US3870791A - Solid state ophthalmic medication delivery method - Google Patents
Solid state ophthalmic medication delivery method Download PDFInfo
- Publication number
- US3870791A US3870791A US435475A US43547574A US3870791A US 3870791 A US3870791 A US 3870791A US 435475 A US435475 A US 435475A US 43547574 A US43547574 A US 43547574A US 3870791 A US3870791 A US 3870791A
- Authority
- US
- United States
- Prior art keywords
- medicament
- sac
- eye
- cul
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003814 drug Substances 0.000 title claims abstract description 113
- 239000007787 solid Substances 0.000 title claims abstract description 50
- 229940079593 drug Drugs 0.000 title description 73
- 238000002716 delivery method Methods 0.000 title description 3
- 210000003717 douglas' pouch Anatomy 0.000 claims abstract description 26
- 230000003547 miosis Effects 0.000 claims abstract description 13
- 238000003780 insertion Methods 0.000 claims abstract description 12
- 230000037431 insertion Effects 0.000 claims abstract description 12
- 230000002035 prolonged effect Effects 0.000 claims abstract description 10
- 210000001508 eye Anatomy 0.000 claims description 49
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 claims description 30
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 claims description 30
- 229960001416 pilocarpine Drugs 0.000 claims description 30
- 235000010443 alginic acid Nutrition 0.000 claims description 21
- 229920000615 alginic acid Polymers 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 16
- 210000005252 bulbus oculi Anatomy 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 15
- 208000010412 Glaucoma Diseases 0.000 claims description 9
- 239000000783 alginic acid Substances 0.000 claims description 8
- 229960001126 alginic acid Drugs 0.000 claims description 8
- 150000004781 alginic acids Chemical class 0.000 claims description 8
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 claims description 6
- 231100000344 non-irritating Toxicity 0.000 claims description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 5
- 229960004484 carbachol Drugs 0.000 claims description 5
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 claims description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 5
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 5
- 239000000969 carrier Substances 0.000 claims description 5
- PIJVFDBKTWXHHD-UHFFFAOYSA-N Physostigmine Natural products C12=CC(OC(=O)NC)=CC=C2N(C)C2C1(C)CCN2C PIJVFDBKTWXHHD-UHFFFAOYSA-N 0.000 claims description 4
- 229960001697 physostigmine Drugs 0.000 claims description 4
- PIJVFDBKTWXHHD-HIFRSBDPSA-N physostigmine Chemical compound C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C PIJVFDBKTWXHHD-HIFRSBDPSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 17
- 239000007909 solid dosage form Substances 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 210000000795 conjunctiva Anatomy 0.000 abstract description 4
- 230000002911 mydriatic effect Effects 0.000 abstract description 2
- 230000000144 pharmacologic effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 25
- 238000011282 treatment Methods 0.000 description 16
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 13
- 229940072056 alginate Drugs 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 201000010099 disease Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229920000609 methyl cellulose Polymers 0.000 description 8
- 239000001923 methylcellulose Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 6
- 239000002997 ophthalmic solution Substances 0.000 description 6
- 229960002139 pilocarpine hydrochloride Drugs 0.000 description 6
- RNAICSBVACLLGM-GNAZCLTHSA-N pilocarpine hydrochloride Chemical compound Cl.C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C RNAICSBVACLLGM-GNAZCLTHSA-N 0.000 description 6
- 230000001179 pupillary effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000006196 drop Substances 0.000 description 3
- OVXQHPWHMXOFRD-UHFFFAOYSA-M ecothiopate iodide Chemical compound [I-].CCOP(=O)(OCC)SCC[N+](C)(C)C OVXQHPWHMXOFRD-UHFFFAOYSA-M 0.000 description 3
- 208000030533 eye disease Diseases 0.000 description 3
- 239000003889 eye drop Substances 0.000 description 3
- 229940012356 eye drops Drugs 0.000 description 3
- 210000000744 eyelid Anatomy 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000004439 pupillary reactions Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- CNIIGCLFLJGOGP-UHFFFAOYSA-N 2-(1-naphthalenylmethyl)-4,5-dihydro-1H-imidazole Chemical compound C=1C=CC2=CC=CC=C2C=1CC1=NCCN1 CNIIGCLFLJGOGP-UHFFFAOYSA-N 0.000 description 2
- GIKNHHRFLCDOEU-UHFFFAOYSA-N 4-(2-aminopropyl)phenol Chemical compound CC(N)CC1=CC=C(O)C=C1 GIKNHHRFLCDOEU-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010027646 Miosis Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000007980 Sørensen’s phosphate buffer Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000002924 anti-infective effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229960005475 antiinfective agent Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000004410 intraocular pressure Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 208000033672 open angle E glaucoma 1 Diseases 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229940100008 phospholine iodide Drugs 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 201000006366 primary open angle glaucoma Diseases 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- JVIPLYCGEZUBIO-UHFFFAOYSA-N 2-(4-fluorophenyl)-1,3-dioxoisoindole-5-carboxylic acid Chemical compound O=C1C2=CC(C(=O)O)=CC=C2C(=O)N1C1=CC=C(F)C=C1 JVIPLYCGEZUBIO-UHFFFAOYSA-N 0.000 description 1
- QSAVEGSLJISCDF-UHFFFAOYSA-N 2-hydroxy-2-phenylacetic acid (1,2,2,6-tetramethyl-4-piperidinyl) ester Chemical compound C1C(C)(C)N(C)C(C)CC1OC(=O)C(O)C1=CC=CC=C1 QSAVEGSLJISCDF-UHFFFAOYSA-N 0.000 description 1
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 201000002862 Angle-Closure Glaucoma Diseases 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229920001425 Diethylaminoethyl cellulose Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 208000005100 Herpetic Keratitis Diseases 0.000 description 1
- ZTVIKZXZYLEVOL-MCOXGKPRSA-N Homatropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(O)C1=CC=CC=C1 ZTVIKZXZYLEVOL-MCOXGKPRSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 206010023335 Keratitis interstitial Diseases 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- IJHNSHDBIRRJRN-UHFFFAOYSA-N N,N-dimethyl-3-phenyl-3-(2-pyridinyl)-1-propanamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=CC=C1 IJHNSHDBIRRJRN-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010073938 Ophthalmic herpes simplex Diseases 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- REYFJDPCWQRWAA-UHFFFAOYSA-N antazoline Chemical compound N=1CCNC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 REYFJDPCWQRWAA-UHFFFAOYSA-N 0.000 description 1
- 229960002469 antazoline Drugs 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940055075 anticholinesterase parasympathomimetics Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 201000007032 bacterial conjunctivitis Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003291 chlorphenamine Drugs 0.000 description 1
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 1
- -1 chlortetracycleine Natural products 0.000 description 1
- 229940127243 cholinergic drug Drugs 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- SKYSRIRYMSLOIN-UHFFFAOYSA-N cyclopentolate Chemical compound C1CCCC1(O)C(C(=O)OCCN(C)C)C1=CC=CC=C1 SKYSRIRYMSLOIN-UHFFFAOYSA-N 0.000 description 1
- 229960001815 cyclopentolate Drugs 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- VQODGRNSFPNSQE-CXSFZGCWSA-N dexamethasone phosphate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP(O)(O)=O)(O)[C@@]1(C)C[C@@H]2O VQODGRNSFPNSQE-CXSFZGCWSA-N 0.000 description 1
- MUCZHBLJLSDCSD-UHFFFAOYSA-N diisopropyl fluorophosphate Chemical compound CC(C)OP(F)(=O)OC(C)C MUCZHBLJLSDCSD-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960002445 echothiophate iodide Drugs 0.000 description 1
- 206010014801 endophthalmitis Diseases 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229950002420 eucatropine Drugs 0.000 description 1
- 229940043075 fluocinolone Drugs 0.000 description 1
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 description 1
- 229960005051 fluostigmine Drugs 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 229960000857 homatropine Drugs 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 229950005360 hydroxyamfetamine Drugs 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000001077 hypotensive effect Effects 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 201000006904 interstitial keratitis Diseases 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 229960000582 mepyramine Drugs 0.000 description 1
- YECBIJXISLIIDS-UHFFFAOYSA-N mepyramine Chemical compound C1=CC(OC)=CC=C1CN(CCN(C)C)C1=CC=CC=N1 YECBIJXISLIIDS-UHFFFAOYSA-N 0.000 description 1
- 229960001869 methapyrilene Drugs 0.000 description 1
- HNJJXZKZRAWDPF-UHFFFAOYSA-N methapyrilene Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 HNJJXZKZRAWDPF-UHFFFAOYSA-N 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- 239000002637 mydriatic agent Substances 0.000 description 1
- 229960005016 naphazoline Drugs 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 description 1
- 229960001907 nitrofurazone Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940054534 ophthalmic solution Drugs 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229960001190 pheniramine Drugs 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- HZOTZTANVBDFOF-PBCQUBLHSA-N physostigmine salicylate Chemical compound OC(=O)C1=CC=CC=C1O.C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C HZOTZTANVBDFOF-PBCQUBLHSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000004478 pupil constriction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229960002646 scopolamine Drugs 0.000 description 1
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- 229960005158 sulfamethizole Drugs 0.000 description 1
- VACCAVUAMIDAGB-UHFFFAOYSA-N sulfamethizole Chemical compound S1C(C)=NN=C1NS(=O)(=O)C1=CC=C(N)C=C1 VACCAVUAMIDAGB-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960004791 tropicamide Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
- A61K9/0051—Ocular inserts, ocular implants
Definitions
- This invention relates to a method of dispensing drugs to the eye over a prolonged period of time.
- drugs of various kinds are frequently employed in ophthalmic practice for the treatment of eye diseases. Since these drugs are rapidly excreted from the body or diffuse from any site of local application, repeated or numerous administration of the drug during the crucial period is generally necessary.
- Therapeutic substances may be introduced into the eye by various methods. The methods generally used are instillation into the conjunctiva] sac, subconjunctival injection, iontophoresis, systemic administration and direct injection into the globe itself. The most common route is by instillation into the conjunctival sac in the form of drops or ointments. In this method, drugs enter the eye largely through the cornea but to be effective, in many cases, the application of the drug must be substantially continuous.
- Pilocarpine is generally used in the treatment of glaucoma, but frequent administration is required due to the fact that the hypotensive action of the drug is not of long duration. Thus, there still remains a need to find better methods of delivering drugs to the eye so as to obtain the maximum effect from the drug without the need for frequent administration.
- U.S. Pat. No. 3,618,604 describes an ocular insert which is used to dispense drugs to the eye.
- the insert is comprised of a polymeric material which is insoluble in tear liquid, the body of which contains the drug.
- the drug is then dispensed to the eye by diffusion through the polymeric material.
- This method has an inherent disadvantage in that the insert must be removed from the eye each time after application of the drug.
- the polymeric insert must be so fashioned that it will not irritate the sensitive tissues of the eye.
- U.S. Pat. No. 3,630,200 describes an ocular insert made up of an inner core having an affinity for a given drug and a soft hydrophilic outer layer.
- US. Pat. No. 3,626,940 also describes an ocular insert fabricated from polymeric materials, but the insert contains a magnetically attractable substance to permit insertion and removal of the insert by magnetic means.
- each of the drug dispensing methods described in the above patents requires removal of the insert after each application of the drug.
- the object of the present invention is to provide a method of delivering a therapeutic drug to the eye in solid form which results in a continuous controlled release of the medicament and obviates the need for frequent administration of the drug.
- the present invention relates to a method of treating diseases of the eye which comprises delivering a medicament in solid form to the eye.
- the drug in the form of a disc, pellet, flake, wafer, etc., is placed in the culde-sac of the conjunctiva between the eyeball and the eyelid. While the disc can be inserted under either the upper lid or the lower lid, it is preferred to place the disc under the lower lid. Once the disc is in place, the drug disintegrates slowly causing it to be released into the tear fluids. The drug is transported to the eyeball by the flow of tear fluid or by the blinking action of the eyelids.
- a slow diffusional process controls the rate of loss of the drug from its solid matrix; thus, the drug is held in reserve and is available for prolonging the duration of a desired pupillary response. Due to the slow diffusional process, a means is thus provided for controlling the release of a given drug from its dosage form in which availability for absorption from the cul-de-sac is more uniform than is the case with ophthalmic solutions containing the drugs.
- a single disc can provide the complete ophthalmic dosage requirement for a particular time period depending upon the concentration of the drug in a given disc.
- frequent repeated applications of the drug are unnecessary, which is not the case with solutions and ointments.
- the solid may be dipped in an isotonic solution which causes the solid to assume a semi-plastic consistency.
- physiological salt solutions are suitable for this purpose.
- Any drug normally used to treat diseases of the eye and the surrounding tissues can be employed which is a solid or can be made into a solid derivative. Also, within the comtemplation of the present invention is the use of drugs which will pass through the eye or the tissue surrounding the eye into the bloodstream, but which may not be used in treatment of the eye itself.
- drugs used in ophthalmic therapy which may be employed in the present invention are: anti-infectives: such as antibiotics, including tetracycline, chlortetracycleine, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erthromycin; sulfonamides, including sulfacetamide, sulfamethizole, and sulfisoxazole; antivirals, including idoxuridine; and other anti-infectives including nitrofurazone and sodium propionate; antiallergenics such as antazoline, methapyrilene, chlorpheniramine,
- antiinflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone, dexamethasone 21- phosphate, fluocinolone, medrysone, prednisolone, prednisolone 2l-phosphate and prednisolone acetate; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, diisopropyl fluorophosphate, phospholine iodide, and demacarium bromide; mydriatics such as antropine sulfate, cyclopentolate, homatropine, scopolamine,
- antiinflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone, dexamethasone 21- phosphate, fluocinolone,
- the drugs can be in various forms such as uncharged molecules, componenets of molecular complexes, or nonirritating, pharmacologically acceptable salts, such as the hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, salts of polyuronic acids such as alginic acid, galactouronic acid and glucouronic acid, and salts prepared from carboxymethylcellulose.
- pharmacologically acceptable salts such as the hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, salts of polyuronic acids such as alginic acid, galactouronic acid and glucouronic acid, and salts prepared from carboxymethylcellulose.
- the amount of drug used to make up the solid dosage form will vary widely depending upon the particular drug, the desired therapeutic effect, and the time span for which the solid dosage form will be used There is no critical upper limit on the amount of the drug used since the solid dosage is intended to provide the complete dosage requirement for a given period. The lower limit will depend on the activity of a given drug and its rate of diffusion in the tear fluids. Therefore, it is not practical to define a particular range for a therapeutically effective amount to be used to make up the solid dosage. However, generally about 1-50 mg. will be employed in the usual solid form, depending upon the particular drug employed. The preferred range is from about 1-10 mg.
- the solid dosage form can be prepared by any conventional method used to prepare discs, pellets, wafers, etc., from solids.
- One method for example, involves dissolving the medicament in a solvent such as water, placing the solution in a suitable container or vessel and removing the solvent by evaporation.
- the semi-solid mass left upon partial evaporation can be sectioned into the desired shape by means of various size cutting tools.
- the solid is then dried to ensure the removal of all of the solvent. In this manner, it is possible to vary the dimensions ofa respective dose by simply replacing the size of the cutting tool or changing the volume of the liquid used in preparation of the disc.
- the disc can be fabricated in any convenient shape, keeping in mind that it must be comfortably retained in the cul-de-sac of the eye. The shape, however, must not have sharp, jagged or rough edges which may irritate the sensitive tissues of the eye.
- the solid form of the drug may be a disc, pellet, flake, etc.; it can be concave, convex, rectangular, etc.
- the original shape of the solid drug form is not of critical importance.
- the actual size of the solid dosage form will vary widely. The lower limit will be governed by the amount of the particular drug to be applied to the eye to obtain the desired ophthalmic response.
- the upper limit will be governed by the smallest sized solid which can be conveniently inserted into the cul-de-sac.
- the solid form will be about 1-8 mm. in length, about 1-4 mm. in width, having a thickness of about 0.21 mm.
- the preferred shape is a disc having a thickness of about 0.3 mm., a diameter of 3-7 mm., and a weight of about 3.0-8 mg.
- Those compounds which are normally solids may be delivered in the form of a disc or pellet, etc., without the aid of an additive.
- Those compounds which are normally liquid may be used in the form of a pharmacologically acceptable solid derivative.
- a diluent or vehicle in conjunction with the solid dosage form. Suitable vehicles include, for example, methylcellulose, hydroxypropylmethylcellulose, diethylaminoethylcellulose, polyvinylpyrrolidone and pharmacologically acceptable cationic or anionic resms.
- the treatment of eye diseases by delivering the medicament directly to the cul-de-sac of the eye in solid form has general application to various diseases of the eye. Any condition where prolonged drug administration is required may be treated in this manner.
- eye disorders as uveitis, glaucoma, diseases of the cornea such as, for example, purulent keratitis, herpes simplex keratitis, herpes zoster, acne rosacea, interstitial keratitis, and the like
- diseases of the orbit such as exophthalmas and periostitis and diseases of the conjunctiva such as mucopurulent conjunctivitis and ophthalmia.
- the present mode of drug delivery may also be used when postoperative treatment is required such as after retinal and cataract surgery.
- pilocarpine is prepared in the form of a disc and used to treat the symptoms of glaucoma.
- Glaucoma is a clinical condition which is characterized by an increase in intra-ocular pressure. The tension which is associated with chronic simple glaucoma requires careful study and repeated observation.
- miotic treatment is generally instituted. The most commonly used miotic is pilocarpine which is administered several times a day. A solution of about 0.5-4 percent is used in early cases, but stronger solutions are used when necessary'to control the condition.
- Eserine can be used generally in an 0025-1 .0 percent solution if necessary and, in certain instances, stronger cholinergic drugs such as echothiophate iodide (phospholine iodide) may be employed.
- pilocarpine In treating glaucoma, pilocarpine is generally administered in the form of an aqueous solution, but it may also be administered in the form of an ointment or by injection.
- the eye drops commonly used to make up the solution generally consist of an aqueous solution of pilocarpine hydrochloride.
- the present inventors have found that delivery of the drug, pilocarpine in the present example, to the cul-de-sac of the eye in the form of a solid disc provides a means for controlling the release of the drug from a given dosage form.
- the availability of the drug for absorption from the cul-de-sac is more uniform than that obtained from inorganic salt type ophthalmic solutions.
- the effectiveness of the administration of the drug in solid form is illustrated by the following example.
- the acid salts used in the example are prepared by conventional methods used to prepare acid addition salts from compounds containing a base nitrogen.
- EXAMPLE 1 Preparation of ophthalmic solid dosage forms a.
- Pilocarpine alginate ophthalmic discs are prepared by dissolving pilocarpine alginate powder (7 percent w/v) in a small quantity of sterile water with stirring. The solution is placed in a flat-bottom petri dish and evaporated under reduced pressure at 30C. in a thermostatic water bath assembly. When the colloidal solution reaches a semi-solid consistency, the mass is sectioned into circular flakes (0.3 mm. thickness, 3-7 mm. diameter, 3.1-7.8 mg.) by means of various size trephines and the sections are dried to the point of solidification at 30C. The solid is dried for an additional 24 hours at room temperature and the discs are removed and stored in light-resistant containers.
- Pilocarpine hydrochloride A disc was prepared in the same manner as in (a) above using 14.7 mg. of pilocarpine hydrochloride and 100 mg. of methylcellulose 4000 cps in sterile water for injection. A disc weighing 4.6 mg. was obtained.
- Pilocarpine alginate A disc was prepared in the same manner as in (a) above using 22 mg. of pilocarpine alginate and 0.23 mg. of methylcellulose in sterile free water for injection. A disc weighing 22.23 mg. was obtained.
- Pilocarpine A disc was prepared as in (a) above using 4 mg. of pilocarpine. A disc weighing 4 mg. was obtained.
- Pilocarpine alginate (3.34 percent w/v) solution was prepared from sterile Sorensen phosphate buffer stock solutions mixed in varying proportions to give a final pH of 6.14. The solution was adjusted for toxicity with sodium chloride.
- Pilocarpine hydrochloride solution (2.00 percent w/v) in the presence of methylcellulose 4000 cps required to adjust the viscosity to that of the alginate in a) above (72 cps, Brookfield viscosimeter, model LVT, 25C.) was prepared from sterile Sorensen phosphate buffer stock solutions mixed in varying proportions to give final pH of 6.14 and adjusted for toxicity with sodium chloride.
- Pilocarpine alginate Pilocarpine free base (5 g.) and alginic acid powder (5 g.) are mixed together in 50 ml. of sterile, distilled water with stirring.
- the mixture is heated in a water bath at 50C. and the stirring is continued for 1 hour.
- the resulting gel is cooled to room temperature and the stirring is continued for 24 hours under reduced light.
- the mixture is then diluted to 100 ml. with distilled water and the resulting solution is stirred for 12 hours at room temperature.
- the solution is then transferred toa dessicator-wate r bath assembly and evaporated to dryness under reduced pressure at 30C. The dry powder left upon removal of the water is used directly to prepare the disc and the solution of pilocarpine alginate.
- Albino male rabbits are allowed to equilibrate under constant conditions of illumination for 24 hours prior to treatment with liquid and solid dosages of pilocarpine.
- Each solution is delivered from a micrometer syringe (0.075 ml.) into the lower cul-de-sac of one eye.
- Aqueous alginic acid or aqueous hydrochloric acid is placed in the other eye as a control.
- the disc is soaked in isotonic sodium chloride solution and then deposited into the lower cul-de-sac with the aid of forceps.
- the alginic acid and methylcellulose disc is used as a control.
- the size of each pupil is measured just before the test drug is applied by means of a Optiker Ryer pupillary gauge fixed at a distance of 6 inches from the globe. During measurement, the animals are confined in a wooden box which provides free head and neck motion. Prior to taking measurements, a waiting period of one minute is exercised from the time the gauge is brought within the above distance. At specified time intervals, at least six pupillary diameter readings are made at each point.
- Pupillary responses indicate (FIG. 1) that, in the liquid state, pilocarpine alginate exhibits essentially comparable miotic activity as pilocarpine hydrochloride following single dose treatment. No pupillary contraction is noted in both liquid and solid dose control eyes.
- the results derived from solid pilocarpine alginate deposition show the magnitude of maximum pupil size constriction to be enhanced, with duration of miosis significantly increased over that of both liquid dosage systems. Restoration of normal pupillary diameter for the solid state dose is observed to occur between 7 and 8 hours in contrast to 3-3 rhours for the ophthalmic solution.
- FIG. 2 data for repetitive pilocarpine alginate disc application are given.
- miotic activity is monitored after repeating the dose at maximum pupil constriction, 50 percent and percent recovery of pupillary diameter. Repeating the treatment at 50 percent pupil recovery gives about a two-fold increase in miotic duration relative to both single dose deposition and normal pupillary diameter and multiple treatments at the points of maximum constriction.
- a second and third disc is applied at recovery (7 mm.)
- the behavior is additive with restoration of pupil size being reached after seven, twelve and about seventeen hours.
- the availability of the medicament in the cul-de-sac from solid form doses appears to be more uniform as a consequence of diminished diffusion through the gel matrix where the drug is held in reserve in contrast to liquid dosage forms when the dose is immediately released in the conjunctival fluids.
- the rate of diffusion of the solid drug will depend on the given drug employed, the concentration of a given disc can be controlled so as to allow maximum dosage over a given period once the rate of diffusion of a given drug is known.
- the use of solid ophthalmic dosages in the treatment of diseases of the eye is more effective than conventional methods and requires less frequent administration of the drug to produce prolonged physiological activity.
- a complete ophthalmic dosage of medicament in solid form for insertion into the cul-de-sac of the eye between the eyeball and lid to dispense the medicament to the eye over a prolonged period and leave the cul-de-sac free from tear insoluble residue comprising a solid matrix of a non-irritating pharmacologically acceptable polyuronic acid or carboxymethylcellulose salt of a medicament, said matrix adapted to form a gelmatrix after insertion into the cul-de-sac to slowly diffuse said dosage of medicament to the eyeball, said matrix being free from tear insoluble carriers.
- a complete ophthalmic dosage of medicament for treating glaucoma, in solid form, for insertion into the cul-de-sac of the eye between the eyeball and lid to dispense the medicament to the eye over a prolonged period and leave the cul-de-sac free from tear insoluble residue, comprising a solid matrix of a non-irritating pharmacologically acceptable polyuronic acid or carboxymethylcellulose salt of a medicament, said matrix adapted to form a gelmatrix after insertion into the culde-sac to slowly diffuse said dosage of medicament to the eyeball, said matrix being free from tear insoluble carriers.
- the medicament is in the form of a disc having a thickness of about 0.3 mm, a diameter of about 3 to 7 mm, and a weight of about 3-8 milligrams.
- polyuronic acid is selected from the group consisting of alginic acid, galactouronic acid and glucouronic acid.
- the medicament is selected from the group consisting of pilocarpine, eserine or carbachol.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A method of delivering a medicament to the eye in solid form is described. The duration of miotic, mydriatic or other pharmacological activity is prolonged by the direct insertion of solid dosage forms of pharmacologically active compounds in the cul-de-sac of the conjunctiva.
Description
United States Patent [191 Haddad et al.
1 1 Mar. 11, 1975 1 SOLID STATE OPHTHALMIC MEDICATION DELIVERY METHOD [76] Inventors: Heskel M. Haddad, 1200 Fifth Ave.,
New York, NY. 10029; Spiro P. Loucas, 16 Toni Ct., Plainview, NY. 11803 [22] Filed: Jan. 22, 1974 [21] App]. No.: 435,475
Related US. Application Data [63] Continuation of Bar. No. 246,661, April 24, 1972.
[52] U.S. Cl 424/22, 128/260, 424/14, 424/16, 424/19, 424/180, 424/273, 424/361, 424/362 [51] Int. Cl A6lk 27/12 [58] Field of Search 128/260; 424/14, 16, 1922, 424/180, 361, 362, 273
OTHER PUBLICATIONS lakovlov, Vistn. Oftal, Nov.-Dec., 1966, pp. 40-42,
The Use of Pilocarpine in a Polyvinyl Alcohol Film for the Treatment of Glaucomators. Krishna et al., Am. .I. Ophthal 57; 94-106, (1964), Polyvinyl Alcohol as an Opthalmic Vehicle.
Maichuk, Antibiotik 112(5); 432-435. 1967). Polyvinyl Alcohol Films with Antibiotics in the Therapy of Lye Infections.
Anderson et al., Am. .I. Ophthal 51; 1200-1203, (1961), Tissue Response to Polyvinyl Alcohol lmplants in Rabbits.
Haas et al., Am. J. Ophthal 54; 21-23. (1962), The Effect of Methylallulose on Responses to Solutions of Piloarpine.
Dohlman et al., Annals. Ophthal, Oct, 1972, pp. 823-832, A New Ocular lnsert Device for Continuous Constant Rate Delivery of Medication to the Eye. Loucas et al., J. Pharm. Sci. 61(6), pp. 985-986, June, 1972, Solid-State Ophthalmic Dosage Systems in Effecting Prolonged Release of Pilocarpine in the Cul de Sac.
Haddad, et al., Bull. et Mem. Soc. Fr. Opthalm. 84; 621-624, (1971), Les Derives de lAcide Polyuronique Prolongeant 1e Transport de la Pilocarpine.
Primary Examiner-Shep K. Rose Attorney, Agent, or Firm-Fitzpatrick, Cella, Harper & Scinto 13 Claims, 3 Drawing Figures SOLID STATE OPHTHALMIC MEDICATION DELIVERY METHOD This is a continuation application of Ser. No. 246,661, Filed Apr. 24, I972.
BACKGROUND OF THE INVENTION This invention relates to a method of dispensing drugs to the eye over a prolonged period of time.
At the present time, drugs of various kinds are frequently employed in ophthalmic practice for the treatment of eye diseases. Since these drugs are rapidly excreted from the body or diffuse from any site of local application, repeated or numerous administration of the drug during the crucial period is generally necessary. Therapeutic substances may be introduced into the eye by various methods. The methods generally used are instillation into the conjunctiva] sac, subconjunctival injection, iontophoresis, systemic administration and direct injection into the globe itself. The most common route is by instillation into the conjunctival sac in the form of drops or ointments. In this method, drugs enter the eye largely through the cornea but to be effective, in many cases, the application of the drug must be substantially continuous. At the present time, it is not possible to obtain continuous delivery of a given drug through the use of drops or ointme'nts even though they are applied at intervals during a given period. Periodic application of such dosage forms generally results in the eye receiving a large but uncertain amount of the drug at the moment it is applied, but the drug is washed away rapidly by tears, thus leaving the eye without medication until the next application. For example, persons suffering from glaucoma, a symptomatic condition characterized by an increase in intraocular pressure, must use eyedrops in large quantities and at frequent intervals in order to maintain the base pressure below a reasonable level. Pilocarpine is generally used in the treatment of glaucoma, but frequent administration is required due to the fact that the hypotensive action of the drug is not of long duration. Thus, there still remains a need to find better methods of delivering drugs to the eye so as to obtain the maximum effect from the drug without the need for frequent administration.
One method which has been proposed for the treatment of acute glaucoma, for example, is to deliver the drug to the eye enclosed in a polyvinyl membrane. This method was proposed by Vropaeva & Indeikin in Oftal; Zh., 24: 543 (no. 7) 1969. The membrane containing the drug is applied to the eyelid. However, it was found that the inclusion of the drug in a membrane did not increase the effectiveness of the drug in the general treat ment of acute attacks of glaucoma. An additional drawback is the need to remove the membrane which contains the drug from the eye after each application.
U.S. Pat. No. 3,618,604 describes an ocular insert which is used to dispense drugs to the eye. The insert is comprised of a polymeric material which is insoluble in tear liquid, the body of which contains the drug. The drug is then dispensed to the eye by diffusion through the polymeric material. This method has an inherent disadvantage in that the insert must be removed from the eye each time after application of the drug. In addition, the polymeric insert must be so fashioned that it will not irritate the sensitive tissues of the eye.
U.S. Pat. No. 3,630,200 describes an ocular insert made up of an inner core having an affinity for a given drug and a soft hydrophilic outer layer. US. Pat. No. 3,626,940 also describes an ocular insert fabricated from polymeric materials, but the insert contains a magnetically attractable substance to permit insertion and removal of the insert by magnetic means. Thus, each of the drug dispensing methods described in the above patents requires removal of the insert after each application of the drug.
Other methods include the use of vehicles such as methylcellulose in the preparation of ophthalmic solutions because of the apparent ability of this compound to prolong the action of medicaments which have been dissolved in such solutions. Although the use of methylcellulose solutions prolongs the action of the medicament, frequent application of eyedrops made from such solutions is still required in order to bring a sufficient quantity of the drug in contact with the eye. Other agents have been added to ophthalmic solutions for the purpose of prolonging the effect of the drug, but each of these methods requires the use of solutions which must be placed in the eye at frequent intervals.
The object of the present invention is to provide a method of delivering a therapeutic drug to the eye in solid form which results in a continuous controlled release of the medicament and obviates the need for frequent administration of the drug.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method of treating diseases of the eye which comprises delivering a medicament in solid form to the eye. The drug, in the form of a disc, pellet, flake, wafer, etc., is placed in the culde-sac of the conjunctiva between the eyeball and the eyelid. While the disc can be inserted under either the upper lid or the lower lid, it is preferred to place the disc under the lower lid. Once the disc is in place, the drug disintegrates slowly causing it to be released into the tear fluids. The drug is transported to the eyeball by the flow of tear fluid or by the blinking action of the eyelids. A slow diffusional process controls the rate of loss of the drug from its solid matrix; thus, the drug is held in reserve and is available for prolonging the duration of a desired pupillary response. Due to the slow diffusional process, a means is thus provided for controlling the release of a given drug from its dosage form in which availability for absorption from the cul-de-sac is more uniform than is the case with ophthalmic solutions containing the drugs. Thus, a single disc can provide the complete ophthalmic dosage requirement for a particular time period depending upon the concentration of the drug in a given disc. Moreover, frequent repeated applications of the drug are unnecessary, which is not the case with solutions and ointments. For the purpose of lessening any irritation which may result from the initial contact of the solid with the eye, the solid may be dipped in an isotonic solution which causes the solid to assume a semi-plastic consistency. Generally, physiological salt solutions are suitable for this purpose.
Any drug normally used to treat diseases of the eye and the surrounding tissues can be employed which is a solid or can be made into a solid derivative. Also, within the comtemplation of the present invention is the use of drugs which will pass through the eye or the tissue surrounding the eye into the bloodstream, but which may not be used in treatment of the eye itself.
Some examples of drugs used in ophthalmic therapy which may be employed in the present invention are: anti-infectives: such as antibiotics, including tetracycline, chlortetracycleine, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erthromycin; sulfonamides, including sulfacetamide, sulfamethizole, and sulfisoxazole; antivirals, including idoxuridine; and other anti-infectives including nitrofurazone and sodium propionate; antiallergenics such as antazoline, methapyrilene, chlorpheniramine,
pyrilamine and prophenpyridamine; antiinflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone, dexamethasone 21- phosphate, fluocinolone, medrysone, prednisolone, prednisolone 2l-phosphate and prednisolone acetate; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, diisopropyl fluorophosphate, phospholine iodide, and demacarium bromide; mydriatics such as antropine sulfate, cyclopentolate, homatropine, scopolamine,
tropicamide, eucatropine, and hydroxyamphetamine and sypathomimetics such as epinephrine. The drugs can be in various forms such as uncharged molecules, componenets of molecular complexes, or nonirritating, pharmacologically acceptable salts, such as the hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, salts of polyuronic acids such as alginic acid, galactouronic acid and glucouronic acid, and salts prepared from carboxymethylcellulose. Furthermore, simple derivatives of the drugs such as ethers, esters, amides, etc., which have desirable retention and release characteristics but which are easily hydrolyzed by body pH, enzymes, etc. can be employed. The amount of drug used to make up the solid dosage form will vary widely depending upon the particular drug, the desired therapeutic effect, and the time span for which the solid dosage form will be used There is no critical upper limit on the amount of the drug used since the solid dosage is intended to provide the complete dosage requirement for a given period. The lower limit will depend on the activity of a given drug and its rate of diffusion in the tear fluids. Therefore, it is not practical to define a particular range for a therapeutically effective amount to be used to make up the solid dosage. However, generally about 1-50 mg. will be employed in the usual solid form, depending upon the particular drug employed. The preferred range is from about 1-10 mg.
The solid dosage form can be prepared by any conventional method used to prepare discs, pellets, wafers, etc., from solids. One method, for example, involves dissolving the medicament in a solvent such as water, placing the solution in a suitable container or vessel and removing the solvent by evaporation. Where desired, the semi-solid mass left upon partial evaporation can be sectioned into the desired shape by means of various size cutting tools. The solid is then dried to ensure the removal of all of the solvent. In this manner, it is possible to vary the dimensions ofa respective dose by simply replacing the size of the cutting tool or changing the volume of the liquid used in preparation of the disc. The disc can be fabricated in any convenient shape, keeping in mind that it must be comfortably retained in the cul-de-sac of the eye. The shape, however, must not have sharp, jagged or rough edges which may irritate the sensitive tissues of the eye. The
actual shape used presents little problem to eye tissue since the initial form is changed upon coming into contact with the eye fluids. The solid form of the drug may be a disc, pellet, flake, etc.; it can be concave, convex, rectangular, etc. The original shape of the solid drug form is not of critical importance. The actual size of the solid dosage form will vary widely. The lower limit will be governed by the amount of the particular drug to be applied to the eye to obtain the desired ophthalmic response. The upper limit will be governed by the smallest sized solid which can be conveniently inserted into the cul-de-sac. Generally, the solid form will be about 1-8 mm. in length, about 1-4 mm. in width, having a thickness of about 0.21 mm. The preferred shape is a disc having a thickness of about 0.3 mm., a diameter of 3-7 mm., and a weight of about 3.0-8 mg.
Although the duration of the pharmacological effect of the drug in the eye will depend upon the particular drug employed and the amount used, solid form delivery of the drug generally results in a pupillary response of up to 7-8 hours in the animal and longer in humans.
Those compounds which are normally solids may be delivered in the form of a disc or pellet, etc., without the aid of an additive. Those compounds which are normally liquid may be used in the form of a pharmacologically acceptable solid derivative. Also contemplated is the use of a diluent or vehicle in conjunction with the solid dosage form. Suitable vehicles include, for example, methylcellulose, hydroxypropylmethylcellulose, diethylaminoethylcellulose, polyvinylpyrrolidone and pharmacologically acceptable cationic or anionic resms.
The treatment of eye diseases by delivering the medicament directly to the cul-de-sac of the eye in solid form has general application to various diseases of the eye. Any condition where prolonged drug administration is required may be treated in this manner. For example, it is possible to treat in this manner such eye disorders as uveitis, glaucoma, diseases of the cornea such as, for example, purulent keratitis, herpes simplex keratitis, herpes zoster, acne rosacea, interstitial keratitis, and the like, diseases of the orbit such as exophthalmas and periostitis and diseases of the conjunctiva such as mucopurulent conjunctivitis and ophthalmia. The present mode of drug delivery may also be used when postoperative treatment is required such as after retinal and cataract surgery.
An additional disadvantage related to the use of solutions of drugs in the treatment of diseases of the eye is the instability of most drugs in solution. Drug solutions generally contain a preservative to prevent bacterial growth. The pH of eye fluids is about 7.4 while the pH of commercial pilocarpine solutions is about 5.3-5.5. It is known that acidic solutions tend to cause discomfort to the eye. The administration of the drug in solid form, however, circumvents the problems relating to stability and eye discomfort since the drug in solid form is stable for an indefinite period.
In a specific example of the method of delivering a drug to the cul-de-sac in solid form, in accordance with the present invention, pilocarpine is prepared in the form of a disc and used to treat the symptoms of glaucoma. Glaucoma is a clinical condition which is characterized by an increase in intra-ocular pressure. The tension which is associated with chronic simple glaucoma requires careful study and repeated observation. In cases of chronic simple glaucoma, miotic treatment is generally instituted. The most commonly used miotic is pilocarpine which is administered several times a day. A solution of about 0.5-4 percent is used in early cases, but stronger solutions are used when necessary'to control the condition. Eserine can be used generally in an 0025-1 .0 percent solution if necessary and, in certain instances, stronger cholinergic drugs such as echothiophate iodide (phospholine iodide) may be employed.
In treating glaucoma, pilocarpine is generally administered in the form of an aqueous solution, but it may also be administered in the form of an ointment or by injection. The eye drops commonly used to make up the solution generally consist of an aqueous solution of pilocarpine hydrochloride. The present inventors have found that delivery of the drug, pilocarpine in the present example, to the cul-de-sac of the eye in the form of a solid disc provides a means for controlling the release of the drug from a given dosage form. The availability of the drug for absorption from the cul-de-sac is more uniform than that obtained from inorganic salt type ophthalmic solutions.
The effectiveness of the administration of the drug in solid form is illustrated by the following example. The acid salts used in the example are prepared by conventional methods used to prepare acid addition salts from compounds containing a base nitrogen.
EXAMPLE 1 A. Preparation of ophthalmic solid dosage forms a. Pilocarpine alginate ophthalmic discs are prepared by dissolving pilocarpine alginate powder (7 percent w/v) in a small quantity of sterile water with stirring. The solution is placed in a flat-bottom petri dish and evaporated under reduced pressure at 30C. in a thermostatic water bath assembly. When the colloidal solution reaches a semi-solid consistency, the mass is sectioned into circular flakes (0.3 mm. thickness, 3-7 mm. diameter, 3.1-7.8 mg.) by means of various size trephines and the sections are dried to the point of solidification at 30C. The solid is dried for an additional 24 hours at room temperature and the discs are removed and stored in light-resistant containers.
b. Pilocarpine hydrochloride A disc was prepared in the same manner as in (a) above using 14.7 mg. of pilocarpine hydrochloride and 100 mg. of methylcellulose 4000 cps in sterile water for injection. A disc weighing 4.6 mg. was obtained.
c. Pilocarpine alginate A disc was prepared in the same manner as in (a) above using 22 mg. of pilocarpine alginate and 0.23 mg. of methylcellulose in sterile free water for injection. A disc weighing 22.23 mg. was obtained.
d. Pilocarpine A disc was prepared as in (a) above using 4 mg. of pilocarpine. A disc weighing 4 mg. was obtained.
B. Preparation of ophthalmic solutions a. Pilocarpine alginate (3.34 percent w/v) solution was prepared from sterile Sorensen phosphate buffer stock solutions mixed in varying proportions to give a final pH of 6.14. The solution was adjusted for toxicity with sodium chloride.
b. Pilocarpine hydrochloride solution (2.00 percent w/v) in the presence of methylcellulose 4000 cps required to adjust the viscosity to that of the alginate in a) above (72 cps, Brookfield viscosimeter, model LVT, 25C.) was prepared from sterile Sorensen phosphate buffer stock solutions mixed in varying proportions to give final pH of 6.14 and adjusted for toxicity with sodium chloride.
Preparation A l. Pilocarpine alginate Pilocarpine free base (5 g.) and alginic acid powder (5 g.) are mixed together in 50 ml. of sterile, distilled water with stirring. The mixture is heated in a water bath at 50C. and the stirring is continued for 1 hour. The resulting gel is cooled to room temperature and the stirring is continued for 24 hours under reduced light. The mixture is then diluted to 100 ml. with distilled water and the resulting solution is stirred for 12 hours at room temperature. The solution is then transferred toa dessicator-wate r bath assembly and evaporated to dryness under reduced pressure at 30C. The dry powder left upon removal of the water is used directly to prepare the disc and the solution of pilocarpine alginate.
Albino male rabbits are allowed to equilibrate under constant conditions of illumination for 24 hours prior to treatment with liquid and solid dosages of pilocarpine.
Each solution is delivered from a micrometer syringe (0.075 ml.) into the lower cul-de-sac of one eye. Aqueous alginic acid or aqueous hydrochloric acid is placed in the other eye as a control. The disc is soaked in isotonic sodium chloride solution and then deposited into the lower cul-de-sac with the aid of forceps. The alginic acid and methylcellulose disc is used as a control. The size of each pupil is measured just before the test drug is applied by means of a Optiker Ryer pupillary gauge fixed at a distance of 6 inches from the globe. During measurement, the animals are confined in a wooden box which provides free head and neck motion. Prior to taking measurements, a waiting period of one minute is exercised from the time the gauge is brought within the above distance. At specified time intervals, at least six pupillary diameter readings are made at each point.
Pupillary responses indicate (FIG. 1) that, in the liquid state, pilocarpine alginate exhibits essentially comparable miotic activity as pilocarpine hydrochloride following single dose treatment. No pupillary contraction is noted in both liquid and solid dose control eyes. The results derived from solid pilocarpine alginate deposition show the magnitude of maximum pupil size constriction to be enhanced, with duration of miosis significantly increased over that of both liquid dosage systems. Restoration of normal pupillary diameter for the solid state dose is observed to occur between 7 and 8 hours in contrast to 3-3 rhours for the ophthalmic solution.
In FIG. 2, data for repetitive pilocarpine alginate disc application are given. In this study phase, miotic activity is monitored after repeating the dose at maximum pupil constriction, 50 percent and percent recovery of pupillary diameter. Repeating the treatment at 50 percent pupil recovery gives about a two-fold increase in miotic duration relative to both single dose deposition and normal pupillary diameter and multiple treatments at the points of maximum constriction. When a second and third disc is applied at recovery (7 mm.), the behavior is additive with restoration of pupil size being reached after seven, twelve and about seventeen hours.
Overall duration of miosis in the case of triplicate liquid treatments (FIG. 3) at recovery shows that activity derived from solutions of pilocarpine alginate and pilocarpine hydrochloride methylcellulose is essentially equal. Recovery from the first, second and third drop instillations is reached at about four, seven and ten hours, respectively.
The availability of the medicament in the cul-de-sac from solid form doses appears to be more uniform as a consequence of diminished diffusion through the gel matrix where the drug is held in reserve in contrast to liquid dosage forms when the dose is immediately released in the conjunctival fluids. Although the rate of diffusion of the solid drug will depend on the given drug employed, the concentration of a given disc can be controlled so as to allow maximum dosage over a given period once the rate of diffusion of a given drug is known. The use of solid ophthalmic dosages in the treatment of diseases of the eye is more effective than conventional methods and requires less frequent administration of the drug to produce prolonged physiological activity.
While a preferred embodiment of the present invention has been described, it is apparent that numerous variations and additions may be made to the invention without departing from the spirit thereof. It is the intention, therefore, to be limited only by the scope of the following claims:
What is claimed is:
1. A complete ophthalmic dosage of medicament in solid form for insertion into the cul-de-sac of the eye between the eyeball and lid to dispense the medicament to the eye over a prolonged period and leave the cul-de-sac free from tear insoluble residue, comprising a solid matrix of a non-irritating pharmacologically acceptable polyuronic acid or carboxymethylcellulose salt of a medicament, said matrix adapted to form a gelmatrix after insertion into the cul-de-sac to slowly diffuse said dosage of medicament to the eyeball, said matrix being free from tear insoluble carriers.
2. The product of claim 1 in the form of a disc capable of assuming essentially the configuration of the curvature between the eyeball and the lid.
3. The product of claim 1, wherein the medicament is employed in the form of a salt of a polyuronic acid.
4. The product of claim 3, wherein the polyuronic acid is alginic acid.
5. The product of claim 1, wherein the medicament is a miotic.
6. The product of claim 5, wherein the miotic is selected from the group consisting of pilocarpine, cserine and carbachol.
7. A complete ophthalmic dosage of medicament for treating glaucoma, in solid form, for insertion into the cul-de-sac of the eye between the eyeball and lid to dispense the medicament to the eye over a prolonged period and leave the cul-de-sac free from tear insoluble residue, comprising a solid matrix of a non-irritating pharmacologically acceptable polyuronic acid or carboxymethylcellulose salt of a medicament, said matrix adapted to form a gelmatrix after insertion into the culde-sac to slowly diffuse said dosage of medicament to the eyeball, said matrix being free from tear insoluble carriers.
8. The product of claim 7, wherein the medicament is employed in the form ofa disc having a marginal outline and cross section adapted to assume essentially the configuration of curvature between the eyeball and the lid.
9. The product of claim 8, wherein the medicament is in the form of a disc having a thickness of about 0.3 mm, a diameter of about 3 to 7 mm, and a weight of about 3-8 milligrams.
10. The product of claim 7, wherein the medicament is present in the form of a salt of a polyuronic acid.
11. The product of claim 10, wherein the polyuronic acid is selected from the group consisting of alginic acid, galactouronic acid and glucouronic acid.
12. The product of claim 7, wherein the medicament is selected from the group consisting of pilocarpine, eserine or carbachol.
13. The product of claim 12, wherein the salt is pilocarpine alginate.
Claims (13)
1. A COMPLETE OPHTHALMIC DOSAGE OF MEDICAMENT IN SOLID FORM FOR INSERTION INTO THE CUL-DE-SAC OF THE EYE BETWEEN THE EYEBALL AND LID TO DISPENSE THE MEDICAMENT TO THE EYE OVER A PROLONGED PERIOD AND LEAVE THE CUL-DE-SAC FREE FROM TEAR INSOLUBLE RESIDUE, COMPRISING A SOLID MATRIX OF A NON-IRRITATING PHARMACOLOGICALLY ACCEPTABLE POLYURONIC ACID OR CARBOXYMETHYCELLULOSE SALT OF A MEDICAMENT, SAID MATRIX ADAPTED TO FORM A GEL-MATRIX AFTER INSERTION INTO THE CUL-DE-SAC TO SLOWLY DIFFUSE SAID DOSAGE OF MEDICAMENT TO THE EYEBALL, SAID MATRIX BEING FREE FROM TEAR INSOLUBLE CARRIERS.
1. A complete ophthalmic dosage of medicament in solid form for insertion into the cul-de-sac of the eye between the eyeball and lid to dispense the medicament to the eye over a prolonged period and leave the cul-de-sac free from tear insoluble residue, comprising a solid matrix of a non-irritating pharmacologically acceptable polyuronic acid or carboxymethylcellulose salt of a medicament, said matrix adapted to form a gel-matrix after insertion into the cul-de-sac to slowly diffuse said dosage of medicament to the eyeball, said matrix being free from tear insoluble carriers.
2. The product of claim 1 in the form of a disc capable of assuming essentially the configuration of the curvature between the eyeball and the lid.
3. The product of claim 1, wherein the medicament is employed in the form of a salt of a polyuronic acid.
4. The product of claim 3, wherein the polyuronic acid is alginic acid.
5. The product of claim 1, wherein the medicament is a miotic.
6. The product of claim 5, wherein the miotic is selected from the group consisting of pilocarpine, eserine and carbachol.
7. A complete ophthalmic dosage of medicament for treating glaucoma, in solid form, for insertion into the cul-de-sac of the eye between the eyeball and lid to dispense the medicament to the eye over a prolonged period and leave the cul-de-sac free from tear insoluble residue, comprising a solid matrix of a non-irritating pharmacologically acceptable polyuronic acid or carboxymethylcellulose salt of a medicament, said matrix adapted to form a gelmatrix after insertion into the cul-de-sac to slowly diffuse said dosage of medicament to the eyeball, said matrix being free from tear insoluble carriers.
8. The product of claim 7, wherein the medicament is employed in the form of a disc having a marginal outline and cross section adapted to assume essentially the configuration of curvature between the eyeball and the lid.
9. The product of claim 8, wherein the medicament is in the form of a disc having a thickness of about 0.3 mm, a diameter of about 3 to 7 mm, and a weight of about 3-8 milligrams.
10. The product of claim 7, wherein the medicament is present in the form of a salt of a polyuronic acid.
11. The product of claim 10, wherein the polyuronic acid is selected from the group consisting of alginic acid, galactouronic acid and glucouronic acid.
12. The product of claim 7, wherein the medicament is selected from the group consisting of pilocarpine, eserine or carbachol.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US435475A US3870791A (en) | 1972-04-24 | 1974-01-22 | Solid state ophthalmic medication delivery method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00246661A US3845201A (en) | 1972-04-24 | 1972-04-24 | Solid state ophthalmic medication delivery method |
| US435475A US3870791A (en) | 1972-04-24 | 1974-01-22 | Solid state ophthalmic medication delivery method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3870791A true US3870791A (en) | 1975-03-11 |
Family
ID=26938131
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US435475A Expired - Lifetime US3870791A (en) | 1972-04-24 | 1974-01-22 | Solid state ophthalmic medication delivery method |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3870791A (en) |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3957049A (en) * | 1973-10-09 | 1976-05-18 | Neefe Charles W | Rechargeable drug delivery method |
| US3991750A (en) * | 1975-04-28 | 1976-11-16 | Syntex Corporation | Dromostanolone propionate implant pellet useful for producing weight gains in animals and suppressing estrus in female animals |
| US4136177A (en) * | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Xanthan gum therapeutic compositions |
| US4136178A (en) * | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Locust bean gum therapeutic compositions |
| US4136173A (en) * | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Mixed xanthan gum and locust beam gum therapeutic compositions |
| US4179497A (en) * | 1973-12-17 | 1979-12-18 | Merck & Co., Inc. | Solid state ophthalmic medication |
| US4248855A (en) * | 1976-08-27 | 1981-02-03 | Hydrophilics International, Inc. | Pharmaceutical base salts |
| US4254098A (en) * | 1980-01-28 | 1981-03-03 | Clair M. Hibbs | Composition for prophylactic treatment of pinkeye |
| US4321261A (en) * | 1978-01-05 | 1982-03-23 | Polymer Technology Corporation | Ionic ophthalmic solutions |
| US4425344A (en) | 1980-08-01 | 1984-01-10 | Smith And Nephew Associated Companies Limited | Compositions for the treatment of glaucoma containing triamterene |
| US4425346A (en) | 1980-08-01 | 1984-01-10 | Smith And Nephew Associated Companies Limited | Pharmaceutical compositions |
| US4997652A (en) * | 1987-12-22 | 1991-03-05 | Visionex | Biodegradable ocular implants |
| US5009892A (en) * | 1989-03-03 | 1991-04-23 | Mckinzie James W | Rapid miosis with control of intraocular pressure |
| US5164188A (en) * | 1989-11-22 | 1992-11-17 | Visionex, Inc. | Biodegradable ocular implants |
| US5166331A (en) * | 1983-10-10 | 1992-11-24 | Fidia, S.P.A. | Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same |
| US5229127A (en) * | 1989-03-03 | 1993-07-20 | Mckinzie James W | Rapid miosis with control of intraocular pressure using a mixture of a cetylcholine and carbachol derivatives |
| US5234914A (en) * | 1991-06-11 | 1993-08-10 | Patent Biopharmaceutics, Inc. | Methods of treating hemorrhoids and anorecial disease |
| EP0561695A1 (en) | 1992-03-20 | 1993-09-22 | Vetoquinol S.A. | Bioadhesive opthalmic insert |
| JPH08259604A (en) * | 1983-10-11 | 1996-10-08 | Fidia Spa | Pharmacologically active fraction of hyaluronic acid,its production,and its medicine composition |
| US5573774A (en) * | 1993-02-02 | 1996-11-12 | Keenan; Robert M. | Nicotine metabolites, nicotine dependence and human body weight |
| US5596007A (en) * | 1992-05-18 | 1997-01-21 | Pharmaco Behavioral Associates, Inc. | Therapeutic method to alleviate the craving associated with cessation of tobacco with cotinine |
| US5612357A (en) * | 1992-05-18 | 1997-03-18 | Pharmaco Behavioral Associates, Inc. | Use of cotinine to assist in the cessation of tobacco smoking |
| US5643928A (en) * | 1992-10-21 | 1997-07-01 | Pharmaco Behavioral Associates, Inc. | Human body weight management |
| US5767106A (en) * | 1992-02-21 | 1998-06-16 | Hyal Pharmaceutical Corporation | Treatment of disease and conditions associated with macrophage infiltration |
| US5773021A (en) * | 1994-03-14 | 1998-06-30 | Vetoquinol S.A. | Bioadhesive ophthalmic insert |
| US5773019A (en) * | 1995-09-27 | 1998-06-30 | The University Of Kentucky Research Foundation | Implantable controlled release device to deliver drugs directly to an internal portion of the body |
| US5792753A (en) * | 1991-07-03 | 1998-08-11 | Hyal Pharmaceutical Corporation | Compositions comprising hyaluronic acid and prostaglandin-synthesis-inhibiting drugs |
| US5824658A (en) * | 1990-09-18 | 1998-10-20 | Hyal Pharmaceutical Corporation | Topical composition containing hyaluronic acid and NSAIDS |
| US5869505A (en) * | 1993-02-02 | 1999-02-09 | Keenan; Robert M. | Nicotine metabolites and nicotine dependence |
| US5910489A (en) * | 1990-09-18 | 1999-06-08 | Hyal Pharmaceutical Corporation | Topical composition containing hyaluronic acid and NSAIDS |
| US5977088A (en) * | 1991-07-03 | 1999-11-02 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US5990096A (en) * | 1990-09-18 | 1999-11-23 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US6103704A (en) * | 1991-07-03 | 2000-08-15 | Hyal Pharmaceutical Corporation | Therapeutic methods using hyaluronic acid |
| US6140312A (en) * | 1992-02-20 | 2000-10-31 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US6218373B1 (en) | 1992-02-20 | 2001-04-17 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US20060094643A1 (en) * | 2002-07-03 | 2006-05-04 | Yuri Svirkin | Compositions of hyaluronic acid and methods of use |
| EP2369342A2 (en) | 2002-11-26 | 2011-09-28 | Cornell Research Foundation, Inc. | Fluorescent silica-based nanoparticles |
| US9732324B2 (en) | 2008-10-23 | 2017-08-15 | Cornell University | Anti-viral method |
| EP3223013A1 (en) | 2009-07-02 | 2017-09-27 | Sloan-Kettering Institute for Cancer Research | Fluorescent silica-based nanoparticles |
| US10111963B2 (en) | 2014-05-29 | 2018-10-30 | Memorial Sloan Kettering Cancer Center | Nanoparticle drug conjugates |
| US10736972B2 (en) | 2015-05-29 | 2020-08-11 | Memorial Sloan Kettering Cancer Center | Methods of treatment using ultrasmall nanoparticles to induce cell death of nutrient-deprived cancer cells via ferroptosis |
| WO2022093793A1 (en) | 2020-10-27 | 2022-05-05 | Elucida Oncology, Inc. | Folate receptor targeted nanoparticle drug conjugates and uses thereof |
| US11559591B2 (en) | 2017-05-25 | 2023-01-24 | Memorial Sloan Kettering Cancer Center | Ultrasmall nanoparticles labeled with Zirconium-89 and methods thereof |
| US12161734B2 (en) | 2009-07-02 | 2024-12-10 | Sloan-Kettering Institute For Cancer Research | Multimodal silica-based nanoparticles |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US273410A (en) * | 1883-03-06 | Gelatine eye-disk | ||
| US3075527A (en) * | 1960-06-02 | 1963-01-29 | Chemway Corp | Sterile medicated strips |
| US3450814A (en) * | 1964-07-15 | 1969-06-17 | Chemway Corp | Ophthalmic compositions containing alginic acid salts of pilocarpine,atropine and physostigmine |
| US3618604A (en) * | 1969-06-09 | 1971-11-09 | Alza Corp | Ocular insert |
| US3640741A (en) * | 1970-02-24 | 1972-02-08 | Hollister Inc | Composition containing gel |
-
1974
- 1974-01-22 US US435475A patent/US3870791A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US273410A (en) * | 1883-03-06 | Gelatine eye-disk | ||
| US3075527A (en) * | 1960-06-02 | 1963-01-29 | Chemway Corp | Sterile medicated strips |
| US3450814A (en) * | 1964-07-15 | 1969-06-17 | Chemway Corp | Ophthalmic compositions containing alginic acid salts of pilocarpine,atropine and physostigmine |
| US3618604A (en) * | 1969-06-09 | 1971-11-09 | Alza Corp | Ocular insert |
| US3640741A (en) * | 1970-02-24 | 1972-02-08 | Hollister Inc | Composition containing gel |
Cited By (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3957049A (en) * | 1973-10-09 | 1976-05-18 | Neefe Charles W | Rechargeable drug delivery method |
| US4179497A (en) * | 1973-12-17 | 1979-12-18 | Merck & Co., Inc. | Solid state ophthalmic medication |
| US3991750A (en) * | 1975-04-28 | 1976-11-16 | Syntex Corporation | Dromostanolone propionate implant pellet useful for producing weight gains in animals and suppressing estrus in female animals |
| US4248855A (en) * | 1976-08-27 | 1981-02-03 | Hydrophilics International, Inc. | Pharmaceutical base salts |
| US4136177A (en) * | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Xanthan gum therapeutic compositions |
| US4136178A (en) * | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Locust bean gum therapeutic compositions |
| US4136173A (en) * | 1977-01-31 | 1979-01-23 | American Home Products Corp. | Mixed xanthan gum and locust beam gum therapeutic compositions |
| US4321261A (en) * | 1978-01-05 | 1982-03-23 | Polymer Technology Corporation | Ionic ophthalmic solutions |
| US4254098A (en) * | 1980-01-28 | 1981-03-03 | Clair M. Hibbs | Composition for prophylactic treatment of pinkeye |
| US4425344A (en) | 1980-08-01 | 1984-01-10 | Smith And Nephew Associated Companies Limited | Compositions for the treatment of glaucoma containing triamterene |
| US4425346A (en) | 1980-08-01 | 1984-01-10 | Smith And Nephew Associated Companies Limited | Pharmaceutical compositions |
| US4425345A (en) | 1980-08-01 | 1984-01-10 | Smith And Nephew Associated Companies Limited | Pharmaceutical composition containing triamterene |
| US5442053A (en) * | 1982-09-28 | 1995-08-15 | Fidia, S.P.A. | Salts and mixtures of hyaluronic acid with pharmaceutically active substances, pharmaceutical compositions containing the same and methods for administration of such compositions |
| US5631241A (en) * | 1983-10-10 | 1997-05-20 | Fidia S.P.A. | Pharmaceutical compositions containing hyaluronic acid fractions |
| US5166331A (en) * | 1983-10-10 | 1992-11-24 | Fidia, S.P.A. | Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same |
| JPH08259604A (en) * | 1983-10-11 | 1996-10-08 | Fidia Spa | Pharmacologically active fraction of hyaluronic acid,its production,and its medicine composition |
| US4997652A (en) * | 1987-12-22 | 1991-03-05 | Visionex | Biodegradable ocular implants |
| US5009892A (en) * | 1989-03-03 | 1991-04-23 | Mckinzie James W | Rapid miosis with control of intraocular pressure |
| US5229127A (en) * | 1989-03-03 | 1993-07-20 | Mckinzie James W | Rapid miosis with control of intraocular pressure using a mixture of a cetylcholine and carbachol derivatives |
| US5164188A (en) * | 1989-11-22 | 1992-11-17 | Visionex, Inc. | Biodegradable ocular implants |
| US5990096A (en) * | 1990-09-18 | 1999-11-23 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US5962433A (en) * | 1990-09-18 | 1999-10-05 | Hyal Pharmaceutical Corporation | Topical composition containing hyaluronic acid and NSAIDS |
| US5910489A (en) * | 1990-09-18 | 1999-06-08 | Hyal Pharmaceutical Corporation | Topical composition containing hyaluronic acid and NSAIDS |
| US5824658A (en) * | 1990-09-18 | 1998-10-20 | Hyal Pharmaceutical Corporation | Topical composition containing hyaluronic acid and NSAIDS |
| US5234914A (en) * | 1991-06-11 | 1993-08-10 | Patent Biopharmaceutics, Inc. | Methods of treating hemorrhoids and anorecial disease |
| US5977088A (en) * | 1991-07-03 | 1999-11-02 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US5792753A (en) * | 1991-07-03 | 1998-08-11 | Hyal Pharmaceutical Corporation | Compositions comprising hyaluronic acid and prostaglandin-synthesis-inhibiting drugs |
| US6103704A (en) * | 1991-07-03 | 2000-08-15 | Hyal Pharmaceutical Corporation | Therapeutic methods using hyaluronic acid |
| US6140312A (en) * | 1992-02-20 | 2000-10-31 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US6218373B1 (en) | 1992-02-20 | 2001-04-17 | Hyal Pharmaceutical Corporation | Formulations containing hyaluronic acid |
| US5767106A (en) * | 1992-02-21 | 1998-06-16 | Hyal Pharmaceutical Corporation | Treatment of disease and conditions associated with macrophage infiltration |
| EP0561695A1 (en) | 1992-03-20 | 1993-09-22 | Vetoquinol S.A. | Bioadhesive opthalmic insert |
| US5612357A (en) * | 1992-05-18 | 1997-03-18 | Pharmaco Behavioral Associates, Inc. | Use of cotinine to assist in the cessation of tobacco smoking |
| US5596007A (en) * | 1992-05-18 | 1997-01-21 | Pharmaco Behavioral Associates, Inc. | Therapeutic method to alleviate the craving associated with cessation of tobacco with cotinine |
| US5643928A (en) * | 1992-10-21 | 1997-07-01 | Pharmaco Behavioral Associates, Inc. | Human body weight management |
| US5869505A (en) * | 1993-02-02 | 1999-02-09 | Keenan; Robert M. | Nicotine metabolites and nicotine dependence |
| US5972974A (en) * | 1993-02-02 | 1999-10-26 | Pharmaco Behavioral Associates, Inc. | Transdermal nicotine metabolites and human body weight |
| US5573774A (en) * | 1993-02-02 | 1996-11-12 | Keenan; Robert M. | Nicotine metabolites, nicotine dependence and human body weight |
| US5869503A (en) * | 1993-02-02 | 1999-02-09 | Keenan; Robert M. | Nicotine metabolites and human body weight |
| US5773021A (en) * | 1994-03-14 | 1998-06-30 | Vetoquinol S.A. | Bioadhesive ophthalmic insert |
| US5773019A (en) * | 1995-09-27 | 1998-06-30 | The University Of Kentucky Research Foundation | Implantable controlled release device to deliver drugs directly to an internal portion of the body |
| US20060094643A1 (en) * | 2002-07-03 | 2006-05-04 | Yuri Svirkin | Compositions of hyaluronic acid and methods of use |
| EP2369342A2 (en) | 2002-11-26 | 2011-09-28 | Cornell Research Foundation, Inc. | Fluorescent silica-based nanoparticles |
| US9732324B2 (en) | 2008-10-23 | 2017-08-15 | Cornell University | Anti-viral method |
| US12161734B2 (en) | 2009-07-02 | 2024-12-10 | Sloan-Kettering Institute For Cancer Research | Multimodal silica-based nanoparticles |
| EP3223013A1 (en) | 2009-07-02 | 2017-09-27 | Sloan-Kettering Institute for Cancer Research | Fluorescent silica-based nanoparticles |
| EP3499233A2 (en) | 2009-07-02 | 2019-06-19 | Sloan-Kettering Institute for Cancer Research | Fluorescent silica-based nanoparticles |
| US10111963B2 (en) | 2014-05-29 | 2018-10-30 | Memorial Sloan Kettering Cancer Center | Nanoparticle drug conjugates |
| US10485881B2 (en) | 2014-05-29 | 2019-11-26 | Memorial Sloan Kettering Cancer Center | Nanoparticle drug conjugates |
| US10736972B2 (en) | 2015-05-29 | 2020-08-11 | Memorial Sloan Kettering Cancer Center | Methods of treatment using ultrasmall nanoparticles to induce cell death of nutrient-deprived cancer cells via ferroptosis |
| US11931425B2 (en) | 2015-05-29 | 2024-03-19 | Memorial Sloan Kettering Cancer Center | Methods of treatment using ultrasmall nanoparticles to induce cell death of nutrient-deprived cancer cells via ferroptosis |
| US11246946B2 (en) | 2015-05-29 | 2022-02-15 | Memorial Sloan Kettering Cancer Center | Methods of treatment using ultrasmall nanoparticles to induce cell death of nutrient-deprived cancer cells via ferroptosis |
| US11559591B2 (en) | 2017-05-25 | 2023-01-24 | Memorial Sloan Kettering Cancer Center | Ultrasmall nanoparticles labeled with Zirconium-89 and methods thereof |
| WO2022093793A1 (en) | 2020-10-27 | 2022-05-05 | Elucida Oncology, Inc. | Folate receptor targeted nanoparticle drug conjugates and uses thereof |
| WO2022093800A2 (en) | 2020-10-27 | 2022-05-05 | Elucida Oncology, Inc. | Carrier particle-drug conjugates, self-immolative linkers, and uses thereof |
| EP4257156A2 (en) | 2020-10-27 | 2023-10-11 | Elucida Oncology, Inc. | Folate receptor targeted nanoparticle drug conjugates and uses thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3870791A (en) | Solid state ophthalmic medication delivery method | |
| US3845201A (en) | Solid state ophthalmic medication delivery method | |
| US11931359B2 (en) | Method of increasing bioavailability and/or prolonging ophthalmic action of a drug | |
| Saettone et al. | Ocular inserts for topical delivery | |
| US3626940A (en) | Ocular insert | |
| US4001388A (en) | Ophthalmological bioerodible drug dispensing formulation | |
| US6410045B1 (en) | Drug delivery system for antiglaucomatous medication | |
| US4115544A (en) | Ocular system made of bioerodible esters having linear ether | |
| JPH11512711A (en) | Implantable controlled release device for delivering drugs directly to internal body locations | |
| Dubey et al. | Formulation and evaluation of stimuli-sensitive hydrogels of timolol maleate and brimonidine tartrate for the treatment of glaucoma | |
| JPH09507065A (en) | Use of nonsteroidal cyclooxygenase inhibitors for the treatment of high intraocular pressure | |
| EP0630254A1 (en) | Method of ophthalmic drug delivery | |
| US5212168A (en) | Method of and solution for treating glaucoma | |
| JPH0723325B2 (en) | Ophthalmic formulation | |
| Dave | Formulation approaches for ocular drug delivery | |
| Patel et al. | Ophthalmic drug delivery system-a review | |
| Shell | Ocular drug delivery systems-a review | |
| JPH0565221A (en) | Ophthalmic microsphere | |
| CN101123948A (en) | Ophthalmic solid topical preparations | |
| Sahoo et al. | Advancements in ocular drug delivery systems | |
| Hajare et al. | A rational approach to ocular drug delivery systems: A overview | |
| CN103432065B (en) | Compound gel for treating glaucoma and preparation method thereof | |
| Nair et al. | Current trends in ocular drug delivery systems and its applications | |
| Chavda et al. | Formulation and in vitro-in vivo evaluations of Timolol maleate viscous eye drops for the treatment of glaucoma | |
| Makhijani | Revolutionizing Glaucoma Care: Innovative Latanoprost Drug Delivery Takes Aim at Vision Loss |