US3850000A - Tunnelling shields - Google Patents
Tunnelling shields Download PDFInfo
- Publication number
- US3850000A US3850000A US00336332A US33633273A US3850000A US 3850000 A US3850000 A US 3850000A US 00336332 A US00336332 A US 00336332A US 33633273 A US33633273 A US 33633273A US 3850000 A US3850000 A US 3850000A
- Authority
- US
- United States
- Prior art keywords
- shield
- rearward
- tunnelling
- rearward part
- lining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000314 lubricant Substances 0.000 claims description 8
- 229910000278 bentonite Inorganic materials 0.000 claims description 5
- 239000000440 bentonite Substances 0.000 claims description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000010687 lubricating oil Substances 0.000 claims 1
- 239000011440 grout Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011178 precast concrete Substances 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/06—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
- E21D9/0607—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/08—Lining with building materials with preformed concrete slabs
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D19/00—Provisional protective covers for working space
- E21D19/04—Provisional protective covers for working space for use in drifting galleries
Definitions
- a tunnelling shield has a rearward rotatable part having a spiral rearward end to engage a forward end of a spiral tunnel lining.
- a drive mechanism rotates the rearward shield part as further tunnel segments are laid one by one in the shield end against the previous segment to be erected. Rams advance the shield as the rearward end rotates to allow a newly erected segment to engage the tunnel wall.
- Tunnelling shields for erecting spirally wound tunnel linings are known in which one or more turns of the spiral are erected in the rearward end of the shield and the shield is advanced by rams pushing on the end of the erected lining.
- a void is left which must be filled with grout or the wall of the tunnel could collapse against the lining and exert a non-uniform pressure on the lining which could cause the lining to collapse at that location.
- US. Pat. No. 739,969 is representative of the above prior art.
- the shield having means for rotating said rearward part of the shield with respect to the forward part of the shield in the opposite direction to which the step faces to withdraw the shield from the newly erected segment and means to advance the shield along the tunnel simultaneously with said rotation of the rearward part of the shield.
- FIG. I is a perspective view of a tunnelling shield and partially erected tunnel lining
- FIG. 2 is a plan view of the partially erected lining
- FIG. 3 is a side view of one segment of the lining
- FIG. 4 is a perspective view of the segment
- FIG. 5 is a detailed view of the attachment between two segments.
- FIG. 6 is a diagrammatic side view of a modified form of tunnelling shield
- FIG. 7 is a view looking in the direction of the arrow X on FIG. 6;
- FIG. 8 is a detail view of part of the shield shown in FIG. 6;
- FIG. 9 is a further detail view of part of the shield of FIG. 6.
- FIG. I of the drawings there is shown a tunnelling shield comprising a forward portion 10 which is provided with a conventional earth cutting mechanism (not shown) in the leading end of the shield indicated at 11.
- the shield has a tail portion 12 which is mounted on the shield for rotation with respect to the shield about the shield axis 13.
- the trailing edge 14 of the tail 1 2 has a contour of one turn of a spiral and the ends of the spiral are connected by a step on the contour 15.
- the spiral is equivalent to that of spirally wound tunnel lining indicated generally at 16.
- the internal diameter of the tail over a portion 17 of the tail adjacent the step 16 gradually increases towards the step 15 so that the tail tapers to an edge at the step 15.
- a number of hydraulic rams (not shown) are mounted around the inner surface of the shield 10 generally parallel to the axis 13 and act through the tail 14 on the end of the patially erected lining 16 to advance the shield 10 as the tail 10 is rotated as described later. Rotation of the tail with respect to the shield is effected by a hydraulic ram 18 mounted on the inner surface of the portion 17 of the tail to act circumferentially against a previously erected segment.
- the tunnel lining comprises a spiral of separate segments 20 one of which is shown in detail in FIGS. 3 and 4.
- the segment is formed in pre-cast concrete or any other suitable material and two axially spaced bores are cast in the segment through which tie bars 21 for joining adjacent segments together extend.
- a joint between two adjacent segments is illustrated in FIG. 5 of the drawings and it will be seen that the bores through which the tie bars 21 extend are counterbored as indicated at 22 at the ends of the segments.
- the ends of the tie bars are screw threaded and are connected together by a screw threaded coupler 23.
- the left hand segment 20 is secured to its tie bar by a nut 24 and washer 25 on the tie bar which are tightened against the bottom of the counterbore to clamp the segment 20 against the previously erected segment.
- the right hand segment 20 is clamped firmly against the left hand segment 20 in a similar manner.
- the adjancent circumferential edges of the segments have conventional interlocking tongues and sockets to lock the segments together.
- each segment 20 which, when erected, temporarily forms the leading edge of the tunnel lining has a rebate 26 in which the trailing edge of the tail 12 of the shield engages.
- the outer diameter of the shield 10 is substantially the same as that of the erected lining .16.
- the shield is advanced by the action of the hydraulic rams against the leading edge of the partially erected lining and simultaneously the tail is rotated in the direction of the arrow 27 to withdraw the tail from the newly erected segment until only the free end of the newly erected segment projects into the tail.
- the rate of advancement of the shield and rotation of the tail 12 are so controlled that the trailing edge of the tail 12 remains throughout in engagement in the rebate 26 in the leading end of the lining.
- the wall of the tunnel is continuously supported by the forward part of the shield 10, or the tail 12 or the lining 16.
- the ground around the tunnel is continuously supported to prevent any movement of the ground.
- the diameter of the shield and tail is equal to that of the lining no void is left around the lining by the shield to be filled with grout.
- the tail may be rotated with respect to the shield by a rotary drive mechanism mounted within the shield.
- a rotary drive mechanism mounted within the shield.
- the tunnelling shield is generally similar to that described above and like parts have been given the same reference numerals.
- the main difference lies in the arrangement for driving and supporting the tail part 12 of the shield 10.
- the tail part of the shield is supported for rotation with respect to the forward part of the shield by rollers 30 which project from the rearward end of the forward part of the shield and are rotatably mounted on axles 31 which are rigidly mounted parallel to the shield axis on annular webs 32 extending around the inner surface of the forward portion.
- axles 31 which are rigidly mounted parallel to the shield axis on annular webs 32 extending around the inner surface of the forward portion.
- a number of groups of rollers are provided around the shield as can be seen in FIG. 7.
- the tail portion of the shield has two spaced annular track elements 33 which the rollers engage and each roller 30 has a central encircling enlargement 34 which engages between the track elements 33 so that the tail portion 12 is constrained against axial movement with respect to the forward portion of the shield.
- a number of fixed pins 35 extend between the track elements 33 to form a rack around the inner surface of the tail portion of the shield which is engaged by a plurality of pinions 36 driven by hydraulic fluid motors 37 mounted on the forward part of the shield as shown in FIG. 9.
- the pinions 36 and motors 37 are located between the groups of rollers 30 as can be seen in FIG. 7.
- each ram 38 located between the groups of rollers 30 there are hydraulic rams 38 which extend axially along the inner surface of the forward portion of the shield 10 each ram having a push rod 39 extendng rearwardly of the forward portion of the shield through the tail portion of the shield, the push rod carrying a presser member 40 at its rearward end for engaging the forward end of the newly erected tunnel lining to drive the tunnelling shield forward as the tail portion of the shield 12 is rotated.
- FIG. 8 of the drawings shows in detail the joint between the forward and tail portions of the shield.
- the outer seal 43 allows the bentonite to escape through the gap between the shield portions to reach the outer surface of the shield and in so doing it removes any spoil between the portions of the shield and the bentonite acts as a lubricant for the outer surface of the shield.
- the inner seal 42 prevents any bentonite escaping inwardly between the shield portions.
- a tunnelling shield for use in erecting a spiral tunnel lining, the shield being of cylindrical form and having forward and rearward parts which are rotatable relatively to one another about the shield axis, the rearward part of the shield having a trailing end which has a spiral form extending between a step facing generally around the shield, so that in use the end of the shield can engage a partially erected spiral lining to support the ground adjacent the lining and each additional segment can be located in the shield adjacent said step and attached to the previously erected segment, the shield having means for rotating said rearward part of the shield with respect to the forward part of the shield in the opposite direction to which the step faces to withdraw the shield from the newly erected segment means to advance the shield along the tunnel simultaneously with said rotation of the rearward part of the shield.
- a tunnelling shield as claimed in claim 1 wherein the means to rotate the rearward part of the shield with respect to the forward part comprise a drive mechanism mount on the forward part of the shield drivably engaging the rearward part of the shield.
- a tunnelling shield as claimed in claim 3 wherein the drive mechanism comprises one or more drive motor spaced around the inner surface of the forward part of the shield, the or each motor having a drive pinion which meshes with a rack extending around the inner surface of the rearward part of the shield.
- a tunnelling shield as claimed in claim 1 wherein the means for advancing the shield along the excavated tunnel comprise a plurality of hydraulic rams mounted around the inner surface of the forward part of the shield for extending through the rearward part of the shield to act on the end of the partially erected lining to drive the shield forward.
- a tunnelling shield as claimed in claim 1 wherein the rearward part of the shield is supported on the forward part of the shield by a plurality of rollers mounted on the forward part of the shield for rotation about axes parallel to the shield axis and which rollers engage a track formed around the inner surface of the rearward part of the shield.
- a tunnelling shield as claimed in claim 8 wherein the track comprises two elements spaced axially along the shields and each roller has two axially spaced surfaces for engaging the two elements respectively and an enlargement encircles the roller between said surfaces which enlargement engages between the elements so that the rearward part of the shield is supported for rotation and is axially located with respect to the forward part of the shield.
- a tunnelling shield as claimed in claim 1 wherein an annular seal is provided between the forward and grearward parts of said shield adjacent the outer surliquid lubricant between the adjacent parts of said shield outside the seal to flush spoil from between the parts of the shield and to provide a lubricant for the outer surface of the shield.
- a tunnelling shield as claimed in claim 11 wherein a second annular seal is provided between the first seal and the outer surface of the shield and is arranged to prevent spoil passing towards the first seal from outside the shield whilst permitting said lubricant to flow outwardly to the shield surface and said injection means are arranged to deliver the lubricant liquid to the space between said seals.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Lining And Supports For Tunnels (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
A tunnelling shield has a rearward rotatable part having a spiral rearward end to engage a forward end of a spiral tunnel lining. A drive mechanism rotates the rearward shield part as further tunnel segments are laid one by one in the shield end against the previous segment to be erected. Rams advance the shield as the rearward end rotates to allow a newly erected segment to engage the tunnel wall.
Description
United States Patent McBean 1 Nov. 26, 1974 TUNNELLING SHIELDS [75] Inventor: Rupert John Sidney McBean,
Surrey, England [73] Assignee: Kinnear Moddie (Concrete) Limited, London, England [22] Filed: Feb. 27, 1973 [21] Appl. No.: 336,332
[30] Foreign Application Priority Data Mar. 2, 1972 Great Britain 9751/72 [52] US. Cl. 61/85, 61/45 R [51] Int. Cl. E01g 3/02 [581 Field of Search 61/85, 84, 42, 45
[56] References Cited UNITED STATES PATENTS 739,969 9/1903 Young 61/45 R FOREIGN PATENTS OR APPLICATIONS 916,208 8/1946 France 61/45 R 4,204 7/1881 Great Britain... 61/85 1,019,624 11/1957 Germany a 61/45 R Primary Examiner-Dennis L. Taylor Attorney, Agent, or Firm-Cuhsman, Darby & Cushman 57] ABSTRACT A tunnelling shield has a rearward rotatable part having a spiral rearward end to engage a forward end of a spiral tunnel lining. A drive mechanism rotates the rearward shield part as further tunnel segments are laid one by one in the shield end against the previous segment to be erected. Rams advance the shield as the rearward end rotates to allow a newly erected segment to engage the tunnel wall.
13 Claims, 9 Drawing Figures 1 TUNNELLING SHIELDS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to tunnelling shields for use in erecting a spiral tunnel lining.
2. Description of the Prior Art Tunnelling shields for erecting spirally wound tunnel linings are known in which one or more turns of the spiral are erected in the rearward end of the shield and the shield is advanced by rams pushing on the end of the erected lining. In practice it has been found necessary to erect a number of segments and then advance the shield followed by a further erection operation so that the shield advances step by step between the operations of erecting segments. Furthermore on withdrawing the shield from around the lining a void is left which must be filled with grout or the wall of the tunnel could collapse against the lining and exert a non-uniform pressure on the lining which could cause the lining to collapse at that location. US. Pat. No. 739,969 is representative of the above prior art.
SUMMARY OF THE INVENTION trailing end which has a spiral form extending between.
a step facing generally around the shield, so that in use the end of the shield can engage a partially erected spiral lining to support the ground adjacent the lining and each additional segment can be located in the shield adjacent said step and attached to the previously erected segment, the shield having means for rotating said rearward part of the shield with respect to the forward part of the shield in the opposite direction to which the step faces to withdraw the shield from the newly erected segment and means to advance the shield along the tunnel simultaneously with said rotation of the rearward part of the shield.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a perspective view ofa tunnelling shield and partially erected tunnel lining;
FIG. 2 is a plan view of the partially erected lining;
FIG. 3 is a side view of one segment of the lining;
FIG. 4 is a perspective view of the segment;
FIG. 5 is a detailed view of the attachment between two segments.
FIG. 6 is a diagrammatic side view ofa modified form of tunnelling shield;
FIG. 7 is a view looking in the direction of the arrow X on FIG. 6;
FIG. 8 is a detail view of part of the shield shown in FIG. 6; and
FIG. 9 is a further detail view of part of the shield of FIG. 6.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring firstly to FIG. I of the drawings there is shown a tunnelling shield comprising a forward portion 10 which is provided with a conventional earth cutting mechanism (not shown) in the leading end of the shield indicated at 11.
The shield has a tail portion 12 which is mounted on the shield for rotation with respect to the shield about the shield axis 13. The trailing edge 14 of the tail 1 2 has a contour of one turn of a spiral and the ends of the spiral are connected by a step on the contour 15. The spiral is equivalent to that of spirally wound tunnel lining indicated generally at 16. The internal diameter of the tail over a portion 17 of the tail adjacent the step 16 gradually increases towards the step 15 so that the tail tapers to an edge at the step 15.
A number of hydraulic rams (not shown) are mounted around the inner surface of the shield 10 generally parallel to the axis 13 and act through the tail 14 on the end of the patially erected lining 16 to advance the shield 10 as the tail 10 is rotated as described later. Rotation of the tail with respect to the shield is effected by a hydraulic ram 18 mounted on the inner surface of the portion 17 of the tail to act circumferentially against a previously erected segment.
The tunnel lining comprises a spiral of separate segments 20 one of which is shown in detail in FIGS. 3 and 4. The segment is formed in pre-cast concrete or any other suitable material and two axially spaced bores are cast in the segment through which tie bars 21 for joining adjacent segments together extend. A joint between two adjacent segments is illustrated in FIG. 5 of the drawings and it will be seen that the bores through which the tie bars 21 extend are counterbored as indicated at 22 at the ends of the segments. The ends of the tie bars are screw threaded and are connected together by a screw threaded coupler 23. The left hand segment 20 is secured to its tie bar by a nut 24 and washer 25 on the tie bar which are tightened against the bottom of the counterbore to clamp the segment 20 against the previously erected segment. The right hand segment 20 is clamped firmly against the left hand segment 20 in a similar manner. The adjancent circumferential edges of the segments have conventional interlocking tongues and sockets to lock the segments together.
As will be seen in FIGS. 3 and 4 the outer peripheral edge of each segment 20 which, when erected, temporarily forms the leading edge of the tunnel lining has a rebate 26 in which the trailing edge of the tail 12 of the shield engages. The outer diameter of the shield 10 is substantially the same as that of the erected lining .16. Thus there is no void around the lining to be filled with grout and the tunnel is continuously supported by the shield, the tail or the lining.
The method of erection of the tunnel lining will now be described. It is assumed that the cutter mechanism at the leading end of the shield has excavated sufficient earth at the tunnel face to enable the shield 10 to be advanced. During erection of the tunnel lining the trailing edge of the tail 13 engages in the rebate 26 around the periphery of the leading end of the partially erected lining. The free end of the last segment 20 to be erected projects into the tail 12 over the step 15. A new segment 20 to be erected is offered up to the free end of the last segment to be erected and is connected thereto as described earlier with reference to FIG. 5. The shield is advanced by the action of the hydraulic rams against the leading edge of the partially erected lining and simultaneously the tail is rotated in the direction of the arrow 27 to withdraw the tail from the newly erected segment until only the free end of the newly erected segment projects into the tail. The rate of advancement of the shield and rotation of the tail 12 are so controlled that the trailing edge of the tail 12 remains throughout in engagement in the rebate 26 in the leading end of the lining.
It will be appreciated from the above method that the wall of the tunnel is continuously supported by the forward part of the shield 10, or the tail 12 or the lining 16. Thus the ground around the tunnel is continuously supported to prevent any movement of the ground. Further since the diameter of the shield and tail is equal to that of the lining no void is left around the lining by the shield to be filled with grout.
It will be appreciated that many modifications may be made to the above apparatus without departing from the scope of the invention. For example, the tail may be rotated with respect to the shield by a rotary drive mechanism mounted within the shield. One such mechanism is illustrated in FIGS. 6 to 9 to which reference" will now be made.
The tunnelling shield is generally similar to that described above and like parts have been given the same reference numerals. The main difference lies in the arrangement for driving and supporting the tail part 12 of the shield 10. The tail part of the shield is supported for rotation with respect to the forward part of the shield by rollers 30 which project from the rearward end of the forward part of the shield and are rotatably mounted on axles 31 which are rigidly mounted parallel to the shield axis on annular webs 32 extending around the inner surface of the forward portion. A number of groups of rollers are provided around the shield as can be seen in FIG. 7. The tail portion of the shield has two spaced annular track elements 33 which the rollers engage and each roller 30 has a central encircling enlargement 34 which engages between the track elements 33 so that the tail portion 12 is constrained against axial movement with respect to the forward portion of the shield.
A number of fixed pins 35 extend between the track elements 33 to form a rack around the inner surface of the tail portion of the shield which is engaged by a plurality of pinions 36 driven by hydraulic fluid motors 37 mounted on the forward part of the shield as shown in FIG. 9. The pinions 36 and motors 37 are located between the groups of rollers 30 as can be seen in FIG. 7. Also located between the groups of rollers 30 there are hydraulic rams 38 which extend axially along the inner surface of the forward portion of the shield 10 each ram having a push rod 39 extendng rearwardly of the forward portion of the shield through the tail portion of the shield, the push rod carrying a presser member 40 at its rearward end for engaging the forward end of the newly erected tunnel lining to drive the tunnelling shield forward as the tail portion of the shield 12 is rotated.
FIG. 8 of the drawings shows in detail the joint between the forward and tail portions of the shield. As
tonite into the space under pressure. The outer seal 43 allows the bentonite to escape through the gap between the shield portions to reach the outer surface of the shield and in so doing it removes any spoil between the portions of the shield and the bentonite acts as a lubricant for the outer surface of the shield. The inner seal 42 prevents any bentonite escaping inwardly between the shield portions.
I claim:
1. A tunnelling shield for use in erecting a spiral tunnel lining, the shield being of cylindrical form and having forward and rearward parts which are rotatable relatively to one another about the shield axis, the rearward part of the shield having a trailing end which has a spiral form extending between a step facing generally around the shield, so that in use the end of the shield can engage a partially erected spiral lining to support the ground adjacent the lining and each additional segment can be located in the shield adjacent said step and attached to the previously erected segment, the shield having means for rotating said rearward part of the shield with respect to the forward part of the shield in the opposite direction to which the step faces to withdraw the shield from the newly erected segment means to advance the shield along the tunnel simultaneously with said rotation of the rearward part of the shield.
2. A tunnelling shield as claimed in claim 1 wherein said rearward part ofthe shield tapers around the shield to an edge at said step.
3. A tunnelling shield as claimed in claim 1 wherein the means to rotate the rearward part of the shield with respect to the forward part comprise a drive mechanism mount on the forward part of the shield drivably engaging the rearward part of the shield.
4. A tunnelling shield as claimed in claim 3 wherein the drive mechanism comprises one or more drive motor spaced around the inner surface of the forward part of the shield, the or each motor having a drive pinion which meshes with a rack extending around the inner surface of the rearward part of the shield.
5. A tunnelling shield as claimed in claim 4 wherein the rack is formed by a plurality of rigidly mounted pins spaced around the inner surface of the rearward part of the shield with which the pinion or pinions of the or each drive motor mesh.
6. An apparatus as claimed in claim 3 wherein the means to rotate the rearward part of the shield with respect to the forward part of the shield comprise a ram mounted in the rearward part of the shield to act generally tangentially to the shield for pressing against a previously erected segment of the lining and thereby rotate the'shield.
7. A tunnelling shield as claimed in claim 1 wherein the means for advancing the shield along the excavated tunnel comprise a plurality of hydraulic rams mounted around the inner surface of the forward part of the shield for extending through the rearward part of the shield to act on the end of the partially erected lining to drive the shield forward.
8. A tunnelling shield as claimed in claim 1 wherein the rearward part of the shield is supported on the forward part of the shield by a plurality of rollers mounted on the forward part of the shield for rotation about axes parallel to the shield axis and which rollers engage a track formed around the inner surface of the rearward part of the shield.
9. A tunnelling shield as claimed in claim 8 wherein the track comprises two elements spaced axially along the shields and each roller has two axially spaced surfaces for engaging the two elements respectively and an enlargement encircles the roller between said surfaces which enlargement engages between the elements so that the rearward part of the shield is supported for rotation and is axially located with respect to the forward part of the shield.
10. A tunnelling shield as claimed in claim 9 and in the case wherethe rearward part of the shield has a rack extending around the inner surface of the shield for engagement by motor driven pinions to rotate the rearward part of the shield wherein the rack for engagement by said drive pinions is mounted between said spaced elements.
11. A tunnelling shield as claimed in claim 1 wherein an annular seal is provided between the forward and grearward parts of said shield adjacent the outer surliquid lubricant between the adjacent parts of said shield outside the seal to flush spoil from between the parts of the shield and to provide a lubricant for the outer surface of the shield.
12. A tunnelling shield as claimed in claim 11 wherein a second annular seal is provided between the first seal and the outer surface of the shield and is arranged to prevent spoil passing towards the first seal from outside the shield whilst permitting said lubricant to flow outwardly to the shield surface and said injection means are arranged to deliver the lubricant liquid to the space between said seals.
13. A tunnelling shield as claimed in claim 12 wherein said means deliver bentonite into the space between the forward and rearward parts of the shield.
Claims (13)
1. A tunnelling shield for use in erecting a spiral tunnel lining, the shield being of cylindrical form and having forward and rearward parts which are rotatable relatively to one another about the shield axis, the rearward part of the shield having a trailing end which has a spiral form extending between a step facing generally around the shield, so that in use the end of the shield can engage a partially erected spiral lining to support the ground adjacent the lining and each additional segment can be located in the shield adjacent said step and attached to the previously erected segment, the shield having means for rotating said rearward part of the shield with respect to the forward part of the shield in the opposite direction to which the step faces to withdraw the shield from the newly erected segment means to advance the shield along the tunnel simultaneously with said rotation of the rearward part of the shield.
2. A tunnelling shield as claimed in claim 1 wherein said rearward part of the shield tapers around the shield to an edge at said step.
3. A tunnelling shield as claimed in claim 1 wherein the means to rotate the rearward part of the shield with respect to the forward part comprise a drive mechanism mounted on the forward part of the shield drivably engaging the rearward part of the shield.
4. A tunnelling shield as claimed in claim 3 wherein the drive mechanism comprises one or more drive motor spaced around the inner surface of the forward part of the shield, the or each motor having a drive pinion which meshes with a rack extending around the inner surface of the rearward part of the shield.
5. A tunnelling shield as claimed in claim 4 wherein the rack is formed by a plurality of rigidly mounted pins spaced around the inner surface of the rearward part of the shield with which the pinion or pinions of the or each drive motor mesh.
6. An apparatus as claimed in claim 3 wherein the means to rotate the rearward part of the shield with respect to the forward part of the shield comprise a ram mounted in the rearward part of the shield to act generally tangentially to the shield for pressing against a previously erected segment of the lining and thereby rotate the shield.
7. A tunnelling shield as claimed in claim 1 wherein the means for advancing the shield along the excavated tunnel comprise a plurality of hydraulic rams mounted around the inner surface of the forward part of the shield for extending through the rearward part of the shield to act on the end of the partially erected lining to drive the shield forward.
8. A tunnelling shield as claimed in claim 1 wherein the rearward part of the shield is supported on the forward part of the shield by a plurality of rollers mounted on the forward part of the shield for rotation about axes parallel to the shield axis and which rollers engage a track formed around the inner surface of the rearward part of the shield.
9. A tunnelling shield as claimed in claim 8 wherein the track comprises two elements spaced axially along the shields and each roller has two axially spaced surfaces for engaging the two elements respectively and an enlargement encircles the roller between said surfaces which enlargement engages between the elements so that the rearward part of the shield is supported for rotation and is axially located with respect to the forward part of the shield.
10. A tunnelling shield as claimed in claim 9 and in the case where the rearward part of the shield has a rack extending around the inner surface of the shield for engagement by motor driven pinions to rotate the rearward part of the shield wherein the rack for engagement by said drive pinions is mounted between said spaced elements.
11. A tunnelling shield as claimed in claim 1 wherein an annular seal is provided between the forward and rearward parts of said shield adjacent the outer surfaces thereof and means are provided for injecting a liquid lubricant between the adjacent parts of said shield outside the seal to flush spoil from between the parts of the shield and to provide a lubricant for the outer surface of the shield.
12. A tunnelling shield as claimed in claim 11 wherein a second annular seal is provided between the first seal and the outer surface of the shield and is arranged to prevent spoil passing towards the first seal from outside the shield whilst permitting said lubricant to flow outwardly to the shield surface and said injection means are arranged to deliver the lubricant liquid to the space between said seals.
13. A tunnelling shield as claimed in claim 12 wherein said means deliver bentonite into the space between the forward and rearward parts of the shield.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/505,947 US3969906A (en) | 1972-03-02 | 1974-09-13 | Tunnelling shields |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB975172A GB1408641A (en) | 1972-03-02 | 1972-03-02 | Tunnelling shields |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/505,947 Division US3969906A (en) | 1972-03-02 | 1974-09-13 | Tunnelling shields |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3850000A true US3850000A (en) | 1974-11-26 |
Family
ID=9878072
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00336332A Expired - Lifetime US3850000A (en) | 1972-03-02 | 1973-02-27 | Tunnelling shields |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3850000A (en) |
| JP (1) | JPS5031374B2 (en) |
| DE (1) | DE2309858C3 (en) |
| FR (1) | FR2174276A1 (en) |
| GB (1) | GB1408641A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3972200A (en) * | 1973-09-20 | 1976-08-03 | Bruno Scarpi | Tunnelling and lining machine |
| US4047388A (en) * | 1976-06-30 | 1977-09-13 | Howlett Machine Works | Method for coupling axially aligned tunnel sections and apparatus therefor |
| US5066167A (en) * | 1990-01-19 | 1991-11-19 | Vsl International Ag | Prestressed concrete lining in a pressure tunnel |
| US6315496B1 (en) * | 1996-08-16 | 2001-11-13 | Tachus Gmbh | Method of lining a tunnel and apparatus for performing the same |
| US6592296B2 (en) * | 2000-03-30 | 2003-07-15 | Phoenix | Sealing assembly for tunnel construction sections |
| WO2011065863A1 (en) * | 2009-11-30 | 2011-06-03 | Golubushin Sergey Vladimirovich | Multisection concrete product and method for the assembly, transportation and trenchless installation thereof |
| ITBO20110072A1 (en) * | 2011-02-21 | 2012-08-22 | Elas Geotecnica Srl | PROCEDURE AND EQUIPMENT FOR THE CONSTRUCTION OF TUNNELS |
| CN107035384A (en) * | 2017-05-25 | 2017-08-11 | 中交第二航务工程局有限公司 | A kind of pipe sheet assembling method for burst prefabrication and assembly construction underground pipe gallery |
| CN108457669A (en) * | 2018-04-25 | 2018-08-28 | 南京大学 | A kind of scroll moves towards shield tunnel lining segment and its construction method |
| CN114017060A (en) * | 2021-09-18 | 2022-02-08 | 中铁十局集团第一工程有限公司 | Shield segment model selection method |
| CN115739483A (en) * | 2022-10-25 | 2023-03-07 | 北京市政建设集团有限责任公司 | Pipe joint anti-corrosion treatment mechanism for tunnel |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH623887A5 (en) * | 1977-09-27 | 1981-06-30 | Locher & Cie Ag | |
| JPS57125247U (en) * | 1981-01-30 | 1982-08-04 | ||
| DE3134759A1 (en) * | 1981-09-02 | 1983-03-17 | Gewerkschaft Eisenhütte Westfalia, 4670 Lünen | Arrangement for producing a cylindrical cast-in-situ concrete lining during the driving of underground structures, in particular by the shield or cutter-shield driving method |
| DE3218517C2 (en) * | 1982-05-17 | 1984-03-01 | Philipp Holzmann Ag, 6000 Frankfurt | Tubbing lining for tunnels, galleries or the like. and measuring device for checking the joint width of such a segment construction |
| JP5017633B2 (en) * | 2009-05-15 | 2012-09-05 | 友司 徳田 | Shield machine |
| CN112324460B (en) * | 2020-12-30 | 2022-03-04 | 中铁工程装备集团有限公司 | Rotary continuous tunneling machine and construction method based on spiral duct piece |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US739969A (en) * | 1901-02-25 | 1903-09-29 | Eddy Elbert Young | Tunnel-support. |
| FR916208A (en) * | 1945-03-01 | 1946-11-29 | Improvements in the construction of walls, ferrules or formwork for tunnels, mine galleries, reservoirs, silos, shafts and the like | |
| DE1019624B (en) * | 1957-03-20 | 1957-11-21 | Baugesellschaft Franz Brueggem | Expansion for underground spaces from helically juxtaposed expansion elements |
-
1972
- 1972-03-02 GB GB975172A patent/GB1408641A/en not_active Expired
-
1973
- 1973-02-27 US US00336332A patent/US3850000A/en not_active Expired - Lifetime
- 1973-02-28 DE DE2309858A patent/DE2309858C3/en not_active Expired
- 1973-03-01 JP JP48024729A patent/JPS5031374B2/ja not_active Expired
- 1973-03-02 FR FR7307554A patent/FR2174276A1/fr not_active Withdrawn
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US739969A (en) * | 1901-02-25 | 1903-09-29 | Eddy Elbert Young | Tunnel-support. |
| FR916208A (en) * | 1945-03-01 | 1946-11-29 | Improvements in the construction of walls, ferrules or formwork for tunnels, mine galleries, reservoirs, silos, shafts and the like | |
| DE1019624B (en) * | 1957-03-20 | 1957-11-21 | Baugesellschaft Franz Brueggem | Expansion for underground spaces from helically juxtaposed expansion elements |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3972200A (en) * | 1973-09-20 | 1976-08-03 | Bruno Scarpi | Tunnelling and lining machine |
| US4047388A (en) * | 1976-06-30 | 1977-09-13 | Howlett Machine Works | Method for coupling axially aligned tunnel sections and apparatus therefor |
| US5066167A (en) * | 1990-01-19 | 1991-11-19 | Vsl International Ag | Prestressed concrete lining in a pressure tunnel |
| US6315496B1 (en) * | 1996-08-16 | 2001-11-13 | Tachus Gmbh | Method of lining a tunnel and apparatus for performing the same |
| US6592296B2 (en) * | 2000-03-30 | 2003-07-15 | Phoenix | Sealing assembly for tunnel construction sections |
| WO2011065863A1 (en) * | 2009-11-30 | 2011-06-03 | Golubushin Sergey Vladimirovich | Multisection concrete product and method for the assembly, transportation and trenchless installation thereof |
| ITBO20110072A1 (en) * | 2011-02-21 | 2012-08-22 | Elas Geotecnica Srl | PROCEDURE AND EQUIPMENT FOR THE CONSTRUCTION OF TUNNELS |
| WO2012114249A3 (en) * | 2011-02-21 | 2013-05-30 | Elas Geotecnica S.R.L. | A method and equipment for tunnelling |
| CN107035384A (en) * | 2017-05-25 | 2017-08-11 | 中交第二航务工程局有限公司 | A kind of pipe sheet assembling method for burst prefabrication and assembly construction underground pipe gallery |
| CN108457669A (en) * | 2018-04-25 | 2018-08-28 | 南京大学 | A kind of scroll moves towards shield tunnel lining segment and its construction method |
| CN108457669B (en) * | 2018-04-25 | 2024-04-12 | 南京大学 | Spiral trend shield tunnel lining segment and construction method thereof |
| CN114017060A (en) * | 2021-09-18 | 2022-02-08 | 中铁十局集团第一工程有限公司 | Shield segment model selection method |
| CN114017060B (en) * | 2021-09-18 | 2024-02-09 | 中铁十局集团第一工程有限公司 | Method for selecting shield segment |
| CN115739483A (en) * | 2022-10-25 | 2023-03-07 | 北京市政建设集团有限责任公司 | Pipe joint anti-corrosion treatment mechanism for tunnel |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5031374B2 (en) | 1975-10-09 |
| DE2309858A1 (en) | 1973-09-06 |
| JPS48100932A (en) | 1973-12-19 |
| DE2309858C3 (en) | 1978-06-29 |
| DE2309858B2 (en) | 1977-11-10 |
| GB1408641A (en) | 1975-10-01 |
| FR2174276A1 (en) | 1973-10-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3850000A (en) | Tunnelling shields | |
| EP0268188A1 (en) | Shielded tunnel excavator | |
| US3969906A (en) | Tunnelling shields | |
| DE2550050A1 (en) | EQUIPMENT AND PROCEDURE FOR DRIVING TUNNELS ETC. BY MEANS OF A SHORING SIGN UNDER THE INSTALLATION OF A CONCRETE LINING | |
| CA1217066A (en) | Tunnelling and tunnel relining equipment | |
| US3919851A (en) | Apparatus for the excavation and lining of subterranean tunnels | |
| JP4669977B2 (en) | Underground welding shield machine | |
| JP2738940B2 (en) | Annular double drilling rig | |
| JPH0369438B2 (en) | ||
| JP2637160B2 (en) | Shield method | |
| AT397127B (en) | DRIVING SHIELD | |
| JPS58120997A (en) | Tunnel excavator | |
| JPH0369439B2 (en) | ||
| JPH0643796B2 (en) | Shield machine | |
| DE2654566A1 (en) | Tunnel advancing machine with shuttering-centring means - having independently advanceable shuttering blades and supporting rings | |
| JP2585365B2 (en) | Shield method | |
| DE1216915B (en) | Process for sealing a jacking shield against the ingress of water from behind as well as jacking shield for carrying out this process | |
| US3889480A (en) | Process of, and a plant for, constructing tunnels | |
| JPS63596A (en) | Cutter device for shielding excavator | |
| JPH0791941B2 (en) | Underground joining method of shield tunnel and its shield machine | |
| JPH0515878B2 (en) | ||
| AT398806B (en) | Method of erecting a tubbing support and apparatus for carrying out this method | |
| JPH089947B2 (en) | Underground joining method of shield machine and shield machine for joining | |
| JPH04285291A (en) | Shield excavator for parallel tunnel excavation | |
| JP2645361B2 (en) | Shield machine and shield method |