US3856944A - Pharmaceutical compositions - Google Patents
Pharmaceutical compositions Download PDFInfo
- Publication number
- US3856944A US3856944A US00305554A US30555472A US3856944A US 3856944 A US3856944 A US 3856944A US 00305554 A US00305554 A US 00305554A US 30555472 A US30555472 A US 30555472A US 3856944 A US3856944 A US 3856944A
- Authority
- US
- United States
- Prior art keywords
- beta
- digitoxosyl
- androstane
- furyl
- oxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008194 pharmaceutical composition Substances 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 55
- 150000001875 compounds Chemical class 0.000 claims abstract description 51
- 230000008569 process Effects 0.000 claims abstract description 35
- 230000003177 cardiotonic effect Effects 0.000 claims abstract description 13
- 239000003814 drug Substances 0.000 claims description 10
- 239000003937 drug carrier Substances 0.000 claims description 10
- 208000019622 heart disease Diseases 0.000 claims description 5
- 230000037396 body weight Effects 0.000 claims description 4
- 244000144977 poultry Species 0.000 claims description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims 3
- 230000007062 hydrolysis Effects 0.000 abstract description 28
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 28
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 24
- 230000009467 reduction Effects 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 11
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 abstract description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 9
- 150000002148 esters Chemical class 0.000 abstract description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 6
- 239000000825 pharmaceutical preparation Substances 0.000 abstract description 2
- 229930002534 steroid glycoside Natural products 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 135
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 134
- 239000000243 solution Substances 0.000 description 100
- 239000000203 mixture Substances 0.000 description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 71
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 66
- 239000002904 solvent Substances 0.000 description 56
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 55
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 51
- 239000011541 reaction mixture Substances 0.000 description 47
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 43
- 239000000284 extract Substances 0.000 description 42
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 39
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 38
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 34
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 33
- -1 cardenolide glycosides Chemical class 0.000 description 31
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 30
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 30
- 238000000746 purification Methods 0.000 description 28
- 239000007864 aqueous solution Substances 0.000 description 27
- 238000001953 recrystallisation Methods 0.000 description 27
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 25
- 239000003153 chemical reaction reagent Substances 0.000 description 22
- 239000012279 sodium borohydride Substances 0.000 description 18
- 229910000033 sodium borohydride Inorganic materials 0.000 description 18
- 229930182470 glycoside Natural products 0.000 description 17
- 150000002338 glycosides Chemical class 0.000 description 17
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 17
- 235000017557 sodium bicarbonate Nutrition 0.000 description 17
- 239000011343 solid material Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- WDJUZGPOPHTGOT-XUDUSOBPSA-N digitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O WDJUZGPOPHTGOT-XUDUSOBPSA-N 0.000 description 16
- 229960000648 digitoxin Drugs 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 239000000741 silica gel Substances 0.000 description 16
- 229910002027 silica gel Inorganic materials 0.000 description 16
- 238000004809 thin layer chromatography Methods 0.000 description 16
- WDJUZGPOPHTGOT-OAXVISGBSA-N Digitoxin Natural products O([C@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@H](C6=CC(=O)OC6)CC5)CC4)CC3)CC2)C[C@H]1O)[C@H]1O[C@@H](C)[C@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@@H](O)C2)[C@@H](O)C1 WDJUZGPOPHTGOT-OAXVISGBSA-N 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- CERUVRSAHAFOLZ-IQVVVBTISA-N 3-[(3s,5r,8r,9s,10s,13r,14s,17r)-3-[(2r,4s,5s,6r)-5-[(2s,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2h-furan-5-one Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@]([C@@H]4[C@H]([C@]5(CC[C@@H]([C@@]5(C)CC4)C=4COC(=O)C=4)O)CC3)(C)CC2)C[C@@H]1O CERUVRSAHAFOLZ-IQVVVBTISA-N 0.000 description 11
- 235000011054 acetic acid Nutrition 0.000 description 11
- 239000002253 acid Substances 0.000 description 11
- CERUVRSAHAFOLZ-UHFFFAOYSA-N digitoxigenin bisdigitoxoside Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2CC3C(C4C(C5(CCC(C5(C)CC4)C=4COC(=O)C=4)O)CC3)(C)CC2)CC1O CERUVRSAHAFOLZ-UHFFFAOYSA-N 0.000 description 11
- 235000000346 sugar Nutrition 0.000 description 11
- 150000001241 acetals Chemical class 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 9
- 125000002252 acyl group Chemical group 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 8
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 239000012043 crude product Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- LKRDZKPBAOKJBT-CNPIRKNPSA-N gitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(C[C@H](O)[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LKRDZKPBAOKJBT-CNPIRKNPSA-N 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- DRKVOOSZRGDHIA-VVGCBBAHSA-N 3-[(3s,5r,8r,9s,10s,13r,14s,16s,17r)-3-[(4s,5s,6s)-5-[(2s,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-6-hydroxy-4-methyloxan-2-yl]oxy-14,16-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2h-furan- Chemical compound C1([C@@H]2[C@@]3(C)CC[C@H]4[C@H]([C@]3(C[C@@H]2O)O)CC[C@H]2[C@]4(C)CC[C@@H](C2)OC2C[C@@H]([C@@H]([C@@H](O)O2)O[C@@H]2O[C@H](C)[C@@H](O)[C@@H](O)C2)C)=CC(=O)OC1 DRKVOOSZRGDHIA-VVGCBBAHSA-N 0.000 description 6
- 241000272201 Columbiformes Species 0.000 description 6
- OCEDEAQHBIGPTE-UHFFFAOYSA-N Gitoxin Natural products CC1OC(CC(O)C1O)OC2C(O)CC(OC3C(O)CC(OC4CCC5(C)C(CCC6C5CCC7(C)C(C(O)CC67O)C8=CCOC8=O)C4)OC3C)OC2C OCEDEAQHBIGPTE-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 229950000974 gitoxin Drugs 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- PRZSXZWFJHEZBJ-UHFFFAOYSA-N thymol blue Chemical compound C1=C(O)C(C(C)C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C(=CC(O)=C(C(C)C)C=2)C)=C1C PRZSXZWFJHEZBJ-UHFFFAOYSA-N 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- NTSBMKIZRSBFTA-AIDOXSFESA-N Digoxigenin bisdigitoxoside Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@]([C@@H]4[C@H]([C@]5(CC[C@@H]([C@@]5(C)[C@H](O)C4)C=4COC(=O)C=4)O)CC3)(C)CC2)C[C@@H]1O NTSBMKIZRSBFTA-AIDOXSFESA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- NTSBMKIZRSBFTA-UHFFFAOYSA-N digoxingenin bisdigitoxoside Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2CC3C(C4C(C5(CCC(C5(C)C(O)C4)C=4COC(=O)C=4)O)CC3)(C)CC2)CC1O NTSBMKIZRSBFTA-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- ACKFDYCQCBEDNU-UHFFFAOYSA-J lead(2+);tetraacetate Chemical compound [Pb+2].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O ACKFDYCQCBEDNU-UHFFFAOYSA-J 0.000 description 4
- 239000011736 potassium bicarbonate Substances 0.000 description 4
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 4
- 235000015497 potassium bicarbonate Nutrition 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- SQEBMLCQNJOCBG-HVHJFMEUSA-N (5s)-3-(hydroxymethyl)-5-methoxy-4-methyl-5-[(e)-2-phenylethenyl]furan-2-one Chemical group C=1C=CC=CC=1/C=C/[C@]1(OC)OC(=O)C(CO)=C1C SQEBMLCQNJOCBG-HVHJFMEUSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 241000700199 Cavia porcellus Species 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 206010003119 arrhythmia Diseases 0.000 description 3
- 230000006793 arrhythmia Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000002837 heart atrium Anatomy 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- NQOMDNMTNVQXRR-WQLPVBBFSA-N 3-[(3s,5r,8r,9s,10s,13r,14s,17r)-3-[(2r,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2h-furan-5-one Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1C[C@@H](CC[C@H]2[C@]3(CC[C@@H]([C@@]3(C)CC[C@H]32)C=2COC(=O)C=2)O)[C@]3(C)CC1 NQOMDNMTNVQXRR-WQLPVBBFSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- BKRWPUBEBNZVLU-UHFFFAOYSA-N C(C)(=O)OCO.C(C)(=O)OCO Chemical compound C(C)(=O)OCO.C(C)(=O)OCO BKRWPUBEBNZVLU-UHFFFAOYSA-N 0.000 description 2
- TYYDXNISHGVDGA-UHFFFAOYSA-N Corotoxigenin Natural products CC12CCC3C(CCC4CC(O)CCC34C=O)C1CCC2C5=CC(=O)OC5 TYYDXNISHGVDGA-UHFFFAOYSA-N 0.000 description 2
- NQOMDNMTNVQXRR-UHFFFAOYSA-N Desglucocoroloside Natural products C1C(O)C(O)C(C)OC1OC1CC(CCC2C3(CCC(C3(C)CCC32)C=2COC(=O)C=2)O)C3(C)CC1 NQOMDNMTNVQXRR-UHFFFAOYSA-N 0.000 description 2
- NIVHSKHPHHRBAM-UHFFFAOYSA-N Diginatin Natural products CC1OC(CC(O)C1O)OC2CCC3(C)C(CCC4C3CC(O)C5(C)C(C(O)CC45O)C6=CC(=O)OC6)C2 NIVHSKHPHHRBAM-UHFFFAOYSA-N 0.000 description 2
- 241000208011 Digitalis Species 0.000 description 2
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 241000786363 Rhampholeon spectrum Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229950005499 carbon tetrachloride Drugs 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- AASCKLXRKILUGL-UHFFFAOYSA-N diginateyne Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CC(O)C(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O AASCKLXRKILUGL-UHFFFAOYSA-N 0.000 description 2
- AASCKLXRKILUGL-KDVLELMDSA-N diginatin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(C[C@H](O)[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O AASCKLXRKILUGL-KDVLELMDSA-N 0.000 description 2
- JFSXBMIFXZFKHD-UHFFFAOYSA-N digoxigenin mono-digitoxoside Natural products C1C(O)C(O)C(C)OC1OC1CC(CCC2C3(CCC(C3(C)C(O)CC32)C=2COC(=O)C=2)O)C3(C)CC1 JFSXBMIFXZFKHD-UHFFFAOYSA-N 0.000 description 2
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 229910001927 ruthenium tetroxide Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 2
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- FDWRIIDFYSUTDP-KVTDHHQDSA-N (2r,4r,5s,6r)-6-methyloxane-2,4,5-triol Chemical group C[C@H]1O[C@@H](O)C[C@@H](O)[C@@H]1O FDWRIIDFYSUTDP-KVTDHHQDSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- CXBDYQVECUFKRK-UHFFFAOYSA-N 1-methoxybutane Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 description 1
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- IQOYEMCASBGLJD-XQZIZVGLSA-N 3-[(3s,5r,8r,9s,10s,13r,14s,16s,17r)-3-[(2r,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-14,16-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2h-furan-5-one Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1C[C@@H](CC[C@H]2[C@]3(C[C@H](O)[C@@H]([C@@]3(C)CC[C@H]32)C=2COC(=O)C=2)O)[C@]3(C)CC1 IQOYEMCASBGLJD-XQZIZVGLSA-N 0.000 description 1
- WJOCFXCSQDOQQR-MIKBVDKDSA-N 3-[(3s,5r,8r,9s,10s,13r,17r)-3-[(2s,4s,5r,6r)-5-[(2r,4s,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-[(2r,4s,5r,6r)-5-hydroxy-6-methyl-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13- Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@@H]1O[C@H]1[C@@H](O[C@H]2O[C@H](C)[C@@H](O)[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)C2)C[C@@H](O[C@@H]2C[C@@H]3[C@]([C@@H]4[C@H](C5(CC[C@@H]([C@@]5(C)CC4)C=4COC(=O)C=4)O)CC3)(C)CC2)O[C@@H]1C WJOCFXCSQDOQQR-MIKBVDKDSA-N 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical group O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
- TWCMVXMQHSVIOJ-UHFFFAOYSA-N Aglycone of yadanzioside D Natural products COC(=O)C12OCC34C(CC5C(=CC(O)C(O)C5(C)C3C(O)C1O)C)OC(=O)C(OC(=O)C)C24 TWCMVXMQHSVIOJ-UHFFFAOYSA-N 0.000 description 1
- PLMKQQMDOMTZGG-UHFFFAOYSA-N Astrantiagenin E-methylester Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)CCC3(C(=O)OC)CCC21C PLMKQQMDOMTZGG-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003662 Atrial flutter Diseases 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 206010007556 Cardiac failure acute Diseases 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- NOQGZXFMHARMLW-UHFFFAOYSA-N Daminozide Chemical compound CN(C)NC(=O)CCC(O)=O NOQGZXFMHARMLW-UHFFFAOYSA-N 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 206010015856 Extrasystoles Diseases 0.000 description 1
- 206010018092 Generalised oedema Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 206010048612 Hydrothorax Diseases 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CESYKOGBSMNBPD-UHFFFAOYSA-N Methyclothiazide Chemical class ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)N(C)C(CCl)NC2=C1 CESYKOGBSMNBPD-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000000418 Premature Cardiac Complexes Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- CPFNIKYEDJFRAT-UHFFFAOYSA-N Strospasid Natural products OC1C(OC)C(O)C(C)OC1OC1CC(CCC2C3(CC(O)C(C3(C)CCC32)C=2COC(=O)C=2)O)C3(C)CC1 CPFNIKYEDJFRAT-UHFFFAOYSA-N 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ZBIKORITPGTTGI-UHFFFAOYSA-N [acetyloxy(phenyl)-$l^{3}-iodanyl] acetate Chemical compound CC(=O)OI(OC(C)=O)C1=CC=CC=C1 ZBIKORITPGTTGI-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N alpha-methyl toluene Natural products CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 208000024783 anasarca Diseases 0.000 description 1
- HOPRXXXSABQWAV-UHFFFAOYSA-N anhydrous collidine Natural products CC1=CC=NC(C)=C1C HOPRXXXSABQWAV-UHFFFAOYSA-N 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910010277 boron hydride Inorganic materials 0.000 description 1
- NNTOJPXOCKCMKR-UHFFFAOYSA-N boron;pyridine Chemical compound [B].C1=CC=NC=C1 NNTOJPXOCKCMKR-UHFFFAOYSA-N 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- XEVRDFDBXJMZFG-UHFFFAOYSA-N carbonyl dihydrazine Chemical compound NNC(=O)NN XEVRDFDBXJMZFG-UHFFFAOYSA-N 0.000 description 1
- JIUWTCXNUNHEGP-GJHPUSIBSA-N cardenolide Chemical compound C1([C@H]2CC[C@@H]3[C@H]4[C@@H]([C@]5(CCCCC5CC4)C)CC[C@@]32C)=CC(=O)OC1 JIUWTCXNUNHEGP-GJHPUSIBSA-N 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000000496 cardiotonic agent Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000002026 chloroform extract Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 230000002057 chronotropic effect Effects 0.000 description 1
- UTBIMNXEDGNJFE-UHFFFAOYSA-N collidine Natural products CC1=CC=C(C)C(C)=N1 UTBIMNXEDGNJFE-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000006639 cyclohexyl carbonyl group Chemical group 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 229940119740 deoxycorticosterone Drugs 0.000 description 1
- JFSXBMIFXZFKHD-ZDDLGXCGSA-N digoxigenin monodigitoxoside Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1C[C@@H](CC[C@H]2[C@]3(CC[C@@H]([C@@]3(C)[C@H](O)C[C@H]32)C=2COC(=O)C=2)O)[C@]3(C)CC1 JFSXBMIFXZFKHD-ZDDLGXCGSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- SDIXRDNYIMOKSG-UHFFFAOYSA-L disodium methyl arsenate Chemical compound [Na+].[Na+].C[As]([O-])([O-])=O SDIXRDNYIMOKSG-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical class N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 125000006331 halo benzoyl group Chemical group 0.000 description 1
- 125000005179 haloacetyl group Chemical group 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- PFOARMALXZGCHY-UHFFFAOYSA-N homoegonol Natural products C1=C(OC)C(OC)=CC=C1C1=CC2=CC(CCCO)=CC(OC)=C2O1 PFOARMALXZGCHY-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000297 inotrophic effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JYJVVHFRSFVEJM-UHFFFAOYSA-N iodosobenzene Chemical compound O=IC1=CC=CC=C1 JYJVVHFRSFVEJM-UHFFFAOYSA-N 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000032 lithium hydrogen carbonate Inorganic materials 0.000 description 1
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- NCPHGZWGGANCAY-UHFFFAOYSA-N methane;ruthenium Chemical compound C.[Ru] NCPHGZWGGANCAY-UHFFFAOYSA-N 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 238000004810 partition chromatography Methods 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- JOVOSQBPPZZESK-UHFFFAOYSA-N phenylhydrazine hydrochloride Chemical compound Cl.NNC1=CC=CC=C1 JOVOSQBPPZZESK-UHFFFAOYSA-N 0.000 description 1
- 229940038531 phenylhydrazine hydrochloride Drugs 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 238000012746 preparative thin layer chromatography Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZNCXUFVDFVBRDO-UHFFFAOYSA-N pyridine;sulfuric acid Chemical compound [H+].[O-]S([O-])(=O)=O.C1=CC=[NH+]C=C1 ZNCXUFVDFVBRDO-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 229940087562 sodium acetate trihydrate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- CPFNIKYEDJFRAT-RVPZLBNISA-N strospeside Chemical compound O[C@@H]1[C@@H](OC)[C@@H](O)[C@@H](C)O[C@H]1O[C@@H]1C[C@@H](CC[C@H]2[C@]3(C[C@H](O)[C@@H]([C@@]3(C)CC[C@H]32)C=2COC(=O)C=2)O)[C@]3(C)CC1 CPFNIKYEDJFRAT-RVPZLBNISA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J17/00—Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
Definitions
- R and R each represents a hydrogen atom or hydroxyl group and n is an integer of l or 2, and esters thereof, and pharmaceutical preparations containing the compounds or products of the process of the present invention.
- the present invention relates to a novel process for partial hydrolysis of glycosides of 2-deoxy-sugar, and some glycosides of 2-deoxy-sugar, and preparations containing the products of the process of the present invention.
- the process of the present invention is a selective method of hydrolysis which does not affect on a 2- deoxy-glycosyl residue when it is not present at the ter minal position of the glycoside linkage.
- the process of the present invention is a method for selective hydrolysis of glycosides having 2-deoxy-sugar unit in the molecule which is characterized (1) by increasing of sensitivity for hydrolysis of the specified sugar unit to be removed by the result of glycol cleavage reaction; (2) by providing selectivity with utilization of the fact that Z-deoXy-sugar unit which is not located at the terminal position of the glycoside linkage is not susceptible of the reaction of the process of the present invention; (3) by higher yield; (4) by unequivocal chemical procedure; and (5) by mild and easily handled reaction course.
- the process of the present invention comprises the first step in which the glycosides are subjected to glycol cleavage reaction to afford dialdehyde or acetals thereof, followed by optional reduction of the product to afford dimethylol; and the second step inwhich the product of the first step is subjected to hydrolysis under extremely mild condition.
- the mild condition allows possible existence of unstable group in the other part of the molecule of the glycosides.
- the starting materials of the process of the present invention are the glycosides of the formula:
- X represents an oxygen containing hydrocarbon ring group
- R and R each represents a hydrogen atom, hydroxyl group or acyloxy group
- R,, represents a hydrogen atom or acyl group same or different for each sugar unit and n is an integer 1 or more.
- oxygen containing hydrocarbon ring repre sented by X it is exemplified 2- and 3-furyl group and a, B and 'y-butenolide residue, butanolide group and the like.
- acyl group represented by R and that of acyloxy group represented by R and R there is exemplified alkanoyl groups e.g.
- haloacetyl glycyl, lactyl, hemisuccinyl, phenylpropionyl, cinnamoyl, optionally substituted phenoxyacetyl, etc; optionally substituted aromatic acyl groups e.g. benzoyl, nitro-benzoyl, methoxybenzoyl, methylbenzoyl, halobenzoyl, naphthalincarbonyl, nicotinyl, furoyl, and the like; or inorganic acyl groups e.g. carbonic, sulfuric, phosphoric acyl groups and the like.
- the first step of the process of the present invention comprises glycol cleavage of the starting materials mentioned above at the terminal sugar unit, followed by optional reduction.
- the reaction of the first step is represented by the reaction scheme:
- the said glycol cleaving agent may be chromic acid, permanganates, nitric acid, persulfuric acid, cuppric hydroxide, bismuthates, manganese acetate, iodosobenzene alkanoates, osmium tetra-oxide, ruthenium tetroxide, lead tetraacetate, periodates, periodic acid and the like, in which lead tetraacetate, periodic acid and periodates are preferable.
- the cleaving agents are used in various solvents. For example, they may be hydrocarbons e.g.
- actone methyl ethyl ketone, cyclohexanone, etc.; alcohols e.g. methanol, ethanol, butanol, octanol, etc.; carboxylic acids e.g. acetic acid, propionic acid, formic acid, etc.; bases e.g. pyridine, collidine, quinoline, etc.; and other solvents e.g. dimethylformamide, dimethylsulfoxide, water, etc., and mixture thereof.
- lead tetraacetate is used in non-polar solvents and periodic acid and periodates are used in polar solvents. If required, other solvents may be added thereto in order to dissolve the reactants.
- one of the product, salts of iodic acid separates as crystals in the medium and may be removed by mere filtration.
- Bases may be added to the reaction medium to neutralize acidic product.
- the reaction may be carried out at lowered or elevated temperatures.
- the amount of the glycol cleaving agent to the starting material are preferably l to 5 mole equivalents, although more reagent may be used without wrong results.
- the products are isolated in per se conventional methods e.g. dilution, concentration, extraction, filtration, etc., and are purified by conventional methods e.g. recrystallization, chromatography, etc.
- the products may be subjected to the process of the next step without further purification.
- the products thus obtained are dialdehyde of the partial formula (2) or acetals thereof eg those represented by formulae (3) and (4).
- the said reducing agents for optional following reduction are those capable of reducing dialdehyde of the partial formula (2) or acetals thereof represented by e.g. partial formulae (3) and (4) to give dimethylol of the partial formula (5), provided that they do not exert irreversible changes in the other part of the substrate molecule.
- Representatives of preferable reducing agents for the process are metal hydrides, for example boron hydride compounds e.g.
- potassium borohydride sodium borohydride, lithium borohydride, alkylboron hydrides, alkyl-boron hydrides, boron hydride, pyridine borane, alkylamine boranes, etc.
- aluminum hydride complexes e.g. lithium aluminum hydride, lithium alkylaluminum hydrides, lithium alkoxyaluminum hydrides, sodium aluminum hydride, alkyl-aluminum hydrides, alkoxyaluminum hydrides, etc.
- catalytic hydrogenations over various catalysts e.g.
- the second step of the process of the present invention comprises hydrolysis of the products of the first step.
- the reaction of the second step is represented by the reaction scheme:
- the dialdehyde (2) or acetals thereof e.g. (3) and (4), and the dimethylol (5) are hydrolyzed by action of various hydrolyzing agents more smoothly than the corresponding 2-nor compounds derived from 2- hydroxylated sugar units.
- the known methods applying the methods to 2-hydroxylated sugar require carrying out the reaction under stronger condition than that of the process of this invention.
- the hydrolysis condition of Goldstein is 0.1 0.5 N hydrochloric acid for 6 8 hours at room temperature; that of Dugan is heating with 5 percent potassium hydroxide; and that of kubota (Tetrahedron, Vol.
- the compounds (2), (3), (4) and (5) are hydrolyzed in a short time to obtain the compounds of the partial formula (6).
- the dialdehyde, acetals thereof or dimethylol derived from 2-hydroxylated terminal sugar unit, i.e. those derived from Purpurea glycoside A by reaction with sodium periodate is not hydrolyzed and the starting material is recovered unchanged.
- the reactivity of the compounds to hydrolysis are in the order dimethylol, dialdehyde and dimethylol diacetate from higher to lower.
- alumina calcium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydrogen carbonate, sodium acetate, potassium acetate, potassium carbonate, sodium carbonate, lithium carbonate, ammonia, pyridine, trialkylamines, etc., to strong bases e.g. potassium hydroxide, sodium hydroxide, lithium hydroxide, tetraalkylammonium hydroxides, etc.
- the said carbonyl reagents may be hydrazine, phenylhydrazine, 2,4-dinitrophenylhydrazine, carbazide, hydroxylamine, and the like.
- Those reagents for hydrolysis may be brought into contact with the starting materials of this step in the presence of a solvents e.g. water and organic solvents.
- Preferable concentration of the acids or bases may be 0.0001 30 to the solvents.
- Preferable results have been obtained in the case of 0.1
- the compounds prepared by the process of the present invention are the compounds of the formula:
- R and 4' each represents a hydrogen atom or hydroxyl group and at least one of R and R is hydroxyl; n represents an integer l or 2 and lower alkanoates thereof.
- the aglycone part of these compounds is a group derived from 17B-(3-furyl)-5B,14B- androstane-3B,l2B,l4-triol, androstane-3B,l4,16B-triol or l7B-(3-furyl)-5B,l4fiandrostane-3B,l2B,14,l6B-tetrol by removing a hydrogen atom from the hydroxyl group at position 3.
- the sugar part of these compounds is B-D-digitoxosyl group or 4-O-(B-D-digitoxosyl)-B-D-digitoxosyl group.
- These compounds can be prepared from the corresponding 3B-tridigitoxosyloxy-l7B-(3-furyl)-5B,l4[3- androstane compounds disclosed in the US. Pat. No. 3,432,486 or 3B-bisdigitoxosyloxy-l7B-(3-furyl)- 5B,l4B-androstane compounds of this invention by removing one or two digitoxosyl group according to the process of this invention or other methods e.g. Kaiser et al. cited above.
- They may also be prepared from the corresponding eardenolide bisor mono-digitoxoside by reduction of butenolide ring to furan ring with action of reducing agent capable of converting butenelide to furyl group such as active aluminum hydride compounds e.g. dialkylaluminum hydrides, lithium dialkylaluminum hydride, etc.
- active aluminum hydride compounds e.g. dialkylaluminum hydrides, lithium dialkylaluminum hydride, etc.
- the compounds of the present invention have valuable pharmacological activities. For example, they have strong digitaloid cardiotonic activity. They show inotropic effect, chronotropic effect. arrhythmia and finally contractile arrest of heart. They increase contractile amplitude of isolated guinea pig atria, isolated rabbit hearts and pigeon hearts, and show electrocardiogram specific to digitaloid agents, bradycardia, retardation of heart rate, heart fibrillation when tested on pigeon.
- the Table l shows results of assay on cardiotonoic activity of two of the compounds.
- Some of the compounds showed other pharmacological or physiological activities, for example, antiviral activity and cytotoxic activity in vitro, diuretic activity, respiration stimulating activity and anti-deoxycorticosterone activtty.
- a method of Japanese Pharmacopoeia Vll. United States Pharmacopoeia XVl, etc., for assay of digitalis preparations A solution of the compound in ethanol is diluted with sufficient volume ofisotonic sodium chloride solution and the resulted solution is injected repeatedly into alar vein of pigeon through cannula at a dose of 1 ml/kg for each injections, until the pigeon dies of cardiac arrest. The results are represented by mg per kg body weight.
- the compound is mixed with gum arabicum and powdered finely.
- the mixture is mixed with water to make uniform suspension being 5 Z gum arabicum suspension.
- the suspension is administered orally to pigeons and median lethal dosis tLD is calculated. The results are represented by mg per kg body weight.
- the compounds of the present invention have cardiotonic activity as active as or stronger than digitoxin and corresponding butenolide derivatives. They are stronger than the corresponding tridigitoxosides. Their lethal dosis are higher than the butenolide compounds. In other words, their side effects are weaker than corresponding butenolidc compounds. The main effects progress more rapidly than digitoxin but much slower than strospeside. The side effects disappeared more rapidly than the corresponding triglycosides or lactone compounds. Moreover, the appearance of the cardiotonic effect is mild and general appearances of animals administered with the compounds are mild and preferable. They can be administered orally or they can be absorbed through intestine.
- Digitoxin the most practical but severe cardiotonic glycoside, tend to accumulate in the body of patient.
- Other compounds e.g. gitoxin esters tend to show more individual difference of effects and side effects due to possible hydrolysis in the body.
- the compounds of the present invention overcome these insufficiency of the known compounds.
- the compounds can be prepared in three steps process from abundant glycoside of digitalis plants, they are suitably produced in large amounts. Further they are more soluble in various pharmaceutically acceptable solvents than the corresponding lactone compounds or tridigitoxosides.
- Afore mentioned activities show the compounds of the present invention is useful for its pharmacological activities.
- they are utilized for treatment of heart diseases such as congestive heart caused from heart failure e.g. valvular affection, hypertension, arterioscleosis, myocardial infarction, etc; or edema, anasarca, seroperitoneum, hydrothorax, dyspnea and the like caused by heart failure or arrhythmia e.
- auricular fibrillation absolute arrhythmia, extrasystoles, tachycardia, auricular flutter, or the like; or acute heart failure, acute congestive heart, acute heart hyposthenia, tonus disorder or the like, in a daily dosis of 0.1 pg to mg per kilogram body weight for human and veterinary use.
- the content of the compounds in drugs are preferably uniform to make an unit dose tablet, pills, capsules or the like to use as maintenance dosis and/or saturation or digiralization.
- the preparations containing the compounds may also be used as diuretic agents for treatment of some symptoms caused by heart diseases and as respiration stimulating agents in some special cases.
- These compounds may be utilized in a wide variety of oral or parenteral dosage forms, solely or in admixture with other co-acting compounds. They can be administered with a pharmaceutical carrier which can be a solid material or a liquid in which the compound is dissolved, dispersed or suspended.
- a pharmaceutical carrier which can be a solid material or a liquid in which the compound is dissolved, dispersed or suspended.
- the solid compositions can take the form of tablets, powders, granules, capsules, pills or the like.
- the liquid composition may take the form of injections, suspensions, solutions, emulsions, syrups or elixirs. The tablets and granules may be coated.
- EXAMPLE 1 A. To a stirred solution of l g of digitoxin in ml of ethanol is added 1 g of sodium periodate in 10 ml of water. After 1 hour, the reaction mixture is filtrated to remove solid material and the filtrate is concentrated at temperature lower than 50C. The concentrate is extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The white powdery residue of dialdehyde shows single spot on thin-layer chromatogram and amounts 0.99 g. [01],, 8.4 (c 0.478, methanol). Positive against Tollen rea' gent.
- a solution of 450 mg of the crude dimethylol in 30 ml of methanol is mixed with 4.5 ml of 0.05 N hydrochloric acid and kept at room temperature for 3 hours.
- the reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, evaporated under reduced pressure, and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated by dryness.
- Purification of the residue by recrystallization from a mixture of ethyl acetate and n-hexane gives 290 mg of digitoxigeninbisdigitoxoside. Yield: more than 80 from digitoxin.
- EXAMPLE 2 To a stirred solution of 1 g of digoxin in a mixture of 20 ml ofchloroform and 60 ml of methanol is added 10 ml of aqueous solution of 10 sodium periodate dropwise and stirred for another 1.5 hours at room temperature. The reaction mixture is filtrated to remove solid material and the filtrate is diluted with 10 ml of water, evaporated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water and dried over anhydrous sodium sulfate and evaporated to leave 1.0 g of crude dialdehyde. The crude dialdehyde is dissolved in 120 ml of 95 methanol and mixed with 500 mg of sodium borohydride with stirring at room temperature.
- EXAMPLE 3 A. To a stirred solution of 1 g of gitoxin in 250 ml of a mixture of chloroform and methanol (1:1) is added a solution of 1 g of sodium periodate in 10 ml of water at room temperature, and the resulting mixed solution is kept at room temperature for 2 hours. The reaction mixture is filtrated to remove solid material, concentrated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue amounted 980 mg which reduced Tollen reagent and showed single spot of dialdehyde on thin-layer chromatogram.
- the reaction mixture is neutralized with aqueous solution of sodium hydrogen carbonate, concentrated under reduced pressure, and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent.
- EXAMPLE 4 According to a process similar to that of Example 2, diginatin is oxidized with sodium periodate to afford dialdehyde, followed by reduction with sodium borohydride and hydrolysis with diluted hydrochloric acid giving diginatigenin-bis-digitoxoside.
- EXAMPLE 5 To a solution of 140 mg of digitoxin-3-acetate in 8 m1of95% ethanol is added 140 mg of sodium periodate in 1.4 ml of water, and the mixture is kept at room temperature for 2 hours. The reaction mixture is filtrated to remove solid material, concentrated to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness to leave 140 mg of white powdery dialdehyde which reduced Tollen reagent and showed characteristic signal at 0.30 1- in its n. m. r. spectrum.
- a solution of 140 mg of the crude dialdehyde in ml of methanol is mixed with 3 ml of 0.05 N hydrochloric acid, and the mixture is kept at room temperature for 24 hours.
- the reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, concentrated under reduced pressure and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure.
- EXAMPLE 6 To a solution of 139 mg of digitoxin-3"-acetate in 8 ml of 95 ethanol is added a solution of 139 mg of sodium periodate in 1.4 ml of water, and the mixture is kept at room temperature for 3 hours. The reaction mixture is filtrated to remove solid material, concentrated to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to leave 146 mg of white powdery crude dialdehyde which reduced Tollen reagent and showed characteristic signals at 0.22 1' and 0.44 1- in its n. m. r. spectrum.
- the crude dialdehyde is dissolved in 24 ml of methanol, mixed with 3.6 ml of 0.05 N hydrochloric acid and kept at room temperature for 24 hours.
- the reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure, and extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness.
- Purification of 1 16 mg of the residue by thin-layer chromatography over silica gel and recrystallization from aqueous methanol gives 62 mg of digitoxigeninbis-digitoxoside-3"-acetate, m.p. 143 147C. Yield: 55.5 [01], 17.5 (c 0.258, methanol).
- Anal. Calcd. for C37H5$O11 l H20 C, H, CH CO, 6.28. Found: C, 64.74; H, 8.25; CHgCO, 6.01.
- EXAMPLE 7 To a solution of 150 mg of digitoxigenin-bisdigitoxoside in 10 ml of 95 ethanol is added a solution of 150 mg of sodium periodate in 2 ml of water, and the mixture is kept at room temperature for 1 hour. The reaction mixture is filtrated to remove the solid material, concentrated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dialdehyde on thin-layer chromatogram and reduced Tollen reagent. The dialdehyde (150 mg) dissolved in 15 ml of 95 methanol is mixed with mg of sodium borohydride, and kept at room temperature for 2 hours.
- the reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dimethylol on thin-layer chromatogram and did not reduce Tollen reagent.
- the crude dimethylol (135 mg) dissolved in 12 ml of methanol is mixed with 1.8 m1 of 0.05 N hydrochloric acid and kept at room temperature for 2 hours.
- the reaction mixture is neutralized with 5 7r aqueous solution of sodium hydrogen carbonate, evaporated to remove volatile solvent, and then extracted with chloroform.
- EXAMPLE 8 To a solution of 50 mg of digoxigenin-bisdigitoxoside in 3 ml of ethanol is added a solution of 50 mg of sodium periodate in 0.5 ml of water, and the mixture is kept at room temperature for 1 hour. The reaction mixture is filtrated to remove the solid material, concentrated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dialdehyde on thin-layer chromatogram and reduced Tollen reagent. The crude dialdehyde (52 mg) dissolved in 3 ml of 95 methanol is mixed with 10 mg of sodium borohydride, and kept at room temperature for 1 hour.
- the reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dimethylol on thinlayer chromatogram and did not reduce Tollen reagent.
- the crude dimethylol (45 mg) dissolved in 2 ml of methanol is mixed with 0.5 ml of 0.05 N hydrochloric acid and kept at room temperature for 1 hour.
- the reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, evaporated to remove volatile solvent and then extracted with chloroform.
- EXAMPLE 9 To a solution of 250 mg of gitoxigeninbisdigitoxoside in 20 ml of 95 ethanol is added a solution of 250 mg of sodium periodate in 2.5 ml of water, and the mixture is kept at room temperature for 1.5 hour. The reaction mixture is filtrated to remove the solid material, concentrated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dialdehyde on thin-layer chromatogram and reduced Tollen reagent. The crude dialdehyde (250 mg) dissolved in 20 ml of 95 methanol is mixed with 125 mg of sodium borohydride, and kept at room temperature for 2 hours.
- the reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dimethylol on thin-layer chromatogram and did not reduce Tollen reagent.
- the crude dimethylol (230 mg) dissolved in 20 ml of methanol is mixed with 3.5 ml of 0.05 N hydrochloric acid and kept at room temperature for 2 hours.
- the reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, evaporated to remove volatile solvent and then extracted with chloroform.
- EXAMPLE 10 To a solution of 100 mg of 3/3-(B-D-digitoxosy1-B-D- digitoxosyl-B-D-digitoxosyl)oxy-17B-(3-furyl)-5B,14B- androstan-l4-ol in 12 ml of 95% ethanol is added 100 mg of sodium periodate in 1 ml of water, and the mixture is kept at room temperature for 1 hour. The reaction mixture is concentrated under reduced pressure and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure.
- the residue reduced Tollen reagent and showed single spot of dialdehyde on its thin-layer chromatogram.
- a solution of 98 mg of the crude dialdehyde in 10 ml of 95 methanol is added 50 mg of sodium borohydride, and the mixture is kept at room temperature under nitrogen atmosphere for 1 hour.
- the reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated at room temperature under reduced pressure, and then extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness.
- the residue did not reduce Tollen reagent and showed single spot of dimethylol on its thin-layer chromatogram.
- a solution of 100 mg of the crude dimethylol in 5 ml of methanol is mixed with 0.75 ml of 0.05 N hydrochloric acid and the mixture is kept at room temperature for 3 hours.
- the reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, and extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness.
- reaction mixture After stirring for another 45 minutes, the reaction mixture is filtrated to remove solid material, diluted with 20 ml of water, evaporated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness to obtain 909 mg of crude dialdehyde.
- a solution of 900 mg of the crude dialdehyde in 80 ml of 95 methanol is mixed with 80 mg of sodium borohydride and the mixture is kept at room temperature for 1 hour.
- the reaction mixture containing crude dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.8 to thymol blue test paper.
- the crude dialdehyde is dissolved in 8 ml of 95 methanol, mixed with mg of sodium borohydride, and stirred for 0.5 hour at room temperature.
- the reaction mixture containing dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.4 and kept at room temperature for 3 hours. Then the mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate to pH 7.0, diluted with water, evaporated to remove volatile solvent and extracted with chloroform.
- the extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent.
- the extract solution is washed with water, dried over anhydrous sodium sul- 5 fate and evaporated to remove the solvent, to leave 140 mg of crude dialdehyde.
- the crude dialdehyde is dissolved in 12 ml of 95 methanol, mixed with mg of sodium borohydride, and stirred for 1.5 hours at room temperature.
- the reaction mixture containing dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.6 and kept at room temperature for 4 hours. Then the mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate to pH 7.0, diluted with water, evaporated to remove volatile solvent and ex- 5 tracted with chloroform.
- EXAMPLE 15 To a solution of 120 mg of digitoxigenin-monodigitoxoside in 2 ml of dry tetrahydrofuran cooled at from 20C to -C under nitrogen atmosphere is added dropwise 1.20 ml of a solution of diisobutylaluminum hydride in tetrahydrofuran (208 mg/ml). After 45 minutes, the reaction mixture is mixed with 3 ml of 2 N-sulfuric acid and stirred for 15 minutes at 0C, and then is extracted with chloroform. The extract solution is washed with 5 aqueous solution of sodium hydrogen carbonate and water, dried over sodium sulfate and evaporated to remove the solvent.
- EXAMPLE 16 To a solution of 450 mg of digoxigenin-bisdigitoxoside in 10 ml of dry tetrahydrofuran cooled at 30C is added 8.8 ml of a solution of diisobutylaluminum hydride in tetrahydrofuran (258 mg/ml) in three portions under nitrogen atmosphere. After 45 minutes, the reaction mixture is mixed with 15 ml of 2 N sulfuric acid and stirred at 0C for 15 min utes, and then extracted with chloroform. The extract solution is washed with 5 aqueous solution of sodium hydrogen carbonate and water, dried over anhydrous sodium sulfate and evaporated to remove the solvent.
- EXAMPLE 17 To a stirred solution of 300 mg of gitoxigeninbisdigitoxoside in ml of tetrahydrofuran is added 1.58 ml of di-isobutylaluminum hydride in dry tetrahydrofuran (1.1 mole equivalent) at 25C under nitrogen atmosphere. After 30 minutes, 5 ml of 2 N sulfuric acid is added into the reaction mixture, and the mixture is stirred under ice-cooling for 10 minutes, and then the resultant solution is extracted with chloroform. The extract solution is washed with an aqueous solution of potassium carbonate and water, dried over anhydrous sodium sulfate and evaporated under reduced pressure.
- EXAMPLE 18 To a solution of 400 mg of digitoxin in ml of dioxane is added 500 mg of lead tetraacetate, and the mixture is stirred at room temperature for 1.5 hours. The reaction mixture is filtrated to remove solid material and the filtrate is diluted with 10 ml of water. The diluted filtrate is evaporated to remove volatile solvent and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent.
- EXAMPLE 19 To a solution of 100 mg of digitoxin in 4 ml of chloroform and 4 ml of carbon tetrachloride cooled at 0C is added 100 mg of powdered ruthenium tetroxide. After 30 minutes stirring, the mixture is mixed with a small amount of methanol, and filtrated to remove solid material. The filtrate is evaporated to dryness to leave 99 mg of the residue identical with dialdehyde obtained by the process of Example 1 (A). The dialdehyde is dissolved in 1 ml of 95 ethanol, mixed with 8 mg of sodium borohydride and the mixture is kept at room temperature for 0.5 hour.
- the reaction mixture containing crude dimethylol is acidified to pH 3.5 to thymol blue test paper with 0.1 N sulfuric acid. After 3 hours, the reaction mixture is neutralized with 5 sodium hydrogen carbonate, concentrated and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of the residue by thin-layer chromatography and recrystallization gives 73 mg of digitoxigenin-bisdigitoxoside, m.p. 228 230C. Yield: 89
- EXAMPLE 20 To a solution of 100 mg of digitoxin in 5 ml of acetic acid is added 1 ml of water and 500 mg of powdered sodium oismuthate. After shaking for 3 hours at room temperature, the mixture is filtered to remove the solid material. The solid material is washed thoroughly with ethyl acetate. Mixture of the filtrate and washed solvent is evaporated to dryness. The residue is treated with sodium borohydride and diluted sulfuric acid according to the process of Example 1 (8-4) to afford mg of digitoxigenin-bisdigitoxoside, m.p. 228 230C. Yield:
- EXAMPLE 22 A mixture of 9 mg of 3B-[4-O-(B-D-digitoxosyl)-B- D-digitoxosyl]oxy-17B-( 3-furyl)-5B,14B-androstane- 14,16B-dio1, 0.5 ml of pyridine and 0.5 ml of acetic anhydride is kept at room temperature for 5 days. The reaction mixture is poured onto iced water and extracted with chloroform. The extract solution is washed successively with water, aqueous sodium carbonate solution and diluted hydrochloric acid and water, dried over anhydrous sodium sulfate and evaporated to dryness.
- EXAMPLE 23 A tablet is prepared in conventional manner from 0.2 mg of 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxo. vl]oxy- 17B-(3-furyl)-5B,l4B-androstane-l4,16B-diol, L mg of starch and a small amount of magnesium stearate.
- EXAMPLE 24 A colored powder consisting of 1 weight of 3B-[4-O- (B-D-digitoxosyl)-B-D-digitoxosyl]oxy-17B-(3-furyl)- 5B,14B-androstane-l4,16B-diol and 10,000 weights of starch.
- EXAMPLE 25 An injection, containing a solution of 2 mg of 313-14- O-(B-D-digitoxosyl )-B-D-digitoxosyl]oxy-l 7B-( 3- furyl)-B,l4B-androstan-l4-ol in 1 ml of alcohol and stabilizer sealed under nitrogen gas, is administered to a patient at a dosis of 2 to 4 ml per a day for quick saturation or critical cases.
- a process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg of 3B-(B-D-digitoxosyl)oxy-l7B-(3-furyl)-5B,l4B- androstane-l4,l6B-diol or 3B-[4-O(B-D-digitoxosyl)- B-D-digitoxosyHoxy-l7B(3-furyl)-5B,l4B-androstane- 14,16,8-diol, in combination with a pharmaceutical carrier.
- a process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg of 3B-(B-D-digitoxosyl)oxy-l7B-(3-furyl)'5[3,l4B- androstane-l2B,l4-diol or 3B-[4-O-(B'D-digitoxosyl)- B-D-digitoxosyHoxyl 7B-(3furyl 5,8,l4B-androstane-l2B,14diol, in combination with a pharmaceutical carrier.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Steroid Compounds (AREA)
Abstract
Method for selective partial hydrolysis of steroid glycosides of 2-deoxysugar units, which comprises reacting glycol cleaving agents followed by optional reduction and mild hydrolysis, cardiotonic compounds of the formula:
WHEREIN R and R'' each represents a hydrogen atom or hydroxyl group and n'' is an integer of 1 or 2, and esters thereof, and pharmaceutical preparations containing the compounds or products of the process of the present invention.
WHEREIN R and R'' each represents a hydrogen atom or hydroxyl group and n'' is an integer of 1 or 2, and esters thereof, and pharmaceutical preparations containing the compounds or products of the process of the present invention.
Description
llnited States Patent [1 1 Satoh PHARMACEUTICAL COMPOSITIONS [75] Inventor: Daisuke Satoh, Nishinomiya, Japan [73] Assignee: Shionogi & Co., Ltd., Osaka, Japan [22] Filed: Nov. 10, 1972 [21] Appl. No.: 305,554
Related US. Application Data [62] Division of Ser. No. 18,337, March 10, 1970, Pat.
[30] Foreign Application Priority Data Primary Examiner-Henry A. French Attorney, Agent, or F irm-Wenderoth, Lind & Ponack Dec. 24, I974 [57] ABSTRACT Method for selective partial hydrolysis of steroid glycosides of 2-deoxysugar units, which comprises reacting glycol cleaving agents followed by optional reduction and mild hydrolysis, cardiotonic compounds of the formula:
fipgg of'i Y wherein R and R each represents a hydrogen atom or hydroxyl group and n is an integer of l or 2, and esters thereof, and pharmaceutical preparations containing the compounds or products of the process of the present invention. 1
5 Claims, N0 Drawings PHARMACEUTICAL COMPOSITIONS This is a division of application Ser. No. 18,337, filed Mar. 10, 1970, now U.S. Pat. No. 3,745,156.
The present invention relates to a novel process for partial hydrolysis of glycosides of 2-deoxy-sugar, and some glycosides of 2-deoxy-sugar, and preparations containing the products of the process of the present invention.
The process of the present invention is a selective method of hydrolysis which does not affect on a 2- deoxy-glycosyl residue when it is not present at the ter minal position of the glycoside linkage.
Numerous reports are found on the selective hydrolysis of glycosides of 2-deoxy-sugar. Representatives of them include report of A. Stoll (Helvetica Chimica Acta, Vol. 18, 120 (1935)) which describes selective enzymatic hydrolysis of digilanides to remove glucose unit from the glycoside chain; and reports of F. Kaiser, et al. (Annalen der Chemie, Vol. 603, page 75 (1957)) which describes nonselective acid hydrolysis of cardenolide tridigitoxosides with acids followed by repeated tedious partition chromatography. However, these methods are insufficient for preparative or industrial use, because of their non-selectiveness, lower yield, complexed techniques, large volume of reaction mixture, similarity of physical constants of the products and other many deficiencies to be cited. 1n the course of investigation of acetates of digitoxin and gitoxin, the present inventor intended to determine which of the hydroxyl group in the glycosides were acetylated. He should remove sugar residue one by one from terminal and he conveived to use the glycol cleavage reaction for this purpose in order to increase selectivity to hydrolysis of the residue to be removed. He then extended the method to a general procedure for selective hydrolysis of the glycosides containing 2-deoxy-sugar units as the sugar moiety.
The process of the present invention is a method for selective hydrolysis of glycosides having 2-deoxy-sugar unit in the molecule which is characterized (1) by increasing of sensitivity for hydrolysis of the specified sugar unit to be removed by the result of glycol cleavage reaction; (2) by providing selectivity with utilization of the fact that Z-deoXy-sugar unit which is not located at the terminal position of the glycoside linkage is not susceptible of the reaction of the process of the present invention; (3) by higher yield; (4) by unequivocal chemical procedure; and (5) by mild and easily handled reaction course.
Methods for hydrolysis of glycosides by way of similar reaction'techniques are presented in some of the known literatures, e.g. F. Smith et al.: Journal of the American Chemical Society, Vol. 81, page 2176 (1959); E. L, Jackson and C. S. Hudson: Journal of the American Chemical Society, Vol. 58, page 378 (1936); I. J. Goldstein et al.: Methods in Carbohydrate Chemistry, Vol. V, page 361 (1965); E. L. Jackson: Organic Reactions, Vol. 11, page 341 (1944); Dugan: Canadian Journal of Chemistry: Vol.43, page 2033 (1965); P.P. Regna: Journal of the American Chemical Society, Vol. 69, page 246 (1947); and references cited in these literatures. These methods however do not relate to glycosides of 2-deoxy-sugars and further they direct to degradative hydrolysis of glycosides resistant to normal hydrolysis conditions. Hence, the reaction conditions are rather drastic and there is no intention for selective hydrolysis in respect of the sugar units. In other words, the present invention is an extension of these methods into the field of Z-deoxy-sugar and to the field of cardenolide glycosides and their analogues.
The process of the present invention comprises the first step in which the glycosides are subjected to glycol cleavage reaction to afford dialdehyde or acetals thereof, followed by optional reduction of the product to afford dimethylol; and the second step inwhich the product of the first step is subjected to hydrolysis under extremely mild condition. The mild condition allows possible existence of unstable group in the other part of the molecule of the glycosides.
The starting materials of the process of the present invention are the glycosides of the formula:
ORm I.
wherein X represents an oxygen containing hydrocarbon ring group, R and R each represents a hydrogen atom, hydroxyl group or acyloxy group, R,,, represents a hydrogen atom or acyl group same or different for each sugar unit and n is an integer 1 or more.
As for the oxygen containing hydrocarbon ring repre sented by X, it is exemplified 2- and 3-furyl group and a, B and 'y-butenolide residue, butanolide group and the like. As for the acyl group represented by R and that of acyloxy group represented by R and R there is exemplified alkanoyl groups e.g. formyl, acetyl, propionyl, butyryl, enanthoyl, stearoyl, trimethylacetyl, tertbutylacetyl, cyclohexylcarbonyl, apocamphane-l carbonyl, adamantane-carbonyl, cyclopentanealkanoyl, and the like; unsaturated aliphatic acyl groups e.g. crotenyl, ethynyl-acetyl, and the like; substituted aliphatic acyl groups e.g. haloacetyl, glycyl, lactyl, hemisuccinyl, phenylpropionyl, cinnamoyl, optionally substituted phenoxyacetyl, etc; optionally substituted aromatic acyl groups e.g. benzoyl, nitro-benzoyl, methoxybenzoyl, methylbenzoyl, halobenzoyl, naphthalincarbonyl, nicotinyl, furoyl, and the like; or inorganic acyl groups e.g. carbonic, sulfuric, phosphoric acyl groups and the like.
Representatives of the starting materials of the process of the present invention involve:
digitoxin,
digoxin,
gitoxin,
diginatin,
digitoxigenin-bisdigitoxoside,
digoxigenin-bisdigitoxoside,
gitoxigenin-bisdigitoxoside,
diginatigenin-bisdigitoxoside,
3B-(B-D-digitoxosyl-B-D-digitoxosyl-B-D- digitoxosyl)oxy-17B-(3-furyl)-5B,l4B-androstan- 14-01,
3 3B-(B-D-digitoxosyl-B-D-digitoxosyl-B-D- digitoxosyl)oxy-l7B-(3-furyl)-5B,l4B-androstanel2B,l4-diol, 3B-(B-D-digitoxosyl-B-D-digitoxosyl-B-D- digitoxosyl)oxy-l7B-(3-furyl)-5B,l4B-androstane- 14,16B-diol, 3B-(B-D-digitoxosyl-B-D-digitoxosyl-B-D- digitoxosyl)oxy-l7/3-(3-furyl)-5B,l4B-androstanel2B,l4,l6B-triol, 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxosyl]oxy-l7B- (3-furyl)-5B,l4B-androstan-l4-01, 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxosyl]oxy-17B- (3-furyl)-5B,l4B-androstane-l2B,l4-diol, 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxosyl]-oxyl7,8-(3-furyl)-5B,l4B-androstane-l4,l4B-diol, 3B-[4-O-(B-D-digitoxosyl )-B-D-digitoxosyl]oxy- 1 7B- (3-furyl)-5B,l4B-androstane-l23,14,16B-triol, and esters thereof with the proviso that the terminal digitoxose residue has two free hydroxyl groups.
The first step of the process of the present invention comprises glycol cleavage of the starting materials mentioned above at the terminal sugar unit, followed by optional reduction. The reaction of the first step is represented by the reaction scheme:
(I313 O O i glycol cleaving H y I agent l OH OH CH: )-O O and/0r OHC O H C 0 H (dialdehyde) (2) CH3 )0 0- and/0r CH0 2 I CHOH isolated reducing agent 0 H C-- CH; 0 and \Cfi identified (optionally) O 0\ L CPL-CH- I-IOM h 1 1 0 (dimet y 0) HO Cfil H0 CHr- H The compound of the partial formula (1) react with glycol cleaving agents more smoothly than the corresponding 2-hydroxylated sugar compounds. The products are dialdehyde (2) and acetals thereof represented e.g. by the partial formulae (3) and (4). The dialdehyde (2) as well as acetals thereof are reduced to LII dimethylol (5) by the action of ordinary reducing agent in high yield.
The said glycol cleaving agent may be chromic acid, permanganates, nitric acid, persulfuric acid, cuppric hydroxide, bismuthates, manganese acetate, iodosobenzene alkanoates, osmium tetra-oxide, ruthenium tetroxide, lead tetraacetate, periodates, periodic acid and the like, in which lead tetraacetate, periodic acid and periodates are preferable. The cleaving agents are used in various solvents. For example, they may be hydrocarbons e.g. petroleum benzine, petroleum ether, heptane, hexane, benzene, toluene, xylene, cyclohexane, etc.; halogenated hydrocarbons e.g. carbon tetra-chloride, chloroform, methylene chloride, dichloroethane, tetrachloroethane, etc.; ethers e.g. diethyl ether, methyl butyl ether, tetrahydrofuran, tetrahydropyran, dioxane, ethylene glycol ethers, etc.; esters e.g. ethyl acetate, butyl acetate, etc.; ketones e.g. actone, methyl ethyl ketone, cyclohexanone, etc.; alcohols e.g. methanol, ethanol, butanol, octanol, etc.; carboxylic acids e.g. acetic acid, propionic acid, formic acid, etc.; bases e.g. pyridine, collidine, quinoline, etc.; and other solvents e.g. dimethylformamide, dimethylsulfoxide, water, etc., and mixture thereof. Generally, lead tetraacetate is used in non-polar solvents and periodic acid and periodates are used in polar solvents. If required, other solvents may be added thereto in order to dissolve the reactants. In the cases of periodates or periodic acid being used as the glycol cleaving agent and the solvent used being dilute alcohol, one of the product, salts of iodic acid separates as crystals in the medium and may be removed by mere filtration. Bases may be added to the reaction medium to neutralize acidic product. The reaction may be carried out at lowered or elevated temperatures. The amount of the glycol cleaving agent to the starting material are preferably l to 5 mole equivalents, although more reagent may be used without wrong results. The products are isolated in per se conventional methods e.g. dilution, concentration, extraction, filtration, etc., and are purified by conventional methods e.g. recrystallization, chromatography, etc. The products may be subjected to the process of the next step without further purification. The products thus obtained are dialdehyde of the partial formula (2) or acetals thereof eg those represented by formulae (3) and (4). The said reducing agents for optional following reduction are those capable of reducing dialdehyde of the partial formula (2) or acetals thereof represented by e.g. partial formulae (3) and (4) to give dimethylol of the partial formula (5), provided that they do not exert irreversible changes in the other part of the substrate molecule. Representatives of preferable reducing agents for the process are metal hydrides, for example boron hydride compounds e.g. potassium borohydride, sodium borohydride, lithium borohydride, alkylboron hydrides, alkyl-boron hydrides, boron hydride, pyridine borane, alkylamine boranes, etc., aluminum hydride complexes e.g. lithium aluminum hydride, lithium alkylaluminum hydrides, lithium alkoxyaluminum hydrides, sodium aluminum hydride, alkyl-aluminum hydrides, alkoxyaluminum hydrides, etc., catalytic hydrogenations over various catalysts e.g. cobalt-cupper chromite, ruthenium-charcoal, palladium charcoal, palladium calcium carbonate, etc., Meerwein-Pondorf reduction, Meerwein-Schmidt reduction, and the like. The reduction may be carried out in a solvent e.g. hydrocarbons, halogented hydrocarbons, ethers, alcohols, esters, carboxylic acids, bases, water, etc., at elevated or lowered temperature. Optional character of reduction in the process of the present invention necessitates amount of the reducing agent used over a range from 0 to 1 mole equivalent or more. Preferable result is obtained when the reducing agent is l to mole equivalents of e.g. sodium borohydride. The products thus prepared may be isolated in per se conventional methods e.g. decomposition of ad duct, precipitation by addition of insoluble solvents, filtration, dilution, extraction, washing, drying, evaporation of solvents, absorption, elusion, etc., or their combination. The alternate process through reduction is in effect equivalent to direct hydrolysis to the dialdehyde (2) or acetals thereof e.g. compounds of partial formulae (3) and (4), and has superiority to the latter that the former shows less by-products product, higher purity of the product, easily purified, higher yield, and so on, irrespective of use of expensive reducing agent.
The second step of the process of the present invention comprises hydrolysis of the products of the first step. The reaction of the second step is represented by the reaction scheme:
dialdehyde (2) B-elimination CH:
The dialdehyde (2) or acetals thereof e.g. (3) and (4), and the dimethylol (5) are hydrolyzed by action of various hydrolyzing agents more smoothly than the corresponding 2-nor compounds derived from 2- hydroxylated sugar units. The known methods applying the methods to 2-hydroxylated sugar require carrying out the reaction under stronger condition than that of the process of this invention. For example, the hydrolysis condition of Goldstein is 0.1 0.5 N hydrochloric acid for 6 8 hours at room temperature; that of Dugan is heating with 5 percent potassium hydroxide; and that of kubota (Tetrahedron, Vol. 24, page 675 (1968)) is refluxing with 3 potassium hydroxide in ethanol for 1 hour and refluxing at 60C with 0.1 toluene-p sulfonic acid in dioxane for 30 minutes. Under these conditions, sensitive groups e.g. Z-deoxy-sugar units 14-hydroxyl group, l7-unsaturated oxa ring, etc., showed various irreversible changes e.g. formation of iso-cardenolides, hydrolysis at undesired position, dehydration, etc. When the hydrolysis was carried out with 0.0065 N hydrochloric acid at room temperature, or 0.1 potassium hydrogen carbonate at room temperature, the compounds (2), (3), (4) and (5) are hydrolyzed in a short time to obtain the compounds of the partial formula (6). Under the same conditions, the dialdehyde, acetals thereof or dimethylol derived from 2-hydroxylated terminal sugar unit, i.e. those derived from Purpurea glycoside A by reaction with sodium periodate, is not hydrolyzed and the starting material is recovered unchanged. The reactivity of the compounds to hydrolysis are in the order dimethylol, dialdehyde and dimethylol diacetate from higher to lower. From these data, it is concluded that in the case of dimethylol, some participation of free neighbouring hydroxyl group to reaction center is occuring. Higher reactivity of dialdehyde over dimethylol diacetate is presumed to be result of existence of carbonyl group at B-position from the reaction center to be hydrolyzed. The said hydrolysis of this step may be effected by the action of a reagent capable of decomposition of acetals recovering constituent alcohols. The reagent for reaction of this step may be acids, bases or other reagents of equivalent effect e.g. a carbonyl reagent which converts a ,B-oxygenated-carbonyl compound into an a,B-unsaturated oxo compound or an acetal into an alcohol and carbonyl bound with the ketone reagent. The said acids may be an acids ranging from weak acids e.g. phenols, aromatic or aliphatic carboxylic acids, silica gel, acid salts e.g. sodium hydrogen sulfate, pyridine sulfate, ammonium chloride, etc., to strong acids e.g. hydrochloric acid, nitric acid, phosphoric acid, perchloric acid, etc. The said bases may be bases ranging from weak bases e.g. alumina, calcium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydrogen carbonate, sodium acetate, potassium acetate, potassium carbonate, sodium carbonate, lithium carbonate, ammonia, pyridine, trialkylamines, etc., to strong bases e.g. potassium hydroxide, sodium hydroxide, lithium hydroxide, tetraalkylammonium hydroxides, etc. The said carbonyl reagents may be hydrazine, phenylhydrazine, 2,4-dinitrophenylhydrazine, carbazide, hydroxylamine, and the like. Those reagents for hydrolysis may be brought into contact with the starting materials of this step in the presence of a solvents e.g. water and organic solvents. Preferable concentration of the acids or bases may be 0.0001 30 to the solvents. Preferable results have been obtained in the case of 0.1
0.0001 N mineral acid or treatment in an acidic medium of pH 1 4 at room temperature for 0.5 to 48 hours. Higher temperature may shorten the reaction period. The products of this step may be obtained by a conventional method e.g. precipitation, filtration, dilution, extraction, washing, drying, absorption, elusion, and the like or combinations thereof, followed by optional purification by e.g. chromatography, recrystallization, etc. In the process of the present invention, preferable results have been obtained in the cases of hydrolysis of the compounds of the partial formula (2) with acids, bases or ketone reagents, and in the cases of hydrolysis of the compounds of the partial formula (5) with acids.
The compounds prepared by the process of the present invention are the compounds of the formula:
known compounds of higher cardiotonic activity, but because of complexed process of preparation, they have not been utilized for practical purposes. The latter eight compounds and esters thereof are novel, safe, mild and strong cardiotonic and duretic compounds of the present invention. Both of them are useful as pharmaceutical agent in the treatment of heart diseases for human or veterinary use, in the forms of pharmaceutical composition containing an effective amount of the compounds and a pharmaceutically acceptable carrier.
diginatigenin-monodigitoxoside, 3B-[4-O-(B-D-digitoxosyl )-B-D-digittoxosyl ]oxy- (3-furyl )-5B, 1 4B-androstanel 213, 1 4-diol, 5
(3-furyl )-5B,l 4B-androstanel 4,1 6B-diol,
( 3-furyl)-5B,l 4B-androstane- 1 23,1 4,1 6B-triol,
androstanl 4-ol,
androstane- 1 2B, 1 4-diol, BB-(B-D-digitoxosyl )oxy- 1 7B-( 3-furyl )-5B, 1 4B- androstane-l4,l6B-diol, 3B-( BD-digitoxosyl)oxy-l 7[3-( 3-furyl )-5B, 1 4B- androstane-l 2B, l 4,1 6B-triol,
and esters thereof.
The first eight compounds cited above are literary The novel compounds of the present invention are represented by the general formula:
wherein R and 4' each represents a hydrogen atom or hydroxyl group and at least one of R and R is hydroxyl; n represents an integer l or 2 and lower alkanoates thereof. The aglycone part of these compounds is a group derived from 17B-(3-furyl)-5B,14B- androstane-3B,l2B,l4-triol, androstane-3B,l4,16B-triol or l7B-(3-furyl)-5B,l4fiandrostane-3B,l2B,14,l6B-tetrol by removing a hydrogen atom from the hydroxyl group at position 3. The sugar part of these compounds is B-D-digitoxosyl group or 4-O-(B-D-digitoxosyl)-B-D-digitoxosyl group.
Representatives of the compounds of the present invention involve:
8 3B-[4-O-(B-D-digitoxosyl )-B-D-digitoxosyl ]oxy-l 7B- (3-furyl)-5fl,l4B-androstane-l4,16B-diol, 3B-[4-O-(B-D-digitoxosyl )-/3-D-digitoxosyl loxy- 1 7B- (3-furyl)-5B,l4B-androstane- 1 23,14, 1 6B-triol, and the lower alkanoates thereof.
These compounds can be prepared from the corresponding 3B-tridigitoxosyloxy-l7B-(3-furyl)-5B,l4[3- androstane compounds disclosed in the US. Pat. No. 3,432,486 or 3B-bisdigitoxosyloxy-l7B-(3-furyl)- 5B,l4B-androstane compounds of this invention by removing one or two digitoxosyl group according to the process of this invention or other methods e.g. Kaiser et al. cited above. They may also be prepared from the corresponding eardenolide bisor mono-digitoxoside by reduction of butenolide ring to furan ring with action of reducing agent capable of converting butenelide to furyl group such as active aluminum hydride compounds e.g. dialkylaluminum hydrides, lithium dialkylaluminum hydride, etc.
The compounds of the present invention have valuable pharmacological activities. For example, they have strong digitaloid cardiotonic activity. They show inotropic effect, chronotropic effect. arrhythmia and finally contractile arrest of heart. They increase contractile amplitude of isolated guinea pig atria, isolated rabbit hearts and pigeon hearts, and show electrocardiogram specific to digitaloid agents, bradycardia, retardation of heart rate, heart fibrillation when tested on pigeon. The Table l shows results of assay on cardiotonoic activity of two of the compounds. Furthermore, 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxosyl loxyl7B-(B-furyU-SB,l4B-androstane-l2B, l4-diol. 3B-(B- D-digitoxosyl )-oxyl 7B-( 3-furyl )-5B, 1 4B-androstanl4-ol, 3B-(B-D-digitoxosyl)-oxy-l7B-(3-furyl)-5B,l4flandrostane-l2B,l4-diol and 3B-(B-D-digitoxosyl)oxyl7B-(3-furyl)-5B,l4B-androstane-l4,l6B-diol at concentration of 10", increased contractile amplitude of isolated guinea pig atria up to 200 "/c. Some of the compounds showed other pharmacological or physiological activities, for example, antiviral activity and cytotoxic activity in vitro, diuretic activity, respiration stimulating activity and anti-deoxycorticosterone activtty.
compound I: 31H4-0-(B-D-digitoxoylB-D-digitoxosyll-B-D- digitoxosylloxy-l 7B-(3-furyl)-5B.l4B-
androstane-l4-ol.
" The contractile amplitude of isolated guinea pig atria caused by the compound in a Ringers solution at concentration of H)" is recorded on kymograph and the results are represented by percent increase against initial \aluc (Magnus method).
' The compound in a Ringer's solution is passed through the coronary vessel of isolated rabbit heart in Ringer's solution. The movement of the heart is recorded on kymograph and maximum response is represented in percent increase against initial value (Langendorf method).
" A method of Japanese Pharmacopoeia Vll. United States Pharmacopoeia XVl, etc., for assay of digitalis preparations. A solution of the compound in ethanol is diluted with sufficient volume ofisotonic sodium chloride solution and the resulted solution is injected repeatedly into alar vein of pigeon through cannula at a dose of 1 ml/kg for each injections, until the pigeon dies of cardiac arrest. The results are represented by mg per kg body weight.
The compound is mixed with gum arabicum and powdered finely. The mixture is mixed with water to make uniform suspension being 5 Z gum arabicum suspension. The suspension is administered orally to pigeons and median lethal dosis tLD is calculated. The results are represented by mg per kg body weight.
"Time in day required for disappearance of external symptoms of side effects of the compounds when tested on pigeon.
From these data, it is concluded that the compounds of the present invention have cardiotonic activity as active as or stronger than digitoxin and corresponding butenolide derivatives. They are stronger than the corresponding tridigitoxosides. Their lethal dosis are higher than the butenolide compounds. In other words, their side effects are weaker than corresponding butenolidc compounds. The main effects progress more rapidly than digitoxin but much slower than strospeside. The side effects disappeared more rapidly than the corresponding triglycosides or lactone compounds. Moreover, the appearance of the cardiotonic effect is mild and general appearances of animals administered with the compounds are mild and preferable. They can be administered orally or they can be absorbed through intestine. Digitoxin, the most practical but severe cardiotonic glycoside, tend to accumulate in the body of patient. Other compounds, e.g. gitoxin esters tend to show more individual difference of effects and side effects due to possible hydrolysis in the body. The compounds of the present invention overcome these insufficiency of the known compounds. As the compounds can be prepared in three steps process from abundant glycoside of digitalis plants, they are suitably produced in large amounts. Further they are more soluble in various pharmaceutically acceptable solvents than the corresponding lactone compounds or tridigitoxosides. These features show that the com pounds of the present invention are strong, safe and mild cardiotonic agents which are easily preparable and suitable for clinical usage.
Afore mentioned activities show the compounds of the present invention is useful for its pharmacological activities. For example, they are utilized for treatment of heart diseases such as congestive heart caused from heart failure e.g. valvular affection, hypertension, arterioscleosis, myocardial infarction, etc; or edema, anasarca, seroperitoneum, hydrothorax, dyspnea and the like caused by heart failure or arrhythmia e.g. auricular fibrillation, absolute arrhythmia, extrasystoles, tachycardia, auricular flutter, or the like; or acute heart failure, acute congestive heart, acute heart hyposthenia, tonus disorder or the like, in a daily dosis of 0.1 pg to mg per kilogram body weight for human and veterinary use. The content of the compounds in drugs are preferably uniform to make an unit dose tablet, pills, capsules or the like to use as maintenance dosis and/or saturation or digiralization. The preparations containing the compounds may also be used as diuretic agents for treatment of some symptoms caused by heart diseases and as respiration stimulating agents in some special cases.
These compounds may be utilized in a wide variety of oral or parenteral dosage forms, solely or in admixture with other co-acting compounds. They can be administered with a pharmaceutical carrier which can be a solid material or a liquid in which the compound is dissolved, dispersed or suspended. The solid compositions can take the form of tablets, powders, granules, capsules, pills or the like. The liquid composition may take the form of injections, suspensions, solutions, emulsions, syrups or elixirs. The tablets and granules may be coated.
The following examples are given by way of illustration only and are not intended as limitations of the present invention, many apparent variations of which are possible without departing from the spirit and scope thereof. The abbreviations have the conventional meanings.
EXAMPLE 1 A. To a stirred solution of l g of digitoxin in ml of ethanol is added 1 g of sodium periodate in 10 ml of water. After 1 hour, the reaction mixture is filtrated to remove solid material and the filtrate is concentrated at temperature lower than 50C. The concentrate is extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The white powdery residue of dialdehyde shows single spot on thin-layer chromatogram and amounts 0.99 g. [01],, 8.4 (c 0.478, methanol). Positive against Tollen rea' gent.
B-l. To a solution of 300 mg of the crude dialdehyde of (A) in 30 ml of methanol is added 4.5 ml 0f0.05 N- hydrochloric acid and kept at room temperature for 24 hours. The reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate solution, evaporated to remove volatile solvent at under 50C, and then extracted with chloroform. The chloroform extract is washed with water, dried over anhydrous sodium sulfate and evaporated to remove solvent. Purification of 225 mg of the crude product by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone (2:1 as developing solvent and recrystallization from a mixture of ethyl acetate and n-hexane gives 124 mg of digitoxigeninbisdigitoxoside, m.p. 228 230C. Yield: 50 from digitoxin. [011 73 (c 0.833, methanol). UV: k 217.5 nm. (e 14,200). Anal. Calcd. for C35H540 0I C, H, FOUndI C, H, 8.53.
13-2. A solution of 200 mg of the crude dialdehyde of (A) in 20 ml of acetone containing 0.1 of potassium hydrogen carbonate is kept at room temperature for 24 hours. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 166 mg of the residue by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone (2:1) as developing solvent and recrystallization from a mixture of ethyl acetate and n-hexane affords 83 mg of digitoxigeninbisdigitoxoside, m.p. 227 230C. Yield: 50 from digitoxin.
8-3. A solution of 200 mg of the crude dialdehyde of (A) in a mixture of2 m1 of chloroform and 6 m1 of benzene is mixed with 8 g of neutral alumina and kept at room temperature for 20 hours. Then the mixture is filtrated to remove the solid material, and the solid material is washed 3 times with 100 ml of a mixture of methanol and chloroform (1:1). The filtrate solution and washed solvent are combined and evaporated to remove the solvent. Purification of 137 mg of the residue by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone (2:1) and recrystallization from aqueous methanol affords 76 mg of digitoxigenin-bisdigitoxoside, m.p. 227 230C. Yield: 45 from digitoxin.
B-4. A stirred solution of 500 mg of the crude dialdehyde of (A) in 50 ml of 95 methanol is mixed with 250 mg of sodium borohydride and kept at room temperature for 1 hour. The reaction mixture is neutralized with aqueous solution of acetic acid, evaporated under reduced pressure and then extracted with chloroform. The exact solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 503 mg of the residue by thin-layer chromatography gives crude dimethylol of single spot and negative to Tollen reagent. NMR data showed the structure. A solution of 450 mg of the crude dimethylol in 30 ml of methanol is mixed with 4.5 ml of 0.05 N hydrochloric acid and kept at room temperature for 3 hours. The reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, evaporated under reduced pressure, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated by dryness. Purification of the residue by recrystallization from a mixture of ethyl acetate and n-hexane gives 290 mg of digitoxigeninbisdigitoxoside. Yield: more than 80 from digitoxin.
B-5. A mixture of 200 mg of the crude dialdehyde of (A), 12 ml 95 ethanol, 160 mg of phenylhydrazine hydrochloride, 240 mg of sodium acetate trihydrate and 4 ml of water is refluxed for 6 hours. The reaction mixture is concentrated under reduced pressure and extracted with chloroform. The extract solution is washed with 0.5 hydrochloric acid and water, dried and evaporated to give 230 mg of residue, which gives 32 mg of digitoxigenin-bisdigitoxoside on recrystallization from a mixture of acetone and hexane, m.p. 227 230C. Yield: 18.8 from digitoxin.
EXAMPLE 2 To a stirred solution of 1 g of digoxin in a mixture of 20 ml ofchloroform and 60 ml of methanol is added 10 ml of aqueous solution of 10 sodium periodate dropwise and stirred for another 1.5 hours at room temperature. The reaction mixture is filtrated to remove solid material and the filtrate is diluted with 10 ml of water, evaporated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water and dried over anhydrous sodium sulfate and evaporated to leave 1.0 g of crude dialdehyde. The crude dialdehyde is dissolved in 120 ml of 95 methanol and mixed with 500 mg of sodium borohydride with stirring at room temperature. The mixture containing dimethylol is stirred for another 30 minutes. The mixture is adjusted to pH 2.4 to thymol blue test paper with 0.1 N hydrochloric acid and kept at room temperature for 3 hours. The reaction mixture is neutralized with 5 potassium carbonate solution to pH 6.8 7.0, evaporated to remove volatile solvent, and then is extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 707 mg of the residue by recrystallization from a mixture of chloroform and ether afforded 587 mg of pure crystals of digoxigeninbisdigitoxoside, mp. 197C. Yield: 70.3 72. UV: A 218 nm (6 14,500). 1R: v 'a 3500. 1782, 1740, 1625 cm. Anal. Calcd. for C d-1 0 C, 64.59; H, 8.36. Found: C, 64.06; H, 8.46.
EXAMPLE 3 A. To a stirred solution of 1 g of gitoxin in 250 ml of a mixture of chloroform and methanol (1:1) is added a solution of 1 g of sodium periodate in 10 ml of water at room temperature, and the resulting mixed solution is kept at room temperature for 2 hours. The reaction mixture is filtrated to remove solid material, concentrated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue amounted 980 mg which reduced Tollen reagent and showed single spot of dialdehyde on thin-layer chromatogram.
B-l. A solution of 200 mg of the crude dialdehyde of (A) in 20 ml of acetone containing 0.1 of potassium hydrogen carbonate is kept at room temperature for 24 hours. The reaction mixture is neutralized with 5 71 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure. Purification of 148 mg of the residue by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone 1:1 as developing solvent and recrystallization from a mixture of acetone and hexane affords 69 mg of pure crystals of gitoxigenin-bisdigitoxoside, m.p. 199 201C. [a 18.6 (c 0.591, methanol). Yield: 40.5 71 from gitoxin.
B-2. A solution of 200 mg of the crude dialdehyde of (A) in 20 ml of methanol is mixed with 3 ml of 0.05 N hydrochloric acid and kept at room temperature for 24 hours. The reaction mixture is neutralized with 5 "/1 aqueous solution of sodium hydrogen carbonate, concentrated under reduced pressure and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure. Purification of 139 mg of the residue by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone 1:1 as developing solvent and recrystallization from a mixture of acetone and hexane affords 62 mg of gitoxigenin-bisdigitoxoside, m.p. l99 201C. Yield: 36.4 from gitoxin.
B-3. To a solution of 200 mg of the crude dialdehyde of (A) in 20 ml of methanol is added 25 mg of sodium borohydride and kept at room temperature for 1 hour. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, evaporated under reduced pressure, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure. The residue did not reduce Tollen reagent and showed single spot of dimethylol on thin-layer chromatogram. A solution of 200 mg of the crude dimethylol in 20 ml of methanol is mixed with 3.0 ml of 0.05 N hydrochloric acid and kept at room temperature for 2 hours. The reaction mixture is neutralized with aqueous solution of sodium hydrogen carbonate, concentrated under reduced pressure, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of the residue by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone (1:1) as developing solvent and recrystallization from a mixture of acetone and hexane affords 130 mg of gitoxigeninbisdigitoxoside, m.p. 199 215C. Yield: 78 percent from gitoxin. [011 18.6 (c =0.591, methanol). UV: A 219 nm.(e15,300).1R:v,,,,,f" 3500, 1785, 1740, 1630, 1625 cm. Anal. Calcd. for C H O C, 64.59; H, 8.36. Found: C, 64.34; H, 8.47.
EXAMPLE 4 According to a process similar to that of Example 2, diginatin is oxidized with sodium periodate to afford dialdehyde, followed by reduction with sodium borohydride and hydrolysis with diluted hydrochloric acid giving diginatigenin-bis-digitoxoside.
EXAMPLE 5 To a solution of 140 mg of digitoxin-3-acetate in 8 m1of95% ethanol is added 140 mg of sodium periodate in 1.4 ml of water, and the mixture is kept at room temperature for 2 hours. The reaction mixture is filtrated to remove solid material, concentrated to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness to leave 140 mg of white powdery dialdehyde which reduced Tollen reagent and showed characteristic signal at 0.30 1- in its n. m. r. spectrum. A solution of 140 mg of the crude dialdehyde in ml of methanol is mixed with 3 ml of 0.05 N hydrochloric acid, and the mixture is kept at room temperature for 24 hours. The reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, concentrated under reduced pressure and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure. Purification of the 108 mg of the residue by thin-layer chromatography over silica gel (a mixture of chloroform and acetone (2:1) as developing solvent) and recrystallization from a mixture of acetone and n-hexane affords 58 mg of digitoxigenin-bisdigitoxoside-3-acetate, m.p. 140- 145C. Yield: 49.5 Anal. Calcd. for C H O H O: C, 63.96; H, 8.42. Found: C, 63.79; H, 8.76.
EXAMPLE 6 To a solution of 139 mg of digitoxin-3"-acetate in 8 ml of 95 ethanol is added a solution of 139 mg of sodium periodate in 1.4 ml of water, and the mixture is kept at room temperature for 3 hours. The reaction mixture is filtrated to remove solid material, concentrated to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to leave 146 mg of white powdery crude dialdehyde which reduced Tollen reagent and showed characteristic signals at 0.22 1' and 0.44 1- in its n. m. r. spectrum. The crude dialdehyde is dissolved in 24 ml of methanol, mixed with 3.6 ml of 0.05 N hydrochloric acid and kept at room temperature for 24 hours. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure, and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 1 16 mg of the residue by thin-layer chromatography over silica gel and recrystallization from aqueous methanol gives 62 mg of digitoxigeninbis-digitoxoside-3"-acetate, m.p. 143 147C. Yield: 55.5 [01], 17.5 (c 0.258, methanol). Anal. Calcd. for C37H5$O11 l H20: C, H, CH CO, 6.28. Found: C, 64.74; H, 8.25; CHgCO, 6.01.
EXAMPLE 7 To a solution of 150 mg of digitoxigenin-bisdigitoxoside in 10 ml of 95 ethanol is added a solution of 150 mg of sodium periodate in 2 ml of water, and the mixture is kept at room temperature for 1 hour. The reaction mixture is filtrated to remove the solid material, concentrated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dialdehyde on thin-layer chromatogram and reduced Tollen reagent. The dialdehyde (150 mg) dissolved in 15 ml of 95 methanol is mixed with mg of sodium borohydride, and kept at room temperature for 2 hours. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dimethylol on thin-layer chromatogram and did not reduce Tollen reagent. The crude dimethylol (135 mg) dissolved in 12 ml of methanol is mixed with 1.8 m1 of 0.05 N hydrochloric acid and kept at room temperature for 2 hours. The reaction mixture is neutralized with 5 7r aqueous solution of sodium hydrogen carbonate, evaporated to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 118 mg of the residue by recrystallization from a mixture of ethyl acetate and n-hexane gives digitoxigenin-monodigitoxoside, m.p. 197 200C. UV: ).,,,,,,J*'" 218 nm (a 15,090). [11],, 5.2 (c 0.327, methanol). Yield: 76 percent.
EXAMPLE 8 To a solution of 50 mg of digoxigenin-bisdigitoxoside in 3 ml of ethanol is added a solution of 50 mg of sodium periodate in 0.5 ml of water, and the mixture is kept at room temperature for 1 hour. The reaction mixture is filtrated to remove the solid material, concentrated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dialdehyde on thin-layer chromatogram and reduced Tollen reagent. The crude dialdehyde (52 mg) dissolved in 3 ml of 95 methanol is mixed with 10 mg of sodium borohydride, and kept at room temperature for 1 hour. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dimethylol on thinlayer chromatogram and did not reduce Tollen reagent. The crude dimethylol (45 mg) dissolved in 2 ml of methanol is mixed with 0.5 ml of 0.05 N hydrochloric acid and kept at room temperature for 1 hour. The reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, evaporated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 44 mg of the residue by recrystallization from a mixture of ethyl acetate and n-hexane gives digoxigenin-monodigitoxoside, m.p. 210 212C.
EXAMPLE 9 To a solution of 250 mg of gitoxigeninbisdigitoxoside in 20 ml of 95 ethanol is added a solution of 250 mg of sodium periodate in 2.5 ml of water, and the mixture is kept at room temperature for 1.5 hour. The reaction mixture is filtrated to remove the solid material, concentrated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dialdehyde on thin-layer chromatogram and reduced Tollen reagent. The crude dialdehyde (250 mg) dissolved in 20 ml of 95 methanol is mixed with 125 mg of sodium borohydride, and kept at room temperature for 2 hours. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated under reduced pressure and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed single spot of dimethylol on thin-layer chromatogram and did not reduce Tollen reagent. The crude dimethylol (230 mg) dissolved in 20 ml of methanol is mixed with 3.5 ml of 0.05 N hydrochloric acid and kept at room temperature for 2 hours. The reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, evaporated to remove volatile solvent and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 207 mg of the residue by recrystallization from a mixture of ethyl acetate and n-hexane gives gitoxigenin-monodigitoxoside, m.p. 216 218C.
EXAMPLE 10 To a solution of 100 mg of 3/3-(B-D-digitoxosy1-B-D- digitoxosyl-B-D-digitoxosyl)oxy-17B-(3-furyl)-5B,14B- androstan-l4-ol in 12 ml of 95% ethanol is added 100 mg of sodium periodate in 1 ml of water, and the mixture is kept at room temperature for 1 hour. The reaction mixture is concentrated under reduced pressure and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness under reduced pressure. The residue reduced Tollen reagent and showed single spot of dialdehyde on its thin-layer chromatogram. A solution of 98 mg of the crude dialdehyde in 10 ml of 95 methanol is added 50 mg of sodium borohydride, and the mixture is kept at room temperature under nitrogen atmosphere for 1 hour. The reaction mixture is neutralized with 5 aqueous solution of acetic acid, concentrated at room temperature under reduced pressure, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness. The residue did not reduce Tollen reagent and showed single spot of dimethylol on its thin-layer chromatogram. A solution of 100 mg of the crude dimethylol in 5 ml of methanol is mixed with 0.75 ml of 0.05 N hydrochloric acid and the mixture is kept at room temperature for 3 hours. The reaction mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate, and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness. Purification of mg ofthe residue by recrystallization from a mixture of acetone and n-hexane affords 59 mg of pure 3,8-[4-O-(B-D-digitoxosyl)-B-D- digitoxosylloxy-17B-(3-fury1)-5B,14B-androstan-14-01, mp. 199 200C. Yield: 74.3 [01],, +1.0 i 0.8 (c 0.516, methanol). UV: k,,,,,,"' 212 nm (6 5,280). 1R: v,,,,,, 3,500 3600 cm". Anal. Calcd. for C H O C, 67.93; H, 8.80. Found: C, 67.96; H, 8.97.
EXAMPLE 11 To a stirred solution of 50 mg of 3B-(B-D-digitoxosyl- B-D-digitoxosyl-BD-digitoxosyl)oxy- 1 7B-( 3-furyl 5B,14B-androstane-l2B,14-diol in 6 ml of ethanol is added dropwise a solution of 50 mg of sodium periodate in 0.5 ml of water at room temperature. After stirring for another 30 minutes, the reaction mixture is filtrated to remove solid material, diluted with 20 ml of water, evaporated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water. dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness to obtain 44 mg of crude dialdehyde. A solution of 43 mg of the crude dialdehyde in 3 ml of methanol is mixed with 20 mg of sodium borohydride and the mixture is kept at room temperature for 1 hour. The reaction mixture containing crude dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.8 to thymol blue test paper. After stirring for 4 hours under nitrogen atmosphere, the solution is neutralized with 5 sodium hydrogen carbonate, concentrated and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 41 mg of the crude product by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone (2:1) as developing solvent and recrystallization from a mixture of chloroform and ether gives 30 mg of crystals of 3B-[4-O-(B-D-digitoxosyl)-B-D- digitoxosyl]oxy- 1 7B-( 3-furyl)-5B,14B-androstane- 1213,14-diol, mp. 136 139C. [041 0.8 1 04; [011 6.3 i0.5 (c =1.016, chloroform). UV: k 212 n, (:2 4,640). lR: 3500, 1600 cm". Anal. Calcd. for C H O /z H O: C, 65.30; H, 8.61. Found: C, 65.76; H, 9.13.
EXAMPLE 12 To a stirred solution of 800 mg of SB-(B-D- digitoxosyl-B-D-digitoxosyl-B-D-digitoxosyl )oxy- 1 7B- (3-furyl)-5B,14B-androstane-14,l6B-diol in 60 ml of ethanol is added dropwise a solution of 800 mg of sodium periodate in 8 ml of water at room temperature.
After stirring for another 45 minutes, the reaction mixture is filtrated to remove solid material, diluted with 20 ml of water, evaporated under reduced pressure to remove volatile solvent, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated under reduced pressure to dryness to obtain 909 mg of crude dialdehyde. A solution of 900 mg of the crude dialdehyde in 80 ml of 95 methanol is mixed with 80 mg of sodium borohydride and the mixture is kept at room temperature for 1 hour. The reaction mixture containing crude dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.8 to thymol blue test paper. After stirring for 4 hours under nitrogen atmosphere, the solution is neutralized with 5 sodium hydrogen carbonate, concentrated and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 724 mg of the crude product by thin-layer chromatography over silica gel utilizing a mixture of chloroform and acetone (2:1) as developing solvent and recrystallization from a mixture of acetone and hexane gives crystals of 3B-[4-O-(B-D- digitoxosyl)-B-D-digitoxosyl]oxy-17B-(3-furyl)- SB,l4B-androstane-14,16B-diol, mp 105 135C. [th, 10.4 :L 09 (0 0.539, methanol). UV: M 212 nm (6 5,080). IR: v g 3,500, 1603 cm. Anal. Calcd. for C H O 3/2 H O: C, 63.58; H, 8.68. Found: C, 63.59; H, 8.71.
EXAMPLE 13 To a solution of 100 mg of 3B-[4-O-(B-D- digitoxosyl)-B-D-digitoxosyl]oxy-17B-(3-furyl)- 5B,14B-androstan-14-ol in 10 ml of 95 ethanol is added 1.0 ml of 10 aqueous solution of sodium periodate and the mixture is stirred for 1 hour at room temperature. The reaction mixture is diluted with water, evaporated to remove methanol, and then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent to leave 103 mg of crude dialdehyde. The crude dialdehyde is dissolved in 8 ml of 95 methanol, mixed with mg of sodium borohydride, and stirred for 0.5 hour at room temperature. The reaction mixture containing dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.4 and kept at room temperature for 3 hours. Then the mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate to pH 7.0, diluted with water, evaporated to remove volatile solvent and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 95 mg of the crude product by recrystallization from a mixture of methanol and ether gives 77 mg of the pure crystals of 3B-(B-D- digitoxosy1)oxy-17B-(3-furyl)-5B,l4B-androstan-14-o1, mp. 95 97C. [a],, 10.8 i1.4(c =0.361, methanol). UV: A 212 nm (6 5,430). IR: v g, 3400 3600, 1600 cm. Anal. Calcd. for C H O /2 H O: C, 69.99; H, 9.11. Found: C. 70.30; H, 9.43.
ous methanol is added 1.4 ml of 10 aqueous solution of sodium periodate and the mixture is stirred for 1 hour at room temperature. The reaction mixture is diluted with water, evaporated to remove methanol, and
then extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sul- 5 fate and evaporated to remove the solvent, to leave 140 mg of crude dialdehyde. The crude dialdehyde is dissolved in 12 ml of 95 methanol, mixed with mg of sodium borohydride, and stirred for 1.5 hours at room temperature. The reaction mixture containing dimethylol is acidified with 0.1 N hydrochloric acid to pH 2.6 and kept at room temperature for 4 hours. Then the mixture is neutralized with 5 aqueous solution of sodium hydrogen carbonate to pH 7.0, diluted with water, evaporated to remove volatile solvent and ex- 5 tracted with chloroform. The extract solution is washed twice with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 106 mg of the crude product by recrystallization from a mixture of methanol and ether affords 70 mg of the pure crystals of 3B-(B-D-digitoxosyl)oxy-1713-(3- furyl)-5B,l4B-androstane-l4,l6B-diol, mp 218-219C. [01],, i 0; [011 11.2 1" 20 (0 0.403, methanol). UV: M 212 nm (e 5,600). IR: v 3450 cm. Anal. Calcd. for C H O C, 69.02; H, 8.79. Found: C, 69.07; H, 8.94.
EXAMPLE 15 To a solution of 120 mg of digitoxigenin-monodigitoxoside in 2 ml of dry tetrahydrofuran cooled at from 20C to -C under nitrogen atmosphere is added dropwise 1.20 ml of a solution of diisobutylaluminum hydride in tetrahydrofuran (208 mg/ml). After 45 minutes, the reaction mixture is mixed with 3 ml of 2 N-sulfuric acid and stirred for 15 minutes at 0C, and then is extracted with chloroform. The extract solution is washed with 5 aqueous solution of sodium hydrogen carbonate and water, dried over sodium sulfate and evaporated to remove the solvent. Purification of 1 18 mg of the residue by preparative thin-layer chromatography over silica gel utilizing a mixture of acetone and chloroform (1:2) as developing solvent and recrystallization from a mixture of ether and pentane affords 65 mg of 3B-(B-D-digitoxosyl)oxyl7B-(3-furyl)-5B,l4B-androstan-l4-ol, m.p. 95
97C. [M 10.8 i1.4(c 0.361, methanol). UV: )t 212 nm (e 5,430). 1R: v s 3400 3500, 1600 cm.
EXAMPLE 16 To a solution of 450 mg of digoxigenin-bisdigitoxoside in 10 ml of dry tetrahydrofuran cooled at 30C is added 8.8 ml of a solution of diisobutylaluminum hydride in tetrahydrofuran (258 mg/ml) in three portions under nitrogen atmosphere. After 45 minutes, the reaction mixture is mixed with 15 ml of 2 N sulfuric acid and stirred at 0C for 15 min utes, and then extracted with chloroform. The extract solution is washed with 5 aqueous solution of sodium hydrogen carbonate and water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 390 mg of the crude product by thinlayer chromatography over silica gel utilizing a mixture of chloroform and acetone (2:1) as developing solvent and recrystallization from a mixture of chloroform and ether gives 303 mg of 3B-[4-O-(B-D-digitoxosyl)-B-D- digitoxosyl]oxy-l7B-(3-furyl)-5B,14/3-androstane- 1213,14-diol, m.p. 136 139C, [(21 0.8 i 0.4 (c
= 1.016, chloroform). UV: k f 212 nm (6 4,640). IR: v s 3500 cm.
EXAMPLE 17 To a stirred solution of 300 mg of gitoxigeninbisdigitoxoside in ml of tetrahydrofuran is added 1.58 ml of di-isobutylaluminum hydride in dry tetrahydrofuran (1.1 mole equivalent) at 25C under nitrogen atmosphere. After 30 minutes, 5 ml of 2 N sulfuric acid is added into the reaction mixture, and the mixture is stirred under ice-cooling for 10 minutes, and then the resultant solution is extracted with chloroform. The extract solution is washed with an aqueous solution of potassium carbonate and water, dried over anhydrous sodium sulfate and evaporated under reduced pressure. Purification of the crude product by crystallization from a mixture of ether and pentane gives 108 mg of 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxosyl]oxy-17B- (3-furyl)-5B,14B-androstane-l4,16B-dio1, m.p. 105 135C. [11],, 10.4 0.9 (c 0.539, methanol).
EXAMPLE 18 To a solution of 400 mg of digitoxin in ml of dioxane is added 500 mg of lead tetraacetate, and the mixture is stirred at room temperature for 1.5 hours. The reaction mixture is filtrated to remove solid material and the filtrate is diluted with 10 ml of water. The diluted filtrate is evaporated to remove volatile solvent and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to remove the solvent. Purification of 358 mg of the residue by thin-layer chromatography over silica gel using a mixture of chloroform and ethyl acetate (1:1) as developing solvent and recrystallization from a mixture of ether and petroleum ether gives the dialdehyde identical with that obtained in Example l (A). The dialdehyde obtained above is dissolved in 95 ethanol and mixed with 10 mg of sodium borohydride. After 1, hour, the mixture is acidified to pH 2.4 to thymol blue test paper with 1 N sulfuric acid and kept at room temperature for 30 minutes. The reaction mixture is neutralized with 0.1 N sodium carbonate solution, evaporated to remove volatile solvent and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of the residue by thin-layer chromatography over silica gel using a mixture of chloroform and acetone (2:1 as developing solvent and recrystallization from a mixture of acetone and n-hexane gives 287 mg of digitoxigeninbisdigitoxoside, m.p. 226 230C. Yield: 87
EXAMPLE 19 To a solution of 100 mg of digitoxin in 4 ml of chloroform and 4 ml of carbon tetrachloride cooled at 0C is added 100 mg of powdered ruthenium tetroxide. After 30 minutes stirring, the mixture is mixed with a small amount of methanol, and filtrated to remove solid material. The filtrate is evaporated to dryness to leave 99 mg of the residue identical with dialdehyde obtained by the process of Example 1 (A). The dialdehyde is dissolved in 1 ml of 95 ethanol, mixed with 8 mg of sodium borohydride and the mixture is kept at room temperature for 0.5 hour. The reaction mixture containing crude dimethylol is acidified to pH 3.5 to thymol blue test paper with 0.1 N sulfuric acid. After 3 hours, the reaction mixture is neutralized with 5 sodium hydrogen carbonate, concentrated and extracted with chloroform. The extract solution is washed with water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of the residue by thin-layer chromatography and recrystallization gives 73 mg of digitoxigenin-bisdigitoxoside, m.p. 228 230C. Yield: 89
EXAMPLE 20 To a solution of 100 mg of digitoxin in 5 ml of acetic acid is added 1 ml of water and 500 mg of powdered sodium oismuthate. After shaking for 3 hours at room temperature, the mixture is filtered to remove the solid material. The solid material is washed thoroughly with ethyl acetate. Mixture of the filtrate and washed solvent is evaporated to dryness. The residue is treated with sodium borohydride and diluted sulfuric acid according to the process of Example 1 (8-4) to afford mg of digitoxigenin-bisdigitoxoside, m.p. 228 230C. Yield:
EXAMPLE 21 To a solution of 10 mg of digitoxin in 1 ml of benzene is added 13 mg of iodosobenzene diacetate. After stirring for 5 hours, the reaction mixture is washed with aqueous solution of sodium bisulfate and water, dried over anhydrous sodium sulfate and evaporated to dryness. The residue showed spot of dialdehyde on its thinlayer chromatogram. The residue is treated with sodium borohydride and diluted sulfuric acid according to the process of Example 1 (B-4) to afford digitoxigenin-bisdigitoxoside, m.p. 228 231C.
EXAMPLE 22 A mixture of 9 mg of 3B-[4-O-(B-D-digitoxosyl)-B- D-digitoxosyl]oxy-17B-( 3-furyl)-5B,14B-androstane- 14,16B-dio1, 0.5 ml of pyridine and 0.5 ml of acetic anhydride is kept at room temperature for 5 days. The reaction mixture is poured onto iced water and extracted with chloroform. The extract solution is washed successively with water, aqueous sodium carbonate solution and diluted hydrochloric acid and water, dried over anhydrous sodium sulfate and evaporated to dryness. Purification of 12 mg of the residue by thin-layer chromatography over silica gel using a mixture of ethyl acetate and benzene (1:2) as developing solvent and recrystallization from a mixture of ether and n-hexane gives 33- [4-O-(B-D-digitoxosyl)-B-D-digitoxosyl]oxy-17B-(3- furyl)-5B,14B-androstane-14,16B-diol tetraacetate, m.p. 103 106C (amorphous).
EXAMPLE 23 A tablet is prepared in conventional manner from 0.2 mg of 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxo. vl]oxy- 17B-(3-furyl)-5B,l4B-androstane-l4,16B-diol, L mg of starch and a small amount of magnesium stearate.
Six tablets per day for saturation or two tablets per day for maintenance dosis are given to a patient.
EXAMPLE 24 A colored powder consisting of 1 weight of 3B-[4-O- (B-D-digitoxosyl)-B-D-digitoxosyl]oxy-17B-(3-furyl)- 5B,14B-androstane-l4,16B-diol and 10,000 weights of starch.
EXAMPLE 25 An injection, containing a solution of 2 mg of 313-14- O-(B-D-digitoxosyl )-B-D-digitoxosyl]oxy-l 7B-( 3- furyl)-B,l4B-androstan-l4-ol in 1 ml of alcohol and stabilizer sealed under nitrogen gas, is administered to a patient at a dosis of 2 to 4 ml per a day for quick saturation or critical cases.
What we claim is:
ll. A process for the treatment of human, poultry or veterinary heart diseases which comprises the administration of a medicament comprising a pharmaceutically effective amount of a cardiotonic compound of following formula 3B-[4-O-(B-D-digitoxosyl)-B-D-digitoxosyl]oxy- 513,14,8-androstane-l2B,l4-diol, 3B-[4-O-(B-D-digitoxosyl)-B-Ddigitoxosyl]oxy- 5B,l4B-androstane-l4,l6B-diol, 3B-[4-O-(B-D'digitoxosyl)-B-D-digitoxosyl]oxy- 5B,l4B-androstane-12B,l4,l6Btriol, or a lower alkanoate thereof, in combination with a pharmaceutical carrier.
3. A process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg ofa cardiotonic compound selected from the group consisting of androstane-12B,l4-diol, 3B-(B-D-digitoxosyUoxy-l7,8-(3-furyl)5/3,l4B-
androstane-l4,l6B-diol, 3B-[4-O-(B-D-digitoxosyl)-BD-digitoxosyl ]oxy-l 7B- (3furyl)-5B,l4B-androstane-l2,B,l4-diol, 3B-[4-O-(B-D-digitoxosyl )-/3-Ddigitoxosyl ]oxy-l 7B- (3-furyl)-5B,l4,B-androstane-l4,16B-diol, or a lower alkanoate thereof, in combination with a pharmaceutical carrier.
4. A process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg of 3B-(B-D-digitoxosyl)oxy-l7B-(3-furyl)-5B,l4B- androstane-l4,l6B-diol or 3B-[4-O(B-D-digitoxosyl)- B-D-digitoxosyHoxy-l7B(3-furyl)-5B,l4B-androstane- 14,16,8-diol, in combination with a pharmaceutical carrier.
5. A process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg of 3B-(B-D-digitoxosyl)oxy-l7B-(3-furyl)'5[3,l4B- androstane-l2B,l4-diol or 3B-[4-O-(B'D-digitoxosyl)- B-D-digitoxosyHoxyl 7B-(3furyl 5,8,l4B-androstane-l2B,14diol, in combination with a pharmaceutical carrier.
Claims (5)
1. A PROCESS FOR THE TREATMENT OF HYMAN, POULTRY OR VETERINARY HEART DISEASES WHICH COMPRISES THE ADMINISTRATION OF A MEDICAMENT COMPRISING A PHARMACEUTICALLY EFFECTIVE AMOUNT OF A CARDIOTONIC COMPOUND OF FOLLOWING FORMULA
2. A process according to claim 1 which comprises administering a medicament comprising 0.1 Mu g to 10 mg per day per kilogram of body weight of a cardiotonic compound selected from the group consisting of 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-12 Beta ,14-diol, 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-14,16 Beta -diol, 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-12 Beta ,14,16 Beta -triol, 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-5 Beta ,14 Beta -androstane-12 Beta ,14-diol, 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-5 Beta ,14 Beta -androstane-14,16 Beta -diol, 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-5 Beta ,14 Beta -androstane-12 Beta ,14,16 Beta -triol, or a lower alkanoate thereof, in combination with a pharmaceutical carrier.
3. A process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg of a cardiotonic compound selected from the group consisting of 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-12 Beta ,14-diol, 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)5 Beta ,14 Beta -androstane-14,16 Beta -diol, 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-12 Beta ,14-diol, 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-14,16 Beta -diol, or a lower alkanoate thereof, in combination with a pharmaceutical carrier.
4. A process according to claim 1 which comprises administering a medicament comprising about 0.2 to 8 mg of 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-14,16 Beta -diol or 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-14,16 Beta -diol, in combination with a pharmaceutical carrier.
5. A process according to claim 1 which comprises administEring a medicament comprising about 0.2 to 8 mg of 3 Beta -( Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-12 Beta ,14-diol or 3 Beta -(4-O-( Beta -D-digitoxosyl)- Beta -D-digitoxosyl)oxy-17 Beta -(3-furyl)-5 Beta ,14 Beta -androstane-12 Beta ,14-diol, in combination with a pharmaceutical carrier.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00305554A US3856944A (en) | 1969-03-19 | 1972-11-10 | Pharmaceutical compositions |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2099469 | 1969-03-19 | ||
| US1833770A | 1970-03-10 | 1970-03-10 | |
| US00305554A US3856944A (en) | 1969-03-19 | 1972-11-10 | Pharmaceutical compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3856944A true US3856944A (en) | 1974-12-24 |
Family
ID=27283251
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00305554A Expired - Lifetime US3856944A (en) | 1969-03-19 | 1972-11-10 | Pharmaceutical compositions |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3856944A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1988004175A1 (en) * | 1986-12-09 | 1988-06-16 | Long Island Jewish Medical Center | Biologically active agent |
| US5028438A (en) * | 1986-12-09 | 1991-07-02 | Long Island Jewish Medical Center | Biologically active agent having anti-hypertensive activity in mammals |
| US5122371A (en) * | 1986-12-09 | 1992-06-16 | Chaslow Fred I | Biologically active agent having antihypertensive activity in mammals |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3432486A (en) * | 1965-04-01 | 1969-03-11 | Hitoshi Minato | Synthesis of furan compounds including pharmacologically active furyl steroids |
-
1972
- 1972-11-10 US US00305554A patent/US3856944A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3432486A (en) * | 1965-04-01 | 1969-03-11 | Hitoshi Minato | Synthesis of furan compounds including pharmacologically active furyl steroids |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1988004175A1 (en) * | 1986-12-09 | 1988-06-16 | Long Island Jewish Medical Center | Biologically active agent |
| US5028438A (en) * | 1986-12-09 | 1991-07-02 | Long Island Jewish Medical Center | Biologically active agent having anti-hypertensive activity in mammals |
| US5122371A (en) * | 1986-12-09 | 1992-06-16 | Chaslow Fred I | Biologically active agent having antihypertensive activity in mammals |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Lee et al. | Antitumor agents. 33. Isolation and structural elucidation of bruceoside-A and-B, novel antileukemic quassinoid glycosides, and brucein-D and-E from Brucea javanica | |
| Kuzuhara et al. | Syntheses with partially benzylated sugars. VIII. Substitution at carbon-5 in aldose. The synthesis of 5-O-methyl-D-glucofuranose derivatives | |
| Meselhy et al. | Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca2+ antagonistic activity of tinctormine | |
| US3257390A (en) | Ring a unsaturated 21-hydroxy-3-oxo-17alpha-pregnane-17-carboxylic acid lactone diuretic agents | |
| Vorbrueggen et al. | Alkaloid Studies. XXXVI. 1 The Complete Absolute Configuration of the Diterpene Alkaloids of the Garrya and Atisine Groups and their Direct Correlation with the Phyllocladene-type Diterpenes 2 | |
| Pelletier et al. | Constituents of Polygala species: The structure of tenuifolin, a prosapogenin from P. senega and P. tenuifolia | |
| CA1185252A (en) | Reactive iridoid derivatives; process for manufacture and application of same | |
| US3856944A (en) | Pharmaceutical compositions | |
| Chatterjee et al. | Extractives of Aphanamixis polystachya wall (Parker): The structures and stereochemistry of aphanamixin and aphanamixinin | |
| Ham et al. | Studies on the chemistry of aldosterone | |
| Brownie et al. | The in vitro enzymic hydroxylation of steroid hormones. 2. Enzymic 11β-hydroxylation of progesterone by ox-adrenocortical mitochondria | |
| Baker et al. | Puromycin. Synthetic studies. XIV. Use of the N-phthalyl blocking group for synthesis of aminonucleosides | |
| US3398138A (en) | Novel cardenolides and derivatives | |
| Kupchan et al. | Tumor inhibitors. LXIV. Isolation and structural elucidation of novel bufadienolides, the cytotoxic principles of Bersama abyssinica | |
| Kuehl Jr et al. | Streptomyces antibiotics. X. The degradation of streptomycin and dihydrostreptomycin with ethyl mercaptan | |
| CN104876997A (en) | Glycyrrhetinic acid 3-hydroxy structure modification method | |
| Robertson et al. | 269. Polyterpenoid compounds. Part I. Betulic acid from Cornus florida, L. | |
| US3745156A (en) | Novel process for partial hydrolysis of glycosides and some products thereof | |
| US3843628A (en) | Cardiotonic glycosides | |
| Zorbach et al. | Partial Synthesis of Evomonoside1 | |
| Wolff et al. | The Synthesis of C-18 Functionalized Hormone Analogs. III. Synthesis of Aldosterone1a | |
| Wood Jr et al. | 1, 2: 3, 5-Di-O-benzylidene-α-D-glucose | |
| US3271392A (en) | 17alpha-[3'-furyl]-estrogens | |
| Kouno et al. | A xylosylglucoside of xanthoxylin from Sapium sebiferum root bark | |
| Kuzuhara et al. | Synthesis with partially benzylated sugars. IX. Synthesis of a 5-hexulosonic acid (5-oxohexonic acid) derivative and inversion of configuration at C-5 in an aldose |