |
| JP2002126950A (en) | Method of manufacturing electrode wire for wire electric discharge machining | |
| US4863527A (en) | Process for producing doped tungsten wire with low strength and high ductility | |
| US2308700A (en) | Method of treating fabricated tungsten wires or rods | |
| JP3940474B2 (en) | Tungsten wire for filament, method for producing tungsten wire, filament and method for producing the same | |
| JP3087552B2 (en) | Electrode wire for electric discharge machining | |
| Koo et al. | A Method to Prevent Iron Contamination during Manufacture of Incandescent Filaments | |
| JP2670274B2 (en) | Tungsten wire for vapor deposition element | |
| JP7120389B1 (en) | Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals | |
| JP2599442B2 (en) | Method for producing Pt / Mo clad wire | |
| DE2214358C2 (en) | Tungsten filament mfr - using a copper alloy coated steel mandrel | |
| JPH10330869A (en) | Electrode wire for wire cut electric discharge machining | |
| JPH0116907B2 (en) | ||
| JPS6341187B2 (en) | ||
| JPH07116925A (en) | Electrode wire for electric discharge machining and manufacture thereof | |
| JP3499688B2 (en) | Material for diffusion prevention layer of compound superconducting wire | |
| JPS5839224B2 (en) | Manufacturing method of heat-resistant, high-strength aluminum alloy for conductive use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHEMICAL BANK, 277 PARK AVENUE, NEW YORK, NY A NEW Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DURO-TEST CORPORATION, INC., A NY CORP.;REEL/FRAME:005642/0094 Effective date: 19880829 |
|
| AS | Assignment |
Owner name: DURO-TEST CORPORATION, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEMICAL BANK;REEL/FRAME:007007/0504 Effective date: 19940510 |