[go: up one dir, main page]

US3738315A - Coating apparatus including conveyor-mask - Google Patents

Coating apparatus including conveyor-mask Download PDF

Info

Publication number
US3738315A
US3738315A US00191267A US3738315DA US3738315A US 3738315 A US3738315 A US 3738315A US 00191267 A US00191267 A US 00191267A US 3738315D A US3738315D A US 3738315DA US 3738315 A US3738315 A US 3738315A
Authority
US
United States
Prior art keywords
mask
articles
section
belt
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00191267A
Inventor
S Sweitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Application granted granted Critical
Publication of US3738315A publication Critical patent/US3738315A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/20Masking elements, i.e. elements defining uncoated areas on an object to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53478Means to assemble or disassemble with magazine supply
    • Y10T29/53483Means to assemble or disassemble with magazine supply and magnetic work-holder or positioner

Definitions

  • ABSTRACT Ferromagnetic articles to be selectively coated are con- ,652, Dec. 3, 1969, Pat. No.
  • a belt which also serves to mask areas of the articles where coating material is not desired.
  • the belt is in the form of an endless tape and coating material is continuously removed from the tape so that each article to be coated is presented with clean tape mask.
  • Automatic apparatus is provided to magnetically lift the articles into engage- 811 04054 7// 83 8 89l 9 11 l 1 x MOCOO 5 1 1 mus "no u N w m O M wa h S .M .w
  • references Cited UNITED STATES PATENTS of the track permits the coated articles to drop free of s e m m g a g m M m .Hv D m u s m m w u c C a 0 d 1 n a k S a m e h t 9 XX m 1B 1 2 w 2 Pride et a1.
  • FIGT6 LEFT LIMIT I TRAvERsE ROD 52 L i RIGHT LIMIT T T T T I UP P FINGERS so DOWN I ENERGIZED I LEcTRoMAGNET 3a DEENERGIZED ENGAGED TAPE ADVANCE CLUTCH 74 DISENGAGED I l i I Y t n t t, r, t L t n O l 2 3 4 I C? 3 4 FIGT'7 CAM PROGRAMMER PART FEED POSITIONER ELECTRO- F'I E MAGNET ADVANCE CONT. CKT. CONT? CKT. ONT CKT. C-QNT. CKT.
  • the invention relates to methods and apparatus for selectively coating ferromagnetic articles and, more particularly, to improved automatic methods and apparatus for continuous masking and conveying ferromagnetic articles through a coating station wherein the articles have been magnetically engaged with the mask.
  • the articles have been coated in an automatic apparatus using an endless belt mask having apertures through which raised portions of the articles protrude to be coated.
  • the mask is adjacent to a track which supports the articles as they are pulled by the mask through a coating station.
  • Mechanisms are pro 'vided to raise a portion of the belt at one end so that each article may be positioned under an aperture in the mask and the mask lowered over the article to engage it. After the mask is lowered, the raised portion of the articles protrude through the aperture to be coated and the flanged portion remains beneath the belt to be masked.
  • a mechanism is provided to lift the belt from each article after it has been coated to disengage and dispose of the article.
  • the invention accomplishes the foregoing and other objects by providing a two level track for supporting the articles, having flanged portions to be masked and raised portions to be coated, and an electromagnet to lift the articles from one level to the other and into engagement with an apertured endless-belt mask.
  • the track consists of a lower level having first and third sections and an upper level second section therebetween which extends through the coating station.
  • the endless belt mask extends along and adjacent to the upper level second section and extends beyond each end of the second section so that the belt mask overlaps the lower level first and third sections.
  • An electromagnet is located above (1) a reference point on the first section and (2) an aperture in the mask which is also aligned with the reference point.
  • the articles are placed on the first section of the track and individually positioned by indexing them along the track to the reference point.
  • the mask is indexed to align the apertures with the reference point in timed relationship with the positioning of the articles therewith.
  • the elctromagnet is energized in timed relationship with the articles and apertures so that each article in turn is attracted to the mask and the raised portions protrude through the mask apertures.
  • the articles in the mask are pulled from under the magnet onto the second section of the track by the indexing of the mask. Continuous indexing of the mask pulls the articles along the second section of track, thereby conveying them through the coating station to the third section. Since the mask overlaps the third section indexing of the mask pulls the articles from the second section so that they drop out of the mask to the third section of the track.
  • the articles are then disposed of along the third section of the track into an accumulator magazine.
  • the mask After exiting from the coating station the mask is returned to the starting point through a cleaning station so that the coating on the mask may be removed and a clean portion of the mask presented to each article to be coated.
  • FIG. 1 is an isometric view of a transistor subassembly which is to be coated by the apparatus of FIG. 3;
  • FIG. 2 is a partial isometric view of an endless tape mask and a portion of a support track showing the masking of a plurality of the subassemblies of FIG. 1;
  • FIG. 3 is an isometric view of an apparatus, utilizing the endless tape mask of FIG. 2, for coating transistor subassemblies in accordance with certain features of the invention
  • FIG. 4 is an isometric view of the input end of the apparatus of FIG. 3;
  • FIG. 5 is an isometric view of the output end of the apparatus of FIG. 3;
  • FIG. 6 is a time versus function chart schematically illustrating cooperation between various elements of the invention.
  • FIG. 7 is a schematic diagram of an automatic control system for the apparatus of FIG. 3.
  • a transistor subassembly designated generally by the numeral 10, which includes a ferromagnetic header designated generally by the numeral 12, an active transistor chip l4 and a plurality of leads 16.
  • the header 12 includes a raised platform 18, a flange 20 and a plurality of terminals 22.
  • the transistor subassembly is to be coated, in the specific example, with silicon dioxide on the entire top of the platform 18 including the transistor chip 14 but not on the surface of the flange 20.
  • the flange 20 is shielded or masked by a belt or tape mask designated generally by the numeral 24.
  • the tape mask 24 is made with drive perforations 26 which, advantageously, are identical in size and spacing to the perforations in a motion picture film. Consequently, all tooth sprockets used for the control and movement of the tape mask 24 have dimensions to suit motion picture film perforations and spacing.
  • the tape mask 24 is perforated along its center line with a plurality of evenly spaced masking apertures 28. The masking apertures 28 are large enough to fit over the raised platform 18 of the subassembly 10 but small'enough so that the tape mask 24 shields the flanges 20.
  • Coating of the subassemblies 10 is accomplished by permitting silicon dioxide to condense on the surfaces of the subassemblies when the subassemblies are placed into an atmosphere containing gaseous silicon dioxide.
  • the tape mask 24 prevents condensation of silicon dioxide on the flanges 20 but, of course, the tape mask 24 itself becomes coated with silicon dioxide.
  • the mask 24 is operated as an endless belt or tape arrangement and, in order to continually have a properly conditioned mask available for the articles, successive portions of the mask are cleaned after each exposure to the coating operation.
  • silicon dioxide is soluble in hydroflouric acid
  • the mask 24 it is essential that the mask 24 be nonmagnetic so that it will not form a magnetic path or shunt or become magnetized.
  • a preferred material for the mask 24 in this case is a nonmagnetic grade of stainless steel but other materials such as hard brass, phosphor bronze or plastic may be used.
  • the machine 30 includes: a vibratory feeding and storage magazine 32, built in accordance with U.S. Pat. No. 3,194,392, issued to R. W. Manderbach on Aug. 13,1965 and mounted on vibrating unit; a three section support track designated generally by the numeral 34; a positioner designated generally by the numeral 36 and built in accordance with U.S. Pat. No. 3,435,943, issued to A. F. Johnson on Apr. 1, 1969; the endless tape mask 24; an electromagnet designated generally by the numeral 38; a coating station 40; an accumulator magazine 42 similar to magazine 32 and also mounted on a vibrating unit; and a cleaning station designated generally by the numeral 44.
  • the subassemblies 10, to be coated are fed onto a lower level first section 46 of the support track 34 from the vibrating magazine 32 to a spring stop 49.
  • the first section 46 of the support track 34 must be nonmagnetic and preferably is made from nonmagnetic type stainless steel.
  • From the spring stop 49 the subassemblies 10 are moved in increments, i.e., indexed, to a point adjacent a second section 48 of the track 34 by means of the positioner 36 disclosed in the above cited U.S. Pat. No. 3,435,943 issued to A. F. Johnson.
  • the subassemblies 10 are moved in four steps by the Johnson apparatus to minimize the length of stroke of the piston within an air cylinder 54, there being one finger 50 for each step desired.
  • the fingers 50 of the positioner 36 are fixed to a traverse rod 52 and are moved back and forth along the first section 46 of the track 34 by the piston within the air cylinder 54 acting on the rod 52 through a link 53 which permits rotation of the rod during translation.
  • a guide block 55 guides the link 53 and maintains it in the vertical position.
  • the fingers 50 are adjacent the first section 46 of the track, thus moving the subassemblies 10 to the left.
  • the rod 52 On the return stroke, the rod 52 is rotated clockwise, by a cam and follower mechanism (not shown), around its own axis sufficiently to lift the fingers 50 to pass over the subassemblies 10 as the traverse rod 52 returns.
  • the cam mechanism rotates the fingers 50 back again to lower them in place adjacent the first section 46 of the track 34 and behind the next subassemblies to 'be moved.
  • On the forward indexing stroke i.e., advancing to the left, one subassembly 10 is pushed along the first section 46 past the spring stop 49 by the right-hand finger 50 to a point at the limit of the forward stroke where the subassembly can be engaged by the next finger 50 on the next stroke.
  • an earlier subassembly 10 is positioned by the left-hand finger 50, at the limit of the forwardstroke, on the first section 46 of the track 34 at a point, hereinafter termed the reference point, below the electromagnet 38.
  • the endless tape mask 24 lies adjacent the second section 48 throughout the length of the section and the coating station 40 and rests on the flanges 20 of the subassemblies 10 (FIG. 2) when the subassemblies are on the second section.
  • the belt mask 24 extends beyond the second section 48, at each end to overlap both the first section 46 at the input end of the coating machine 30 and a third section 56 of the track 34 (FIG. 5) at the output end of the apparatus.
  • the second section 48 like the first section 46, is nonmagnetic and is preferably made of stainless steel.
  • the second section 48 and consequently the mask 24 which lies adjacent to it and extends over the first section 46, is elevated above, or stepped up from, the first section just enough to permit the tape to clear the raised fingers 50.
  • the third section 56 is at approximately the same level as the first section 46, and is stepped down from the second section 48.
  • the tape mask 24 is held against a drive sprocket 58 (FIG. 5) by an idler roller 60 and against a sprocket 62,
  • the driven sprocket 62 is mounted on one end of a sprocket shaft 66 for rotation in a support 68.
  • a grooved friction pulley 70 is mounted on the opposite end of the sprocket shaft 66 and a friction belt 72, fixed at one end, is wrapped half way around the pulley 70.
  • the belt 72 is tensioned at the other end by means of a spring (not shown) to apply a friction drag which retards rotation of the driven sprocket 62.
  • the drag on the driven sprocket 62 maintains the mask 24 taut between the drive and the driven sprockets 58 and 62, respectively.
  • the friction belt 72 is preferably made of leather but other suitable materials may be used.
  • the drive sprocket 58, and consequently the tape mask 24, is driven by means of an electric motor (not shown) through an electromagnetic clutch 74, a timing belt 76 and a pair of drive gears 78.
  • the clutch 74 is actuated to drive the sprocket 58 and tape mask 24 by means of a tape advance control circuit 80 (FIG. 7) and is halted by a photoelectric detector 82 which interrupts the control circuit 80.
  • Such interruption occurs when the edge of an aperture 28 first exposes the photoelectric detector 82 to light projected through the aperture from the source 84.
  • An aperture 28 at that time (refer to FIG. 4 again) is directly above the subassembly 10 at the reference point on the first section 46 of the track 34.
  • the electromagnet 38 is also centered above the reference point and both the subassembly l0 and the aperture 28 so that the subassembly, aperture and magnet are vertically aligned.
  • the pole face 88 of the electromagnet 38 is adjacent the tapemask 24 but just far enough above the mask to clear the top of the platform 18 of the subassembly 10 which protrudes through the tape mask 24. Since the headers 12 are ferromagnetic, when the electromagnet 38 is energized, the subassemblies 10 will be attracted by the magnet and thus lifted into engagement with the tape mask 24.
  • the electromagnet 38 is energized with alternating current so that the subassemblies 10 vibrate as they are lifted into contact with the tape mask 24. This vibration aids the entry of the raised platform 18 into the aperture 28 in the masking tape.
  • the fingers 50 are down and engage the subassemblies 10.
  • the right-hand finger 50 engages the subassembly 10 which is against the stop 49 and the traverse rod 52 is at the right-hand limit of its stroke.
  • the traverse rod 52 advances to the left under the control of the positioner circuit 96.
  • the rod 52 reaches the left-hand limit of its travel, reverses under the influence of the control circuit 96 and retracts.
  • the left-hand finger 50 has positioned one subassembly 10 at the reference point beneath an aperture 28 in the mask 24 and the electromagnet 38, while the right-hand finger 50 has pulled one subassembly 10 past the spring stop 49 and into position to be engaged by another finger 50 on the next stroke of the traverse rod 52.
  • a cam mechanism (not shown) of the positioner 36 rotates the traverse rod 52 clockwise, thus lifting the fingers 50 sufficiently to clear the subassembly 10 but not enough to strike the mask 24.
  • the electromagnet 38 is energized by the cam programmer 92 through the electromagnet control circuit 98.
  • the magnetic field of the electromagnet 38' attracts and lifts the subassembly 10, which was placed below the electromagnet at time t, by the positioner 36, into the aperture 28 and engagement with the mask 24.
  • the traverse rod 52 continues to retract and shortly before the rod is fully retracted the cam mechanism of the positioner 36 rotates the rod counterclockwise so that the fingers are down and ready to engage the subassemblies 10 on the next cycle.
  • the traverse rod 52 reaches the right-hand limit of its travel.
  • the positioner control circuit 96 then inactivates the positioner 36 until the control circuit 96 again receives a signal from the programmer 92 to advance the traverse rod. Also at this time the programmer 92 activates the tape advance control circuit which engages the clutch 74 to advance the tape mask 24. Since the electromagnet 38 is still energized, the subassemblies 10 are maintained in engagement with the mask as it advances. The mask 24 continues to advance until the photoelectric circuit 82 sees light from the source 84 through an aperture 28 in the mask 24.
  • the circuit 82 sees" light from the source- 84. Between t and this time the cam programmer 92" completes its one revolution and stops. At t, the photoelectric circuit 82 interrupts the tape advance circuit 80 which disengages the tape advance clutch 74. This stops the mask 24 with an aperture 28 directly beneath the electromagnet 38 and above the reference point. In addition, the subassembly 10 which was beneath the magnet has now been pulled onto the second section 48* of the track 34. Also, at time t, the photoelectric circuit 82 signals the electromagnet control circuit 98 to deenergize the electromagnet 38 and signals the cam programmer 92 to start another cycle. The cycle now beflanged portions below the tape remain masked and uncoated.
  • the subassemblies 10 are pulled along the second section 48 of the track 34 to the third section 56. Since the second section 48 is at a level higher than the third section 56 and the mask 24 extends beyond the second section 48, the transistor subassemblies 10 drop from the apertures 28 in the mask 24 to the third section 56 of the track 34.
  • An air jet 90 directed along the third section 56 propels the subassemblies to the accumulator magazine 42 mounted on a vibrator for vibrating the subassemblies 10 into the magazine.
  • the subassemblies 10 are exposed to the silicon dioxide in gaseous form and, because the subassemblies l and the mask 24 are at substantially ambient temperatures, silicon dioxide condenses on the exposed surface of the subassemblies l0 and the mask 24. Since the mask 24, as well as the subassemblies l0, become coated with silicon dioxide, it is desirable to remove the coating from the mask to prevent coating build up and eventual ineffectiveness of the mask. The silicon dioxide is removed by passing the mask 24 between rotating brushes 102 which brush away the silicon dioxide coating within the cleaning station 44. Thus, clean tape mask 24 is returned from the cleaning station 44 to the starting point in good condition for masking subassemblies again.
  • control circuits are conventional except insofar as they are combined with each other into an inventive system. They can readily be constructed by those skilled in the art of assembly or such circuits and, therefore, the circuits are not described in detail.
  • An apparatus for masking ferromagnetic articles and conveying them through a coating station which comprises:
  • magnetic means positioned on the other side of the mask and in alignment with one of the apertures thereof for successively attracting the articles to protrude said portions through the apertures and to engage the articles with the mask;
  • An apparatus as recited in claim 1 wherein means are provided for removing the articles from the mask. 5.
  • An apparatus as recited in claim 5, which further includes means for continuously removing the coating from the mask to keep the mask clean.
  • An apparatus for masking ferromagnetic articles, having flanged portions to be masked and raised portions to be coated, and conveying the articles through a coating station which comprises:
  • a first nonmagnetic track section for supporting the articles to be coated
  • a nonmagnetic belt for masking the flanged portion of the articles and having apertures through which the raised portions-may protrude to engage the belt and to be coated, a portion of the belt being above said reference point of said first section;
  • drive means for moving the belt incrementally such that successive apertures in the belt stop in alignment with said reference point in said first track section and in timed relationship with the article indexing means;
  • an electromagnet mounted above said reference point in said first track section and above and adjacent the belt to attract the articles from said first section into engagement with the apertures in the belt in timed relationship with the article indexing means;
  • a second nonmagnetic track section adjacent the belt throughout the length of the coating station, aligned with and above said first track section and adjacent at one end to said reference point end of the first section, for supporting the articles in engagement with the belt, the movement of the belt urging the articles onto and along said second section through the coating station;
  • An apparatus as recited in claim 8, which includes means for continuously removing the coating from the mask to keep the mask clean.
  • An apparatus for masking ferromagnetic articles, having flanged portions to be masked and raised portions to be coated, and conveying the articles through a coating station which comprises:
  • a first nonmagnetic track section for supporting the articles to be coated
  • a flexible, endless, nonmagnetic, stainless steel-belt mask for masking the flange portion of the articles and having apertures through which the raised portions may protrude to engage the mask and to be coated and having spaced drive perforations along one edge, a portion of the mask being above the reference point of the first track section;
  • drive means for engaging the perforations and moving the mask incrementally such that successive apertures in the mask stop in alignment with the reference point on the first track section in timed relationship with the article indexing means;
  • an alternating current electromagnet mounted above the reference point in the first track section and above and adjacent to the mask for vibrating and attracting the articles from the first section into engagement with apertures in the mask, in timed relationship with the article indexing means;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Abstract

Ferromagnetic articles to be selectively coated are conveyed through a coating station by a belt which also serves to mask areas of the articles where coating material is not desired. The belt is in the form of an endless tape and coating material is continuously removed from the tape so that each article to be coated is presented with clean tape mask. Automatic apparatus is provided to magnetically lift the articles into engagement with the mask and a support track in coordination with feeding and indexing devices. A step near the end of the track permits the coated articles to drop free of the mask and accumulate in a magazine.

Description

[ June 12, 1973 United States Patent 1191 Sweitzer COATING APPARATUS INCLUDING XX 49 M 58 81 11 l Kagan....... 9/1965 Morgan.....
. CONVEYOR-MASK 1/1966 Ames........
1/1967 Gamble..... 7/1968 [75] Inventor: Stanley E. Sweitzer, Laureldale, Pa.
Western Electric Company, Incorporated,
118/49 3,511,212 5/1970 Bums........ 118/49 New York, N.Y.
[73] Assignee:
22 Filed: Oct. 21, 1971 21 Appl. 110.; 191,267
Primary ExaminerMorris Kaplan Attorney W. M. Kain, R. P. Miller and R. Y. Peters Related US. Application Data [62] Division of Ser. No. 881
[57] ABSTRACT Ferromagnetic articles to be selectively coated are con- ,652, Dec. 3, 1969, Pat. No.
veyed through a coating station by a belt which also serves to mask areas of the articles where coating material is not desired. The belt is in the form of an endless tape and coating material is continuously removed from the tape so that each article to be coated is presented with clean tape mask. Automatic apparatus is provided to magnetically lift the articles into engage- 811 04054 7// 83 8 89l 9 11 l 1 x MOCOO 5 1 1 mus "no u N w m O M wa h S .M .w
ment with the mask and a support track in coordination with feeding and indexing devices. A step near the end [56] References Cited UNITED STATES PATENTS of the track permits the coated articles to drop free of s e m m g a g m M m .Hv D m u s m m w u c C a 0 d 1 n a k S a m e h t 9 XX m 1B 1 2 w 2 Pride et a1.
KM "t C n y em ha 6 li BG 34 566 999 1.1.1 400 668 24 01 0 2 928 40 5111 233 PAIENIEBJWZBB 3738 315 sum 1 or 4 PATENIEBJUHIZW 3.738.315
SKEEI b of 4 FIGT6 LEFT LIMIT I TRAvERsE ROD 52 L i RIGHT LIMIT T T T T I UP P FINGERS so DOWN I ENERGIZED I LEcTRoMAGNET 3a DEENERGIZED ENGAGED TAPE ADVANCE CLUTCH 74 DISENGAGED I l i I Y t n t t, r, t L t n O l 2 3 4 I C? 3 4 FIGT'7 CAM PROGRAMMER PART FEED POSITIONER ELECTRO- F'I E MAGNET ADVANCE CONT. CKT. CONT? CKT. ONT CKT. C-QNT. CKT.
COATING APPARATUS INCLUDING CONVEYOR-MASK This is a division of application Ser. No. 881,652 filed Dec. 3, 1969, and now U.S. Pat. No. 3,635,730.
BACKGROUND OF THE INVENTION The invention relates to methods and apparatus for selectively coating ferromagnetic articles and, more particularly, to improved automatic methods and apparatus for continuous masking and conveying ferromagnetic articles through a coating station wherein the articles have been magnetically engaged with the mask.
In the manufacture of certain articles it is necessary to coat selected portions of the articles while preventing other portions from being coated. For example, in the manufacture of certain types of transistors, it is necessary to apply a protective coating of silicon dioxide to an active transistor element which is mounted on a platform of a flanged header. However, silicon dioxide deposited on the flange of the header would prevent subsequent welding of a closure to the flange. It becomes necessary, therefore, to shield or mask the flange during the coating operation while exposing the top surface containing the active transistor element to the silicon dioxide.
Previously, the articles have been coated in an automatic apparatus using an endless belt mask having apertures through which raised portions of the articles protrude to be coated. The mask is adjacent to a track which supports the articles as they are pulled by the mask through a coating station. Mechanisms are pro 'vided to raise a portion of the belt at one end so that each article may be positioned under an aperture in the mask and the mask lowered over the article to engage it. After the mask is lowered, the raised portion of the articles protrude through the aperture to be coated and the flanged portion remains beneath the belt to be masked. Similarly, a mechanism is provided to lift the belt from each article after it has been coated to disengage and dispose of the article. The method and apparatus are described more fully in copending application Ser. No. 787,040 filed Dec. 26, 1968 and now U.S. Pat. No. 3,587,524, assigned to the assignee of record.
It has been found advantageous to simplify the foregoing apparatus both mechanical-1y and electrically. Such simplification results in reduction of the cost of construction of the apparatus, fewer moving parts with consequent reduced maintenance, and improved operation of the apparatus. In carrying out such simplification, magnetic expedients are incorporated in place of electropneumatic mechanisms.
SUMMARY OF THE INVENTION It is an object of the invention, therefore, to provide new and improved methods and apparatus for automatic masking and conveying articles through a coating apparatus.
It is another object of the invention to provide magnetic means for lifting and engaging the articles with the mask.
It is still another object of the invention to simplify the removal of the articles from the mask.
It is another object to simplify the electric and pneumatic control circuits.
The invention accomplishes the foregoing and other objects by providing a two level track for supporting the articles, having flanged portions to be masked and raised portions to be coated, and an electromagnet to lift the articles from one level to the other and into engagement with an apertured endless-belt mask.
The track consists of a lower level having first and third sections and an upper level second section therebetween which extends through the coating station.
The endless belt mask extends along and adjacent to the upper level second section and extends beyond each end of the second section so that the belt mask overlaps the lower level first and third sections.
An electromagnet is located above (1) a reference point on the first section and (2) an aperture in the mask which is also aligned with the reference point.
The articles are placed on the first section of the track and individually positioned by indexing them along the track to the reference point. The mask is indexed to align the apertures with the reference point in timed relationship with the positioning of the articles therewith. The elctromagnet is energized in timed relationship with the articles and apertures so that each article in turn is attracted to the mask and the raised portions protrude through the mask apertures. The articles in the mask are pulled from under the magnet onto the second section of the track by the indexing of the mask. Continuous indexing of the mask pulls the articles along the second section of track, thereby conveying them through the coating station to the third section. Since the mask overlaps the third section indexing of the mask pulls the articles from the second section so that they drop out of the mask to the third section of the track. The articles are then disposed of along the third section of the track into an accumulator magazine.
After exiting from the coating station the mask is returned to the starting point through a cleaning station so that the coating on the mask may be removed and a clean portion of the mask presented to each article to be coated.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects, advantages and features of the invention will be apparent from the following detailed description of specific examples and embodiments thereof, in which:
FIG. 1 is an isometric view of a transistor subassembly which is to be coated by the apparatus of FIG. 3;
FIG. 2 is a partial isometric view of an endless tape mask and a portion of a support track showing the masking of a plurality of the subassemblies of FIG. 1;
FIG. 3 is an isometric view of an apparatus, utilizing the endless tape mask of FIG. 2, for coating transistor subassemblies in accordance with certain features of the invention;
FIG. 4 is an isometric view of the input end of the apparatus of FIG. 3; and
FIG. 5 is an isometric view of the output end of the apparatus of FIG. 3;
FIG. 6 is a time versus function chart schematically illustrating cooperation between various elements of the invention; and
FIG. 7 is a schematic diagram of an automatic control system for the apparatus of FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENT The invention will be described in connection with the selective coating of a transistor subassembly; however, it is to be understood that this is only for the purpose of explanation and that the invention is applicable to the selective coating of various other ferromagnetic articles.
Referring to FIG. 1, there is shown a transistor subassembly, designated generally by the numeral 10, which includes a ferromagnetic header designated generally by the numeral 12, an active transistor chip l4 and a plurality of leads 16. The header 12 includes a raised platform 18, a flange 20 and a plurality of terminals 22. The transistor subassembly is to be coated, in the specific example, with silicon dioxide on the entire top of the platform 18 including the transistor chip 14 but not on the surface of the flange 20.
Referring now to FIG. 2, the flange 20 is shielded or masked by a belt or tape mask designated generally by the numeral 24. The tape mask 24 is made with drive perforations 26 which, advantageously, are identical in size and spacing to the perforations in a motion picture film. Consequently, all tooth sprockets used for the control and movement of the tape mask 24 have dimensions to suit motion picture film perforations and spacing. In addition, the tape mask 24 is perforated along its center line with a plurality of evenly spaced masking apertures 28. The masking apertures 28 are large enough to fit over the raised platform 18 of the subassembly 10 but small'enough so that the tape mask 24 shields the flanges 20.
Coating of the subassemblies 10 is accomplished by permitting silicon dioxide to condense on the surfaces of the subassemblies when the subassemblies are placed into an atmosphere containing gaseous silicon dioxide. The tape mask 24 prevents condensation of silicon dioxide on the flanges 20 but, of course, the tape mask 24 itself becomes coated with silicon dioxide.
The mask 24 is operated as an endless belt or tape arrangement and, in order to continually have a properly conditioned mask available for the articles, successive portions of the mask are cleaned after each exposure to the coating operation. Although silicon dioxide is soluble in hydroflouric acid, it is preferable to use a dry cleaning technique so that the maintenance of acid baths and rinses is not required. It is, therefore, desirable to keep the configuration of the mask 24 as simple as possible so that the mask can be readily cleaned by dry techniques such as brushing. Since the mask 24 must also be able to withstand repeated cycling, it is important in this particular use of the invention that the tape have good wear characteristics. Also, it is essential that the mask 24 be nonmagnetic so that it will not form a magnetic path or shunt or become magnetized. A preferred material for the mask 24 in this case is a nonmagnetic grade of stainless steel but other materials such as hard brass, phosphor bronze or plastic may be used.
Referring now to FIG. 3, there is shown a coating apparatus designated generally by the numeral 30, for automatically masking and coating the subassemblies 10. The machine 30 includes: a vibratory feeding and storage magazine 32, built in accordance with U.S. Pat. No. 3,194,392, issued to R. W. Manderbach on Aug. 13,1965 and mounted on vibrating unit; a three section support track designated generally by the numeral 34; a positioner designated generally by the numeral 36 and built in accordance with U.S. Pat. No. 3,435,943, issued to A. F. Johnson on Apr. 1, 1969; the endless tape mask 24; an electromagnet designated generally by the numeral 38; a coating station 40; an accumulator magazine 42 similar to magazine 32 and also mounted on a vibrating unit; and a cleaning station designated generally by the numeral 44.
Referring now to FIG. 4, the subassemblies 10, to be coated, are fed onto a lower level first section 46 of the support track 34 from the vibrating magazine 32 to a spring stop 49. The first section 46 of the support track 34 must be nonmagnetic and preferably is made from nonmagnetic type stainless steel. From the spring stop 49 the subassemblies 10 are moved in increments, i.e., indexed, to a point adjacent a second section 48 of the track 34 by means of the positioner 36 disclosed in the above cited U.S. Pat. No. 3,435,943 issued to A. F. Johnson. Preferably, the subassemblies 10 are moved in four steps by the Johnson apparatus to minimize the length of stroke of the piston within an air cylinder 54, there being one finger 50 for each step desired. However, from one step to as many as desired may be used. The fingers 50 of the positioner 36 are fixed to a traverse rod 52 and are moved back and forth along the first section 46 of the track 34 by the piston within the air cylinder 54 acting on the rod 52 through a link 53 which permits rotation of the rod during translation. A guide block 55 guides the link 53 and maintains it in the vertical position. During the stroke toward the second section ,48 of the track 34, the fingers 50 are adjacent the first section 46 of the track, thus moving the subassemblies 10 to the left. On the return stroke, the rod 52 is rotated clockwise, by a cam and follower mechanism (not shown), around its own axis sufficiently to lift the fingers 50 to pass over the subassemblies 10 as the traverse rod 52 returns. At the end of the return stroke, the cam mechanism rotates the fingers 50 back again to lower them in place adjacent the first section 46 of the track 34 and behind the next subassemblies to 'be moved. On the forward indexing stroke, i.e., advancing to the left, one subassembly 10 is pushed along the first section 46 past the spring stop 49 by the right-hand finger 50 to a point at the limit of the forward stroke where the subassembly can be engaged by the next finger 50 on the next stroke. At the same time an earlier subassembly 10 is positioned by the left-hand finger 50, at the limit of the forwardstroke, on the first section 46 of the track 34 at a point, hereinafter termed the reference point, below the electromagnet 38.
The endless tape mask 24 lies adjacent the second section 48 throughout the length of the section and the coating station 40 and rests on the flanges 20 of the subassemblies 10 (FIG. 2) when the subassemblies are on the second section. In addition, the belt mask 24 extends beyond the second section 48, at each end to overlap both the first section 46 at the input end of the coating machine 30 and a third section 56 of the track 34 (FIG. 5) at the output end of the apparatus. The second section 48, like the first section 46, is nonmagnetic and is preferably made of stainless steel. The second section 48, and consequently the mask 24 which lies adjacent to it and extends over the first section 46, is elevated above, or stepped up from, the first section just enough to permit the tape to clear the raised fingers 50. The third section 56 is at approximately the same level as the first section 46, and is stepped down from the second section 48.
The tape mask 24 is held against a drive sprocket 58 (FIG. 5) by an idler roller 60 and against a sprocket 62,
which is driven by the mask 24, by an idler roller 64 (FIG. 4). The driven sprocket 62 is mounted on one end of a sprocket shaft 66 for rotation in a support 68. A grooved friction pulley 70 is mounted on the opposite end of the sprocket shaft 66 and a friction belt 72, fixed at one end, is wrapped half way around the pulley 70. The belt 72 is tensioned at the other end by means of a spring (not shown) to apply a friction drag which retards rotation of the driven sprocket 62. The drag on the driven sprocket 62 maintains the mask 24 taut between the drive and the driven sprockets 58 and 62, respectively. The friction belt 72 is preferably made of leather but other suitable materials may be used.
Referring now to FIG. 5, the drive sprocket 58, and consequently the tape mask 24, is driven by means of an electric motor (not shown) through an electromagnetic clutch 74, a timing belt 76 and a pair of drive gears 78. The clutch 74 is actuated to drive the sprocket 58 and tape mask 24 by means of a tape advance control circuit 80 (FIG. 7) and is halted by a photoelectric detector 82 which interrupts the control circuit 80. Such interruption occurs when the edge of an aperture 28 first exposes the photoelectric detector 82 to light projected through the aperture from the source 84. An aperture 28 at that time (refer to FIG. 4 again) is directly above the subassembly 10 at the reference point on the first section 46 of the track 34.
The electromagnet 38 is also centered above the reference point and both the subassembly l0 and the aperture 28 so that the subassembly, aperture and magnet are vertically aligned. The pole face 88 of the electromagnet 38 is adjacent the tapemask 24 but just far enough above the mask to clear the top of the platform 18 of the subassembly 10 which protrudes through the tape mask 24. Since the headers 12 are ferromagnetic, when the electromagnet 38 is energized, the subassemblies 10 will be attracted by the magnet and thus lifted into engagement with the tape mask 24. Preferably, the electromagnet 38 is energized with alternating current so that the subassemblies 10 vibrate as they are lifted into contact with the tape mask 24. This vibration aids the entry of the raised platform 18 into the aperture 28 in the masking tape.
When the subassemblies 10 are in engagement with the mask 24, they are at the height of the second section 48 of the track 34. Movement of the tape mask 24 pulls the subassemblies from beneath the electromagnet 38 onto the second section 48 of the track 34 which then supports the subassemblies 10. A conventional lever operated microswitch 89 is provided to detect the absence of the subassemblies 10 from the mask 24, when the magazine 32 becomes empty.
Further movement of the mask 24 urges the subassemblies 10 along the second section 48 through the coating station 40 to the third section 56 of the track 34., The mask 24 continues beyond the second section 48 to a point over the third section 56 so that the subassemblies 10 drop from engagement with the mask 24 to the third section 56 at the lower level of the track 34. An air jet 90 between the track levels blows the subassemblies 10 to an accumulator magazine 42 where they are vibrated into the magazine.
OPERATION The operation of the apparatus can be understood best by a description of one complete cycle of the apparatus 30and reference to FIGS. 3,6, and 7 alternately.
Assume the apparatus 30 is operating and that the cam programmer 92, which will complete one revolution and stop, has just activated both the feed control circuit 94 and the positioner control circuit 96. Thus, the subassemblies 10 are being fed by vibration from the magazine 32 to the stop 49. Also, the feed control circuit will remain actuated for a portion of the machine cycle sufficient to assure that at least one subassembly 10 is against the stop 49 when needed.
At time t which occurs at the activation of the feed control circuit 94 and the positioner control circuit 96, the fingers 50 are down and engage the subassemblies 10. The right-hand finger 50 engages the subassembly 10 which is against the stop 49 and the traverse rod 52 is at the right-hand limit of its stroke. The traverse rod 52 advances to the left under the control of the positioner circuit 96.
At time t,, the rod 52 reaches the left-hand limit of its travel, reverses under the influence of the control circuit 96 and retracts. Thus, the left-hand finger 50 has positioned one subassembly 10 at the reference point beneath an aperture 28 in the mask 24 and the electromagnet 38, while the right-hand finger 50 has pulled one subassembly 10 past the spring stop 49 and into position to be engaged by another finger 50 on the next stroke of the traverse rod 52. In addition, as the traverse rod 52 retracts, a cam mechanism (not shown) of the positioner 36 rotates the traverse rod 52 clockwise, thus lifting the fingers 50 sufficiently to clear the subassembly 10 but not enough to strike the mask 24. At time t, the electromagnet 38 is energized by the cam programmer 92 through the electromagnet control circuit 98. The magnetic field of the electromagnet 38' attracts and lifts the subassembly 10, which was placed below the electromagnet at time t, by the positioner 36, into the aperture 28 and engagement with the mask 24. The traverse rod 52 continues to retract and shortly before the rod is fully retracted the cam mechanism of the positioner 36 rotates the rod counterclockwise so that the fingers are down and ready to engage the subassemblies 10 on the next cycle.
At time t the traverse rod 52 reaches the right-hand limit of its travel. The positioner control circuit 96 then inactivates the positioner 36 until the control circuit 96 again receives a signal from the programmer 92 to advance the traverse rod. Also at this time the programmer 92 activates the tape advance control circuit which engages the clutch 74 to advance the tape mask 24. Since the electromagnet 38 is still energized, the subassemblies 10 are maintained in engagement with the mask as it advances. The mask 24 continues to advance until the photoelectric circuit 82 sees light from the source 84 through an aperture 28 in the mask 24.
At time t.,, the circuit 82 sees" light from the source- 84. Between t and this time the cam programmer 92" completes its one revolution and stops. At t, the photoelectric circuit 82 interrupts the tape advance circuit 80 which disengages the tape advance clutch 74. This stops the mask 24 with an aperture 28 directly beneath the electromagnet 38 and above the reference point. In addition, the subassembly 10 which was beneath the magnet has now been pulled onto the second section 48* of the track 34. Also, at time t, the photoelectric circuit 82 signals the electromagnet control circuit 98 to deenergize the electromagnet 38 and signals the cam programmer 92 to start another cycle. The cycle now beflanged portions below the tape remain masked and uncoated.
The subassemblies 10 are pulled along the second section 48 of the track 34 to the third section 56. Since the second section 48 is at a level higher than the third section 56 and the mask 24 extends beyond the second section 48, the transistor subassemblies 10 drop from the apertures 28 in the mask 24 to the third section 56 of the track 34. An air jet 90 directed along the third section 56 propels the subassemblies to the accumulator magazine 42 mounted on a vibrator for vibrating the subassemblies 10 into the magazine.
Within the coating station 40, the subassemblies 10 are exposed to the silicon dioxide in gaseous form and, because the subassemblies l and the mask 24 are at substantially ambient temperatures, silicon dioxide condenses on the exposed surface of the subassemblies l0 and the mask 24. Since the mask 24, as well as the subassemblies l0, become coated with silicon dioxide, it is desirable to remove the coating from the mask to prevent coating build up and eventual ineffectiveness of the mask. The silicon dioxide is removed by passing the mask 24 between rotating brushes 102 which brush away the silicon dioxide coating within the cleaning station 44. Thus, clean tape mask 24 is returned from the cleaning station 44 to the starting point in good condition for masking subassemblies again.
The previous described control circuits are conventional except insofar as they are combined with each other into an inventive system. They can readily be constructed by those skilled in the art of assembly or such circuits and, therefore, the circuits are not described in detail.
What is claimed is: 1. An apparatus for masking ferromagnetic articles and conveying them through a coating station, which comprises:
a mask having spaced apertures through which portions of the articles to be coated are protrudable;
means for successively positioning the articles on one side of the mask and in alignment with the apertures thereof;
magnetic means positioned on the other side of the mask and in alignment with one of the apertures thereof for successively attracting the articles to protrude said portions through the apertures and to engage the articles with the mask;
means for maintaining the attracted articles in engagement with the mask; and
means for moving the mask to pass the articles through the coating station to coat said portions of the articles protruding through the mask.
2. An apparatus, as recited in claim 1, wherein the mask is an endless, flexible tape.
3. An apparatus, as recited in claim 3, wherein the magnetic means includes an electromagnet and such electromagnet is energized by an alternating current source to vibrate the articles as they are attracted to the mask.
4. An apparatus as recited in claim 1, wherein means are provided for removing the articles from the mask. 5. An apparatus, as recited in claim 3, which further includes a flexible tape having spaced perforations along the edges and drive means for engaging the perforations to more the mask incrementally.
6. An apparatus, as recited in claim 5, which further includes means for continuously removing the coating from the mask to keep the mask clean.
7. An apparatus for masking ferromagnetic articles, having flanged portions to be masked and raised portions to be coated, and conveying the articles through a coating station, which comprises:
a first nonmagnetic track section for supporting the articles to be coated;
means for indexing the articles along the first section to a reference point adjacent one end thereof;
a nonmagnetic belt for masking the flanged portion of the articles and having apertures through which the raised portions-may protrude to engage the belt and to be coated, a portion of the belt being above said reference point of said first section;
drive means for moving the belt incrementally such that successive apertures in the belt stop in alignment with said reference point in said first track section and in timed relationship with the article indexing means;
an electromagnet mounted above said reference point in said first track section and above and adjacent the belt to attract the articles from said first section into engagement with the apertures in the belt in timed relationship with the article indexing means;
a second nonmagnetic track section, adjacent the belt throughout the length of the coating station, aligned with and above said first track section and adjacent at one end to said reference point end of the first section, for supporting the articles in engagement with the belt, the movement of the belt urging the articles onto and along said second section through the coating station;
a third track section aligned with said second section, the third section being adjacent at one end and below said second section so that the articles drop free of the mask from said second section to said third section of the track; and
means for propelling the articles along said third track section for disposal.
8. An apparatus, as recited in claim 7, wherein the electromagnet is of the alternating current type so that the articles are vibrated as they are attracted into engagement with the apertures in the mask.
9. An apparatus, as recited in claim 8, which includes means for continuously removing the coating from the mask to keep the mask clean.
10. An apparatus for masking ferromagnetic articles, having flanged portions to be masked and raised portions to be coated, and conveying the articles through a coating station, which comprises:
a first nonmagnetic track section for supporting the articles to be coated;
means for indexing the articles along the first section to a reference point at one end thereof;
a flexible, endless, nonmagnetic, stainless steel-belt mask for masking the flange portion of the articles and having apertures through which the raised portions may protrude to engage the mask and to be coated and having spaced drive perforations along one edge, a portion of the mask being above the reference point of the first track section;
drive means for engaging the perforations and moving the mask incrementally such that successive apertures in the mask stop in alignment with the reference point on the first track section in timed relationship with the article indexing means;
an alternating current electromagnet mounted above the reference point in the first track section and above and adjacent to the mask for vibrating and attracting the articles from the first section into engagement with apertures in the mask, in timed relationship with the article indexing means;
a second nonmagnetic track section adjacent the mask throughout the length of the coating station,
aligned with the first section and adjacent at one end to the reference-point end of said first section for supporting the articles in engagement with the mask, the movement of the mask urging the articles onto and along the second section through the coating station;
a third track section below and adjacent at one end to the other end of the second section so that the articles drop from the second section and the mask to the third section;
an air jet for blowing the articles along said third section to a magazine for accumulation; and
means for continuously removing the coating to keep the mask clean.

Claims (10)

1. An apparatus for masking ferromagnetic articles and conveying them through a coating station, which comprises: a mask having spaced apertures through which portions of the articles to be coated are protrudable; means for successively positioning the articles on one side of the mask and in alignment with the apertures thereof; magnetic means positioned on the other side of the mask and in alignment with one of the apertures thereof for successively attracting the articles to protrude said portions through the apertures and to engage the articles with the mask; means for maintaining the attracted articles in engagement with the mask; and means for moving the mask to pass the articles through the coating station to coat said portions of the articles protruding through the mask.
2. An apparatus, as recited in claim 1, wherein the mask is an endless, flexible tape.
3. An apparatus, as recited in claim 3, wherein the magnetic means includes an electromagnet and such electromagnet is energized by an alternating current source to vibrate the articles as they are attracted to the mask.
4. An apparatus as recited in claim 1, wherein means are provided for removing the articles from the mask.
5. An apparatus, as recited in claim 3, which further includes a flexible tape having spaced perforations along the edges and drive means for engaging the perforations to more the mask incrementally.
6. An apparatus, as recited in claim 5, which further includes means for continuously removing the coating from the mask to keep the mask clean.
7. An apparatus for masking ferromagnetic articles, having flanged portions to be masked and raised portions to be coated, and conveying the articles through a coating station, which comprises: a first nonmagnetic track section for supporting the articles to be coated; means for indexing the articles along the first section to a reference point adjacent one end thereof; a nonmagnetic belt for masking the flanged portion of the articles and having apertures through which the raised portions may protrude to engage the belt and to be coated, a portion of the belt being above said reference point of said first section; drive means for moving the belt incrementally such that successive apertures in the belt stop in alignment with said reference point in said first track section and in timed relationship with the article indexing means; an electromagnet mounted above said reference point in said first track section and above and adjacent the belt to attract the articles from said first section into engagement with the apertures in the belt in timed relationship with the article indexing means; a second nonmagnetic track section, adjacent the belt throughout the length of the coating station, aligned with and above said first track section and adjacent at one end to said reference point end of the first section, for supporting the articles in engagement with the belt, the movement of the belt urging the articles onto and along said second section through the coating station; a third track section aligned with said second section, the third section being adjacent at one end and below said second section so that the articles drop free of the mask from said second section to said third section of the track; and means for propelling the articles along said third track section for disposal.
8. An apparatus, as recited in claim 7, wherein the electromagnet is of the alternating current type so that the articles are vibrated as they are attracted into engagement with the apertures in the mask.
9. An apparatus, as recited in claim 8, which includes means for continuously removing the coating from the mask to keep the mask clean.
10. An apparatus for masking ferromagnetic articles, having flanGed portions to be masked and raised portions to be coated, and conveying the articles through a coating station, which comprises: a first nonmagnetic track section for supporting the articles to be coated; means for indexing the articles along the first section to a reference point at one end thereof; a flexible, endless, nonmagnetic, stainless steel-belt mask for masking the flange portion of the articles and having apertures through which the raised portions may protrude to engage the mask and to be coated and having spaced drive perforations along one edge, a portion of the mask being above the reference point of the first track section; drive means for engaging the perforations and moving the mask incrementally such that successive apertures in the mask stop in alignment with the reference point on the first track section in timed relationship with the article indexing means; an alternating current electromagnet mounted above the reference point in the first track section and above and adjacent to the mask for vibrating and attracting the articles from the first section into engagement with apertures in the mask, in timed relationship with the article indexing means; a second nonmagnetic track section adjacent the mask throughout the length of the coating station, aligned with the first section and adjacent at one end to the reference-point end of said first section for supporting the articles in engagement with the mask, the movement of the mask urging the articles onto and along the second section through the coating station; a third track section below and adjacent at one end to the other end of the second section so that the articles drop from the second section and the mask to the third section; an air jet for blowing the articles along said third section to a magazine for accumulation; and means for continuously removing the coating to keep the mask clean.
US00191267A 1969-12-03 1971-10-21 Coating apparatus including conveyor-mask Expired - Lifetime US3738315A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88165269A 1969-12-03 1969-12-03
US19126771A 1971-10-21 1971-10-21

Publications (1)

Publication Number Publication Date
US3738315A true US3738315A (en) 1973-06-12

Family

ID=26886909

Family Applications (1)

Application Number Title Priority Date Filing Date
US00191267A Expired - Lifetime US3738315A (en) 1969-12-03 1971-10-21 Coating apparatus including conveyor-mask

Country Status (1)

Country Link
US (1) US3738315A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866565A (en) * 1973-12-21 1975-02-18 David E U Ridout Vapor deposition apparatus with rotating drum mask
US4418815A (en) * 1981-08-07 1983-12-06 Electronic Equipment Development Ltd. Nonmagnetic lead handling system
US4485914A (en) * 1982-09-30 1984-12-04 Ibm Corporation Variable drive pin projection mechanism for a belt sprocket drive wheel
US4862827A (en) * 1988-06-28 1989-09-05 Wacker-Chemie Gmbh Apparatus for coating semiconductor components on a dielectric film
DE19901088A1 (en) * 1999-01-14 2000-07-20 Leybold Systems Gmbh Device for treating a band-shaped substrate with a gas
US6695129B1 (en) * 1999-07-29 2004-02-24 Siemens Aktiengesellschaft Uncovering device on a belt conveyer of a pick-and-place installation and method for picking and placing component using the same
US20100273387A1 (en) * 2007-12-27 2010-10-28 Canon Anelva Corporation Processing Apparatus and Method of Manufacturing Electron Emission Element and Organic EL Display
CN101094931B (en) * 2003-09-03 2013-07-03 Otb太阳有限公司 Systems and methods for processing substrates
US20220290293A1 (en) * 2021-03-15 2022-09-15 HelioSource Tech, LLC Hardware and processes for in operando deposition shield replacement/surface cleaning

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549926A (en) * 1947-05-02 1951-04-24 American Optical Corp Apparatus for making optical devices
US3102046A (en) * 1959-05-11 1963-08-27 Us Envelope Co Manufacture of pressure-sealing envelopes, bags, and the like
US3118218A (en) * 1961-06-23 1964-01-21 American Home Prod Aerosol valve inserting machine
US3170810A (en) * 1962-05-24 1965-02-23 Western Electric Co Methods of and apparatus for forming substances on preselected areas of substrates
US3206322A (en) * 1960-10-31 1965-09-14 Morgan John Robert Vacuum deposition means and methods for manufacture of electronic components
US3228794A (en) * 1961-11-24 1966-01-11 Ibm Circuit fabrication
US3296999A (en) * 1963-11-27 1967-01-10 Continental Can Co Apparatus for shielding pail open tops while spraying body exteriors
US3494679A (en) * 1968-01-30 1970-02-10 Garrett Corp Thrust bearing oil seal system
US3511212A (en) * 1968-05-16 1970-05-12 Du Pont Vapor deposition apparatus including a polyimide containing mask

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549926A (en) * 1947-05-02 1951-04-24 American Optical Corp Apparatus for making optical devices
US3102046A (en) * 1959-05-11 1963-08-27 Us Envelope Co Manufacture of pressure-sealing envelopes, bags, and the like
US3206322A (en) * 1960-10-31 1965-09-14 Morgan John Robert Vacuum deposition means and methods for manufacture of electronic components
US3118218A (en) * 1961-06-23 1964-01-21 American Home Prod Aerosol valve inserting machine
US3228794A (en) * 1961-11-24 1966-01-11 Ibm Circuit fabrication
US3170810A (en) * 1962-05-24 1965-02-23 Western Electric Co Methods of and apparatus for forming substances on preselected areas of substrates
US3296999A (en) * 1963-11-27 1967-01-10 Continental Can Co Apparatus for shielding pail open tops while spraying body exteriors
US3494679A (en) * 1968-01-30 1970-02-10 Garrett Corp Thrust bearing oil seal system
US3511212A (en) * 1968-05-16 1970-05-12 Du Pont Vapor deposition apparatus including a polyimide containing mask

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866565A (en) * 1973-12-21 1975-02-18 David E U Ridout Vapor deposition apparatus with rotating drum mask
US4418815A (en) * 1981-08-07 1983-12-06 Electronic Equipment Development Ltd. Nonmagnetic lead handling system
US4485914A (en) * 1982-09-30 1984-12-04 Ibm Corporation Variable drive pin projection mechanism for a belt sprocket drive wheel
US4862827A (en) * 1988-06-28 1989-09-05 Wacker-Chemie Gmbh Apparatus for coating semiconductor components on a dielectric film
DE19901088A1 (en) * 1999-01-14 2000-07-20 Leybold Systems Gmbh Device for treating a band-shaped substrate with a gas
US6328806B2 (en) 1999-01-14 2001-12-11 Applied Films Gmbh & Co. Kg Device for treating a band-shaped substrate with a gas
DE19901088B4 (en) * 1999-01-14 2008-11-27 Applied Materials Gmbh & Co. Kg Apparatus for treating a belt-shaped substrate with a gas
US6695129B1 (en) * 1999-07-29 2004-02-24 Siemens Aktiengesellschaft Uncovering device on a belt conveyer of a pick-and-place installation and method for picking and placing component using the same
CN101094931B (en) * 2003-09-03 2013-07-03 Otb太阳有限公司 Systems and methods for processing substrates
US20100273387A1 (en) * 2007-12-27 2010-10-28 Canon Anelva Corporation Processing Apparatus and Method of Manufacturing Electron Emission Element and Organic EL Display
US20220290293A1 (en) * 2021-03-15 2022-09-15 HelioSource Tech, LLC Hardware and processes for in operando deposition shield replacement/surface cleaning

Similar Documents

Publication Publication Date Title
US3738315A (en) Coating apparatus including conveyor-mask
US3635730A (en) Methods for selectively coating ferromagnetic articles
US3587524A (en) Coating apparatus including conveyer-mask
US4575995A (en) Automatic producing apparatus of chip-form electronic parts aggregate
US3872826A (en) Development system seal
US4849795A (en) Sheet transport
US5124745A (en) Apparatus for the production of printing plates
US3748715A (en) Automatic assembly machine for film cartridges
FR2655963B1 (en) METHOD AND DEVICE FOR FEEDING AND LOADING COILS ON A MACHINE OF A MANUFACTURING PROCESS.
FR2553073B1 (en) METHOD AND APPARATUS FOR TRANSPORTING COILS REMOVED FROM A BUSINESS
DE2043814C3 (en) Apparatus for developing electrostatic latent images
ATE21368T1 (en) DEVICE FOR TRANSFERRING PRINTED DECORATIONS.
DE68919013T2 (en) Development system.
US4389117A (en) Microfiche separator and transport apparatus
US3667989A (en) Method for selectively coating articles
DE1927251B2 (en) TRANSPORT DEVICE FOR CARD-SHAPED RECORDING CARRIERS
US2828001A (en) Device for transporting discrete elements
US3886563A (en) Electrostatic printer with movable style
US2933030A (en) Photographic printing apparatus
US3843964A (en) Magnetic transfer recording apparatus
US3582400A (en) Apparatus and methods for cleaning strip materials
US3904188A (en) Printing plate transfer and support apparatus
DE7035667U (en) ELECTROPHOTOGRAPHIC COPY DEVICE.
US3908191A (en) Apparatus for electrostatic printing with movable electrodes
JPH05129132A (en) Magnetization equipment for anisotropic polar magnet

Legal Events

Date Code Title Description
AS Assignment

Owner name: AT & T TECHNOLOGIES, INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:WESTERN ELECTRIC COMPANY, INCORPORATED;REEL/FRAME:004251/0868

Effective date: 19831229