US3840460A - Lubricity additives for drilling fluids - Google Patents
Lubricity additives for drilling fluids Download PDFInfo
- Publication number
- US3840460A US3840460A US00285330A US28533072A US3840460A US 3840460 A US3840460 A US 3840460A US 00285330 A US00285330 A US 00285330A US 28533072 A US28533072 A US 28533072A US 3840460 A US3840460 A US 3840460A
- Authority
- US
- United States
- Prior art keywords
- weight percent
- composition
- drilling fluid
- drilling
- employed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 42
- 238000005553 drilling Methods 0.000 title description 62
- 239000000654 additive Substances 0.000 title description 18
- 239000000203 mixture Substances 0.000 claims abstract description 49
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 13
- 239000011593 sulfur Substances 0.000 claims abstract description 13
- 239000002480 mineral oil Substances 0.000 claims abstract description 10
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 10
- 239000012188 paraffin wax Substances 0.000 claims abstract description 8
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 7
- 150000002367 halogens Chemical class 0.000 claims abstract description 7
- 231100000241 scar Toxicity 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 14
- 239000010699 lard oil Substances 0.000 description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- 230000000996 additive effect Effects 0.000 description 11
- 229910052801 chlorine Inorganic materials 0.000 description 11
- 235000017168 chlorine Nutrition 0.000 description 11
- 229940060038 chlorine Drugs 0.000 description 11
- 230000005484 gravity Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 9
- 239000008186 active pharmaceutical agent Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- -1 alkali metal sulfonates Chemical class 0.000 description 4
- 239000008240 homogeneous mixture Substances 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000005069 Extreme pressure additive Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/035—Organic additives
Definitions
- drilling bit and the drill string which supports the bit in the wellbore are both conventionally rotated at rates of from about 100 to about 250 rpm.
- drill pipe and drill collars Such drilling rigs, in the petroleum industry, generally drill boreholes having diameters of from about 8% to about 13% inches. Because of the drilling of deeper and deeper wellbores, etc. there is a need for drilling fluids of improved lubricity.
- the rig used is lighter thereby allowing for more economical movement of the rig from one drilling location to another, particularly inaccessible locations.
- This invention therefore relates to a composition useful in a well drilling fluid and a rotary drilling method, particularly a slim hole drilling method.
- the lard oil used in the composition of this invention can be present in amounts of at least about 40, preferably from about 40 to about 80, weight percent, the mineral oil in amounts of at least about 10, preferably from about 10 to about 50, weight percent, and the halogenated paraflin in amounts of at least about 1, preferably from about 1 to about 20, weight percent.
- Substantially any lard oil can be employed in any sulfurization process, a particularly desirable material being that which has a gravity (degrees API) of from about 9.5 to about 12, a viscosity (SUS at 210 F.) of from about 360 to about 600, and at least about 10.5 weight percent sulfur based on the weight of the lard oil.
- Substantially any mineral oil can be employed, a particularly useful oil being that having a gravity (degrees API) of from about 22 to about 25, a Saybolt viscosity at F. of from about 55 to about 60, and a pour point, degrees F., maximum of about -50.
- halogenated p-araflin the paraffin containing one or more of the halogens, i.e., chlorine, bromine, iodine, and fluorine, preferably chlo rine.
- a particularly suitable material is chlorinated parafiin having a specific gravity (60/ 60 F.) of from about 1.16 to about 1.20, from about 40 to about 46 weight percent chlorine based on the weight of the chlorinated parafiin, a viscosity (SUS at 210 F.) of from about to about 280, and substantially no free chlorine.
- the composition of this invention can be formed by blending the three components in any desired order with one another at sub-ambient, ambient, or super-ambient temperatures and pressures until a substantially homogeneous mixture is obtained.
- Suitable properties for the final composition can be a gravity (degrees API) of from about 11.5 to about 12.5, a viscosity (SUS at 100 F.) of from about 1300 to about 1500, at least about 5 weight percent, preferably at least about 6 weight percent, total sulfur, and at least about 3 weight percent, preferably at least about 3.5 weight percent, total halogen.
- the maximum amounts of sulfur and halogen are dictated only by practical considerations such as how much sulfur the particular lard oil used can be made to pick up in the particular sulfurization process used.
- composition of this invention can be included in the composition of this invention, e.g. corrosion inhibitors, wear inhibitors, oxidation stabilizers, odor stabilizers, and the like. Two or more of these materials can be employed as desired.
- Corrosion inhibitors can be used in amounts which vary widely but generally in an effective corrosion inhibiting amount. These materials include alkali metal sulfonates and alkaline earth metal sulfonates such as sodium sulfonate and calcium sulfonate, particularly overbased calcium sulfonate. Effective wear inhibiting amounts of at least one of monothiophosphates and polythiophosphates (2 to 10 sulfuratons) of zinc, cadmium, tin, iron, cobalt, nickel, vanadium, chromium, manganese, molybdenum,
- tungsten, titanium, and zirconium can be employed, particularly zinc dithiophosphate.
- These additives can each be employed in an amount of from about 1 to about weight percent and can be incorporated before, during, or after mixing of the other components.
- the composition of this invention is normally employed in the drilling fluid utilized in the drilling operation. It has been found that whether a drilling fluid is susceptible to catastrophic vibration during high speed rotation is related to the scar width value obtained by subjecting the drilling fluid to a scar width test as hereinafter defined. The smaller the scar width, the greater the lubricity of the drilling fluid and, therefore, the less there is of a likelihood of catastrophic virbation while utilizing the drilling fluid in a high speed operation. Thus, the more the scar width value of a given drilling fluid can be decreased, the more likely it is that a drilling operation can be carried out with that drilling fluid without encountering catastrophic vibration.
- composition of this invention when added to a drilling fluid, be it a water base (salt water or fresh water) or an oil base or invert drilling fluid, can substantially reduce the scar width value of the drilling fluid below the scar width value of that drilling fluid when it does not contain the composition of this invention.
- the composition of this invention is employed in the drilling fluid in an amount effective to substantially reduce the scar width value of the drilling fluid and generally the scar Width value is reduced by at least about 0.01 of an inch. This is a substantial decrease in scar width and indicates a substantial increase in lubricity and in ability to prevent catastrophic vibration of drill pipe during high speed rotation, particularly in a small diameter wellbore.
- the amount of composition of this invention which is employed will vary widely. Generally, at least about 0.1, preferably from about 0.2 to about 10, weight percent of the composition is employed in the drilling fluid and can be incorporated in the drilling fluid by mixing at sub-ambient, ambient, or superambient conditions of temperature and pressure until a substantially homogeneous mixture is obtained.
- a scar width value for drilling fluid is obtained using an EP Mud Tester model 211 which is available commercially from the Baroid Division of the National Lead Company.
- This tester is designed to measure the lubricating properties of drilling fluids by mounting a hardened steel test cup (Rockwell C scale hardness of 58-62) on a rotating shaft and forcing a steel wear block (Rockwell C scale hardness of 5862) against the test cup with a predetermined load while the test cup and wear block are immersed in the drilling fluid being tested.
- the load is applied with a torque arm that is operatively connected to the wear block, the torque arm containing a torque gauge calibrated in inch pounds.
- the friction load is read on an ammeter scale indicating the electrical current consumption of the driving motor.
- the motor is run at 1400 rpm. which amounts to a surface velocity of the test cup of 507 feet per minute, the test cup diameter being 1.378 inches. Each test cup is used only once and a fresh spot is selected on the wear block for each run.
- EXAMPLE A composition according to this invention was formed by blending 32 weight percent naphthenic mineral oil available commercially as Sintex Pale Oil and having the physical properties of API gravity of 22 to 25, and Saybolt viscosity at F. of 55 to 60; 60 weight percent sulfurized lard oil commercially available as Union Base and having the physical properties API gravity of 9.5 to 11.5, viscosity (SUS at 210 F.) of 360 to 450, no less than 10.5 weight percent total sulfur based on the lard oil; and 8 weight percent chlorinated paraflin commercially available as Paroil 142 having the properties of specific gravity (60/60 F.) of 1.16 to 1.20; 40 to 46 weight percent chlorine based on the chlorinated paraffin, viscosity (SUS at 210 F.) of to 280, and no free chlorine.
- the composition was formed by adding the components in the above listed order to a blending kettle and mixing same for 1 hour at temperatures in the range of from to F.
- a drilling fluid composition was made up by mixing 350 cubic centimeters (350 grams) of distilled water and 14 to 15 grams of bentonite at ambient conditions of temperature and pressure until a homogeneous mixture was obtained.
- the combination of water and bentonite in the above amounts constituted the volume of drilling fluid employed in each scar width test for each composition discussed hereinbelow.
- the mixture of drilling fluid and additive was then tested for its scar width in the manner disclosed hereinabove, keeping the friction load during each 20 second test at 3 amps.
- composition of this invention decreased the scar width of the drilling fluid even below that obtained with commercially available additives and therefore increased the lubricity of the drilling fluid and also increased the ability of the drilling fluid to prevent catastrophic vibration during drilling over what can presently be achieved with commercially available additives.
- a composition useful in a drilling fluid to increase the lubricity thereof consisting essentially of at least about 40 weight percent sulfurized lard oil, at least about 10 Weight percent mineral oil, and at least about 1 Weight percent halogenated paraffin, said composition containing greater than 2 weight percent total halogen and greater than 5 weight percent total sulfur.
- composition according to claim 1 wherein said lard oil is present in an amount of from about 40 to about 80 weight percent, said mineral oil is present in an amount of from about 10 to about 50 weight percent, and said paraflin is chlorinated and is present in an amount of from about 1 to about weight percent.
- a composition according to claim 1 wherein said composition has a gravity (degrees API) of from about 11.5 to about 12.5, a viscosity (SUS at 100 F.) of from about 1300 to about 1500, at least about 5 weight percent total sulfur, and at least about 3 weight percent total chlorine.
- said mineral oil is a naphthentic oil which has a gravity (degrees API) of from about 22 to about 25, and a Saybolt viscosity (100 F.)
- a composition according to claim 1 wherein there is additionally present at least one of (1) an effective rust inhibiting amount of at least one of alkali metal sulfonates and alkaline earth metal sulfonates, and (2) an eifective Wear inhibiting amount of at least one of monoand polythiophosphates of Zn, Cd, Sn, Fe, Co, Ni, V, Cr, Mn, Mo, W, Ti, and Zr.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
1. A COMPOSITION USEFUL IN A DRILLING FLUID TO INCREASE THE LUBRICITY THEREOF, SAID COMPOSITION CONSISTING ESSENTIALLY OF AT LEAST ABOUT 40 WEIGHT PERCENT SULFURIZED LARD OIL, AT LEAST ABOUT 10 WEIGHT PERCENT MINERAL OIL, AND AT LEAST ABOUT 1 WEIGHT PERCENT HALOGENATED PARAFFIN, SAID COMPOSITION CONTAINING GREATER THAN 2 WEIGHT PERCENT TOTAL HALOGEN AND GREATER THAN 5 WEIGHT PERCENT TOTAL SULFUR.
Description
United States Patent O LUBRICITY ADDITIVES FOR DRILLING FLIJIDS David B. Sheldahl, Griflith, Ind., and John H. Strregler, Richardson, Tex., assignors to Atlantic Richfield Co., New York, N.Y.
No Drawing. Original application Jan. 20, 1971, Ser. No. 108,170, now Patent No. 3,712,393. Divided and this application Aug. 31, 1972, Ser. No. 285,330
Int. Cl. Cm 3/32, 3/42 US. Cl. 252-85 C 6 Claims ABSTRACT OF THE DISCLOSURE A composition and method for preventing catastrophic vibration of a drill string during slim hole drilling wherein there is employed an additive composed of sulfurized lard oil, mineral oil, and halogenated paraffin.
CROSS REFERENCES TO RELATED APPLICATIONS This application is a division of application Ser. No. 108,170, filed Jan. 20, 1971, now Pat. No. 3,712,393.
BACKGROUND OF THE INVENTION Heretofore in rotary drilling a wellbore in the earth, the drilling bit and the drill string (drill pipe and drill collars) which supports the bit in the wellbore are both conventionally rotated at rates of from about 100 to about 250 rpm. Such drilling rigs, in the petroleum industry, generally drill boreholes having diameters of from about 8% to about 13% inches. Because of the drilling of deeper and deeper wellbores, etc. there is a need for drilling fluids of improved lubricity.
As an exploratory tool, it can be desirable to employ what is known as a slim hole drilling technique wherein the borehole has a diameter of up to about 6 inches, preferably from about 2 to about 5 inches. With slim hole drilling it is desirable to use higher than conventional rotation rates for the bit. For example, rotation rates of at least 400 r.p.m. and as high as 3000 rpm. are desirably employed to achieve shorter drilling time.
By drilling small diameter boreholes with high rotation speeds, larger numbers of exploratory wells can be drilled more economically. In addition, the rig used is lighter thereby allowing for more economical movement of the rig from one drilling location to another, particularly inaccessible locations.
However, an omnipresent problem with the high rotation rates in a small diameter borehole has been what is termed catastrophic vibration of the drill pipe. At rotation rates of greater than 400 rpm. the drill pipe tends to bounce from one side of the borehole to the other at a faster and faster rate until catastrophic transverse vibration sets in and results in failure of the drill pipe, usually by twisting 01f one section of drill pipe from an adjacent section of drill pipe at their coupling joint.
Thus, slim hole drilling using the most economical rotation rate for the drilling bit and pipe is not feasible unless catastrophic vibration during drilling is avoided.
SUMMARY THE INVENTION It has now been found that improved drilling fluid lubricity is obtained and that catastrophic vibration during high speed rotation can be prevented by the use of a composition consisting essentially of sulfurized lard oil, mineral oil, and halogenated paraflin, the composition containing greater than 2 weight percent total halogen and greater than 5 weight percent total sulfur. As used herein, weight percent recitations are based upon the total Weight of the composition unless otherwise specified.
This invention therefore relates to a composition useful in a well drilling fluid and a rotary drilling method, particularly a slim hole drilling method.
Accordingly, it is an object of this invention to provide a new and improved composition useful in a drilling fluid to increase the lubricity thereof. It is another object to provide a new and improved rotary drilling method. It is another object to provide a new and improved slim hole drilling method.
Other aspects, objects, and advantages of this invention will be apparent to those skilled in the art from this disclosure and the appended claims.
DETAILED DESCRIPTION OF THE INVENTION The lard oil used in the composition of this invention can be present in amounts of at least about 40, preferably from about 40 to about 80, weight percent, the mineral oil in amounts of at least about 10, preferably from about 10 to about 50, weight percent, and the halogenated paraflin in amounts of at least about 1, preferably from about 1 to about 20, weight percent.
Substantially any lard oil can be employed in any sulfurization process, a particularly desirable material being that which has a gravity (degrees API) of from about 9.5 to about 12, a viscosity (SUS at 210 F.) of from about 360 to about 600, and at least about 10.5 weight percent sulfur based on the weight of the lard oil.
Substantially any mineral oil can be employed, a particularly useful oil being that having a gravity (degrees API) of from about 22 to about 25, a Saybolt viscosity at F. of from about 55 to about 60, and a pour point, degrees F., maximum of about -50.
Substantially any halogenated p-araflin can be employed, the paraffin containing one or more of the halogens, i.e., chlorine, bromine, iodine, and fluorine, preferably chlo rine. A particularly suitable material is chlorinated parafiin having a specific gravity (60/ 60 F.) of from about 1.16 to about 1.20, from about 40 to about 46 weight percent chlorine based on the weight of the chlorinated parafiin, a viscosity (SUS at 210 F.) of from about to about 280, and substantially no free chlorine.
The composition of this invention can be formed by blending the three components in any desired order with one another at sub-ambient, ambient, or super-ambient temperatures and pressures until a substantially homogeneous mixture is obtained. Suitable properties for the final composition can be a gravity (degrees API) of from about 11.5 to about 12.5, a viscosity (SUS at 100 F.) of from about 1300 to about 1500, at least about 5 weight percent, preferably at least about 6 weight percent, total sulfur, and at least about 3 weight percent, preferably at least about 3.5 weight percent, total halogen. The maximum amounts of sulfur and halogen are dictated only by practical considerations such as how much sulfur the particular lard oil used can be made to pick up in the particular sulfurization process used.
Other conventional materials can be included in the composition of this invention, e.g. corrosion inhibitors, wear inhibitors, oxidation stabilizers, odor stabilizers, and the like. Two or more of these materials can be employed as desired.
Corrosion inhibitors can be used in amounts which vary widely but generally in an effective corrosion inhibiting amount. These materials include alkali metal sulfonates and alkaline earth metal sulfonates such as sodium sulfonate and calcium sulfonate, particularly overbased calcium sulfonate. Effective wear inhibiting amounts of at least one of monothiophosphates and polythiophosphates (2 to 10 sulfuratons) of zinc, cadmium, tin, iron, cobalt, nickel, vanadium, chromium, manganese, molybdenum,
tungsten, titanium, and zirconium, can be employed, particularly zinc dithiophosphate. These additives can each be employed in an amount of from about 1 to about weight percent and can be incorporated before, during, or after mixing of the other components.
The composition of this invention is normally employed in the drilling fluid utilized in the drilling operation. It has been found that whether a drilling fluid is susceptible to catastrophic vibration during high speed rotation is related to the scar width value obtained by subjecting the drilling fluid to a scar width test as hereinafter defined. The smaller the scar width, the greater the lubricity of the drilling fluid and, therefore, the less there is of a likelihood of catastrophic virbation while utilizing the drilling fluid in a high speed operation. Thus, the more the scar width value of a given drilling fluid can be decreased, the more likely it is that a drilling operation can be carried out with that drilling fluid without encountering catastrophic vibration.
The composition of this invention, when added to a drilling fluid, be it a water base (salt water or fresh water) or an oil base or invert drilling fluid, can substantially reduce the scar width value of the drilling fluid below the scar width value of that drilling fluid when it does not contain the composition of this invention. Generally, the composition of this invention is employed in the drilling fluid in an amount effective to substantially reduce the scar width value of the drilling fluid and generally the scar Width value is reduced by at least about 0.01 of an inch. This is a substantial decrease in scar width and indicates a substantial increase in lubricity and in ability to prevent catastrophic vibration of drill pipe during high speed rotation, particularly in a small diameter wellbore.
Depending upon the particular drilling apparatus employed, the method of operating that apparatus, the composition of the drilling fluid, the size and depth of the wellbore, and the like, the amount of composition of this invention which is employed will vary widely. Generally, at least about 0.1, preferably from about 0.2 to about 10, weight percent of the composition is employed in the drilling fluid and can be incorporated in the drilling fluid by mixing at sub-ambient, ambient, or superambient conditions of temperature and pressure until a substantially homogeneous mixture is obtained.
A scar width value for drilling fluid is obtained using an EP Mud Tester model 211 which is available commercially from the Baroid Division of the National Lead Company. This tester is designed to measure the lubricating properties of drilling fluids by mounting a hardened steel test cup (Rockwell C scale hardness of 58-62) on a rotating shaft and forcing a steel wear block (Rockwell C scale hardness of 5862) against the test cup with a predetermined load while the test cup and wear block are immersed in the drilling fluid being tested. The load is applied with a torque arm that is operatively connected to the wear block, the torque arm containing a torque gauge calibrated in inch pounds. The friction load is read on an ammeter scale indicating the electrical current consumption of the driving motor. The motor is run at 1400 rpm. which amounts to a surface velocity of the test cup of 507 feet per minute, the test cup diameter being 1.378 inches. Each test cup is used only once and a fresh spot is selected on the wear block for each run.
In the actual test itself, a friction load corresponding to three amps is applied with the torque arm and the run continued for 20 seconds holding the ammeter reading constant by increasing the load applied to the torque arm. The width of the scar formed on the wear block by the test cup is then measured and reported in inches. Each test is carried out under ambient conditions of temperature and pressure using sufiicient drilling fluid to completely immerse the test cup.
It has been found that by employing the composition of this invention in the manner described hereinabove, substantially smaller scar widths are obtained with a given drilling fluid as compared to scar widths obtained by the use of commercially available extreme pressure (EP) lubricant additives.
All of the materials useful in the composition of this invention are available commercially and are well-known in the art and therefore will not, for sake of brevity, be discussed in detail as to their source of availability or method of preparation.
EXAMPLE A composition according to this invention was formed by blending 32 weight percent naphthenic mineral oil available commercially as Sintex Pale Oil and having the physical properties of API gravity of 22 to 25, and Saybolt viscosity at F. of 55 to 60; 60 weight percent sulfurized lard oil commercially available as Union Base and having the physical properties API gravity of 9.5 to 11.5, viscosity (SUS at 210 F.) of 360 to 450, no less than 10.5 weight percent total sulfur based on the lard oil; and 8 weight percent chlorinated paraflin commercially available as Paroil 142 having the properties of specific gravity (60/60 F.) of 1.16 to 1.20; 40 to 46 weight percent chlorine based on the chlorinated paraffin, viscosity (SUS at 210 F.) of to 280, and no free chlorine. The composition was formed by adding the components in the above listed order to a blending kettle and mixing same for 1 hour at temperatures in the range of from to F.
A drilling fluid composition was made up by mixing 350 cubic centimeters (350 grams) of distilled water and 14 to 15 grams of bentonite at ambient conditions of temperature and pressure until a homogeneous mixture was obtained. The combination of water and bentonite in the above amounts constituted the volume of drilling fluid employed in each scar width test for each composition discussed hereinbelow.
Various additives were employed in a separate volume of the above drilling fluid by mixing the particular additive with the volume of drilling fluid at ambient conditions of temperature and pressure until a substantially homogeneous mixture was obtained.
The mixture of drilling fluid and additive was then tested for its scar width in the manner disclosed hereinabove, keeping the friction load during each 20 second test at 3 amps.
In all 10 runs were made, one run being the drilling fluid with no additive, 4 runs being the drilling fluid with commercially available EP additives, and 5 runs being the drilling fluid with additives according to this invention. In run 1 the drilling fluid with no additive was employed. In runs 2 and 3 different amounts of a commercially available additive identified as crude tall oil containing 0.2 weight percent chlorine and 4.4 weight percent sulfur was employed. In runs 3 and 4 different amounts of a commercially available additive identified as coal tar having 1.7 weight percent chlorine and 4.9 weight percent sulfur was employed. Runs 6 and 7 employed different amounts of the composition of this invention. Run 8 employed the composition of this invention with the addition of 1 weight percent zinc dithiophosphate. Run 9 employed the composition of this invention with the addition of 10 weight percent sodium sulfonate and 2 weight percent water. Run 10 employed the composition of this invention with the addition of 20 weight percent overbased calcium sulfonate. The results are as shown in the following table:
Run: Scar width, inches 1-Drilling fluid (DJFJ only 0.16 2D.F. plus 4 gm. commercial additive 0.04
3D.F. plus 8 gm. commercial additive 0.028
4'D.*F. plus 4 gm. commercial additive 0.04 5-D.F. plus 8 gm. commercial additive 0.03 6D.F. plus 6 gm. invention composition 0.02 7D.F. plus 3 gm. invention composition 0.025 8D.F. plus 6 gm. invention composition plus Zn dithiophosphate 0.03
TABLE-Continued Run: Scar width, inches 9D.F. plus 6 gm. invention composition plus weight percent Na sulfonate and 2 weight percent water 10D.F. plus 6 gm. invention composition plus overbased Ca sulfonate 0.025
It can be seen from the above data that the composition of this invention decreased the scar width of the drilling fluid even below that obtained with commercially available additives and therefore increased the lubricity of the drilling fluid and also increased the ability of the drilling fluid to prevent catastrophic vibration during drilling over what can presently be achieved with commercially available additives.
Reasonable variations and modifications are possible within the scope of this disclosure without departing from the spirit and scope of this invention.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A composition useful in a drilling fluid to increase the lubricity thereof, said composition consisting essentially of at least about 40 weight percent sulfurized lard oil, at least about 10 Weight percent mineral oil, and at least about 1 Weight percent halogenated paraffin, said composition containing greater than 2 weight percent total halogen and greater than 5 weight percent total sulfur.
2. A composition according to claim 1 wherein said lard oil is present in an amount of from about 40 to about 80 weight percent, said mineral oil is present in an amount of from about 10 to about 50 weight percent, and said paraflin is chlorinated and is present in an amount of from about 1 to about weight percent.
3. A composition according to claim 1 wherein said composition has a gravity (degrees API) of from about 11.5 to about 12.5, a viscosity (SUS at 100 F.) of from about 1300 to about 1500, at least about 5 weight percent total sulfur, and at least about 3 weight percent total chlorine.
4. A composition according to claim 2 wherein said mineral oil is a naphthentic oil which has a gravity (degrees API) of from about 22 to about 25, and a Saybolt viscosity (100 F.) of from about to about 60, said lard oil has a gravity (degrees API) of from about 9.5 to about 11.5, a viscosity (SUS at 210 'F.) of from about 360 to about 450, and at least about 10.5 weight percent sulfur based on the weight of the lard oil, said paraffin is chlorinated and has a specific gravity 60 F.) of from about 1.16 to about 1.20, from about 40 to about 46 weight percent chlorine based on the weight of the chlorinated paraffin, a viscosity (SUS at 210 F.) of :from about to about 280, and substantially no free chlorine.
5. A composition according to claim 1 wherein there is additionally present at least one of (1) an effective rust inhibiting amount of at least one of alkali metal sulfonates and alkaline earth metal sulfonates, and (2) an eifective Wear inhibiting amount of at least one of monoand polythiophosphates of Zn, Cd, Sn, Fe, Co, Ni, V, Cr, Mn, Mo, W, Ti, and Zr.
6. A composition according to claim 1 wherein there is additionally present at least one of Na sulfonate, Ca sulfonate, and Zn dithiophosphate, each being present in an amount in the range of from about 1 to about 30 weight percent.
References Cited UNITED STATES PATENTS 3,214,374 10/1965 Sample 2528.5 3,635,294 1/1972 Faulk et al. 65 3,451,930 6/1969 Mead 252-32.7 3,361,667 1/1968 Wenborne et al. 25232.7 3,442,804 5/1969 Le Suer et al 25232.7 2,208,163 7/1940 :Prutton et al. 252 -48.4 2,156,265 5/1939 Miller et al. 252-48.4 2,921,903 1/1960 Beretvas 25248.4 X 3,216,936 11/1965 Le Suer 252 32.7 3,041,278 6/1962 Hobson 252-32.7
OTHER REFERENCES Rosenberg et al.: Article in Journal of Petroleum Technology, vol. 11, August 1969, pp. -202.
HERBERT B. GUYNN, Primary Examiner U.S. Cl. X.R.
Claims (1)
1. A COMPOSITION USEFUL IN A DRILLING FLUID TO INCREASE THE LUBRICITY THEREOF, SAID COMPOSITION CONSISTING ESSENTIALLY OF AT LEAST ABOUT 40 WEIGHT PERCENT SULFURIZED LARD OIL, AT LEAST ABOUT 10 WEIGHT PERCENT MINERAL OIL, AND AT LEAST ABOUT 1 WEIGHT PERCENT HALOGENATED PARAFFIN, SAID COMPOSITION CONTAINING GREATER THAN 2 WEIGHT PERCENT TOTAL HALOGEN AND GREATER THAN 5 WEIGHT PERCENT TOTAL SULFUR.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00285330A US3840460A (en) | 1971-01-20 | 1972-08-31 | Lubricity additives for drilling fluids |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10817071A | 1971-01-20 | 1971-01-20 | |
| US00285330A US3840460A (en) | 1971-01-20 | 1972-08-31 | Lubricity additives for drilling fluids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3840460A true US3840460A (en) | 1974-10-08 |
Family
ID=26805597
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00285330A Expired - Lifetime US3840460A (en) | 1971-01-20 | 1972-08-31 | Lubricity additives for drilling fluids |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3840460A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4064056A (en) * | 1976-06-28 | 1977-12-20 | Texaco Inc. | Drilling fluids containing an additive composition |
| US4200543A (en) * | 1978-12-26 | 1980-04-29 | Chevron Research Company | Synergistic antioxidant lubricating oil additive composition |
| US4802998A (en) * | 1986-07-08 | 1989-02-07 | Henkel Kommanditgesellschaft Auf Aktien | Powder-form lubricant additives for water-based drilling fluids |
| US5535834A (en) * | 1994-09-02 | 1996-07-16 | Champion Technologies, Inc. | Method for reducing torque in downhole drilling |
| US5707940A (en) * | 1995-06-07 | 1998-01-13 | The Lubrizol Corporation | Environmentally friendly water based drilling fluids |
| US5715896A (en) * | 1994-09-02 | 1998-02-10 | Champion Techologies, Inc. | Method and composition for reducing torque in downhole drilling |
| US20050197255A1 (en) * | 2004-03-03 | 2005-09-08 | Baker Hughes Incorporated | Lubricant composition |
| US8716197B2 (en) | 2004-03-03 | 2014-05-06 | Baker Hughes Incorporated | Lubricating compositions for use with downhole fluids |
| WO2016168177A1 (en) * | 2015-04-16 | 2016-10-20 | The Lubrizol Corporation | Additive compositions for drilling fluids and methods for their use |
| RU2730167C2 (en) * | 2015-11-02 | 2020-08-19 | Те Лубризол Корпорейшн | Lubricant for water-based drilling fluid |
-
1972
- 1972-08-31 US US00285330A patent/US3840460A/en not_active Expired - Lifetime
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4064056A (en) * | 1976-06-28 | 1977-12-20 | Texaco Inc. | Drilling fluids containing an additive composition |
| US4200543A (en) * | 1978-12-26 | 1980-04-29 | Chevron Research Company | Synergistic antioxidant lubricating oil additive composition |
| US4802998A (en) * | 1986-07-08 | 1989-02-07 | Henkel Kommanditgesellschaft Auf Aktien | Powder-form lubricant additives for water-based drilling fluids |
| US5535834A (en) * | 1994-09-02 | 1996-07-16 | Champion Technologies, Inc. | Method for reducing torque in downhole drilling |
| US5715896A (en) * | 1994-09-02 | 1998-02-10 | Champion Techologies, Inc. | Method and composition for reducing torque in downhole drilling |
| US5707940A (en) * | 1995-06-07 | 1998-01-13 | The Lubrizol Corporation | Environmentally friendly water based drilling fluids |
| US20050197255A1 (en) * | 2004-03-03 | 2005-09-08 | Baker Hughes Incorporated | Lubricant composition |
| US8273689B2 (en) | 2004-03-03 | 2012-09-25 | Baker Hughes Incorporated | Method for lubricating and/or reducing corrosion of drilling equipment |
| US8716197B2 (en) | 2004-03-03 | 2014-05-06 | Baker Hughes Incorporated | Lubricating compositions for use with downhole fluids |
| WO2016168177A1 (en) * | 2015-04-16 | 2016-10-20 | The Lubrizol Corporation | Additive compositions for drilling fluids and methods for their use |
| US20180072937A1 (en) * | 2015-04-16 | 2018-03-15 | The Lubrizol Corporation | Additive compositions for drilling fluids and methods for their use |
| RU2730167C2 (en) * | 2015-11-02 | 2020-08-19 | Те Лубризол Корпорейшн | Lubricant for water-based drilling fluid |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3712393A (en) | Method of drilling | |
| US3761410A (en) | Composition and process for increasing the lubricity of water base drilling fluids | |
| US4123367A (en) | Method of reducing drag and rotating torque in the rotary drilling of oil and gas wells | |
| US2589949A (en) | Controlling drilling fluid viscosity | |
| US3840460A (en) | Lubricity additives for drilling fluids | |
| US3027324A (en) | Water base drilling fluid and method of drilling | |
| US4172800A (en) | Drilling fluids containing an admixture of polyethoxylated, sulfurized fatty acids and polyalkylene glycols | |
| CA2115390C (en) | Fluid composition comprising a metal aluminate or a viscosity promoter and a magnesium compound and process using the composition | |
| US4181617A (en) | Aqueous drilling fluid and lubricant composition | |
| US4517100A (en) | Lubricating wellbore fluid and method of drilling | |
| US2568992A (en) | Treatment for drilling fluids | |
| WO2019175649A1 (en) | Environment-friendly lubricant composition for water-based drilling fluids | |
| US4064055A (en) | Aqueous drilling fluids and additives therefor | |
| US4053422A (en) | Drilling fluids containing polyethoxylated tetraalkyl acetylenic diols | |
| US2697071A (en) | Oil base drilling fluid containing latex | |
| US3332872A (en) | Drilling fluid | |
| EP0194254B1 (en) | High-density brine fluid and use in servicing wellbores | |
| US3716486A (en) | Brine drilling fluid lubricant and process for drilling subterranean wells with same | |
| US3111998A (en) | Foam or mist drilling process | |
| US3219580A (en) | Drilling fluids having enhanced lubricating properties | |
| CA1135039A (en) | Drilling fluid made from abrasive weighting materials | |
| US2331049A (en) | Drilling mud | |
| US20240384152A1 (en) | Sodium decyl- and laurylglucosides hydroxypropyl phosphates as lubricating agents in aqueous based drilling fluids | |
| US4064056A (en) | Drilling fluids containing an additive composition | |
| US2329878A (en) | Drilling fluid and the method of drilling and lubricating wells |