[go: up one dir, main page]

US3737962A - Roll assembly for paper machine - Google Patents

Roll assembly for paper machine Download PDF

Info

Publication number
US3737962A
US3737962A US00120396A US3737962DA US3737962A US 3737962 A US3737962 A US 3737962A US 00120396 A US00120396 A US 00120396A US 3737962D A US3737962D A US 3737962DA US 3737962 A US3737962 A US 3737962A
Authority
US
United States
Prior art keywords
shaft
roll
shell
shoulder
roll assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00120396A
Inventor
L Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beloit Corp
Original Assignee
Beloit Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beloit Corp filed Critical Beloit Corp
Application granted granted Critical
Publication of US3737962A publication Critical patent/US3737962A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/08Pressure rolls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor

Definitions

  • the first head axially engages a radial surface on 188,670 3/1877 Poole... 29/123 X the shaft and the other head axially engages a split col- 285,476 9/1883 Frink 29/123 X lar axially engaging a radial surface on the shaft.
  • the collar is positioned in the recess by 837,029 [1906 i 29/123 UX relatively extending the length of the shaft preferably g z 'gi by heating it relative to the granite roll shell.
  • granite rolls are frequently employed wherein the roll construction 1 employs an outer hardened ground granite surface.
  • the roll construction 1 employs an outer hardened ground granite surface.
  • Different arrangements have been provided to obtain a granite roll and in one form of effective widely adopted construction, such a granite roll has a steel shaft extending through an outer granite roll shell.
  • the steel shaft has ends equipped with bearings to rotatably support the roll and the outer granite roll shell is suitably supported on the shaft.
  • an object of the present invention to provide a granite roll construction which employs a I granite roll shell wherein the; shell is held under compression and has a construction which will remain satisfactorily operative without failure for the normal operating life of the roll.
  • a further object of the invention is to provide a roll construction employing a roll shell with an internal shaft wherein an improved method and structure is employed for placing the roll shell under compression by forces applied by mechanical devices at each end of the shaft avoiding failure of the shaft due to such devices.
  • a still further object of the invention is to provide a granite roll construction wherein the granite roll shell is maintained under uniform compression without change for the life of the roll.
  • FIG. 1 is a vertical sectional view taken substantially DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 illustrates a granite roll assembly with a steel center shaft 10 and an annular granite roll shell 11 0 placed over and concentric with the shaft 10. While particular advantages are obtained with a non-metallic roll shell such as granite, the features of the invention may be utilized with shells of other materials.
  • the shaft is of a size to fit within the opening of the roll shell, and the outer surface 12 of the granite roll shell is ground and polished.
  • the granite roll of FIG. 1 is adapted to coact with a mating roll, not shown, to form a roll couple for receiving a paper web in a press section to extract water therefrom.
  • the opposing roll will provide a force against the granite roll along a nip line indicated by the arrowed lines shown at the top of FIG. 1. This will cause a downward bending deflection of the roll assembly and to give strength to the assembly, because of the inherent lack of tensile strength of the granite material, and to prevent the cracking of the granite material, it is placed under an axial compression by end supports or annular compression heads 15 and 16.
  • the granite material is of a natural or synthesized stone, having a tensile strength less than steel.
  • the end supports or compression heads 15 and 16 which are in the form of shaped annular rings engage the axially facing end surfaces 14 and 13 of the granite roll shell 11.
  • the end surfaces are slightly tapered so that the granite roll shell 11 will tend to remain centered under load, and to aid in holding the roll shell centered during assembly and during operation, centering rings 11a and 11b are positioned at the ends of the roll shell between the shaft 10 and roll shell 11.
  • the space 11c between the shaft 10 and roll shell 11 contains a filler such as a plastic foam.
  • the shaft is shaped with surfaces and 17 for holding the annular compression heads 15 and 16 axially centered.
  • the head 15 has a bearing support sleeve portion 18, and the end support 16 has a bearing support sleeve portion 19.
  • On the sleeve portion 18 is mounted an annular bearing 20 which is supported in a bearing housing 22.
  • On the sleeve 19 is mounted a bearing 21 which is supported in an annular housing 23.
  • the sleeves 18 and 19 are tapered to receive the tapered inner surface of the bearings 20 and 21, and the bearings are pressed onto these tapered surfaces by locknuts 24 and 25 threaded onto the ends of the sleeves l8 and 19.
  • the housings 22 and 23 which support the bearings 20 and 21 for rotatably carrying the roll assembly are mounted in the frame of the machine to hold the roll assembly in the proper location for providing the press nip with the opposing roll.
  • the shaft is provided with an extension 26 at one endfor receiving a drive couple or other means for driving the roll assembly.
  • the shaft For axially holding the end support 15 on the shaft, the shaft has a flange 27 formed at one end with an axially inwardly facing shoulder 28 which receives the annular end 29 of the end support 15.
  • the end support 16 is axially held by a split collar 32, 33.
  • An annular groove 30 is formed in the end of the shaft to provide an inwardly axially facing shoulder 31.
  • the annular end 36 of the end support 16 abuts the sections 32,
  • a ring 37 surrounds the collar sections and may be shrunkfit into position.
  • Other devices such as a horseshoe shaped key may be used in place of the split collar 32, 33.
  • the compression force placed on the granite roll shell 11 is a function of the size of the roll shell, the size of the shaft 10, and the distance between the shoulders 28 and 31 on the shaft.
  • the size of the roll shell, and the size of the shaft are dictated by the operating environment of the roll. When this is determined, with application of the known factors of stress versus strain of the roll shell and shaft, the distance between the surfaces 28 and 31 is readily computed to provide the desired compressive stress in the granite roll shell 11.
  • the shaft is constructed accordingly, and for assembly, the
  • the shaft is elongated relative to the roll shell in amount sufficient to provide clearance for dropping the sections 32, 33 of the split collar in place.
  • the shaft is heated to a temperature sufficient to causeits elongation relative to the roll shell to permit placing the collar sections 32, 33 in place. This is preferably done by raising the temperature of the shaft with the end support in place and then slipping the shaft within the roll shell, placing the end support 16 over the shaft and placing the split collar sections 32, 33 in place and holding them with the ring 37 and permitting the shaft to cool.
  • this is done by heating the shaft externally of the assembly, but it will be seen that internal heating means such as electrical resistance wires could be inserted into the shaft during its manufacture, or theshaft could be hollowed to accommodate such heating means.
  • mechanical relative compression of the roll shell and elongation of the shaft could be'performed, but these alternative procedures offer disadvantages that are avoided by externally heating the shaft before inserting it within the roll shell.
  • the granite roll shell When the shaft has cooled to room temperature, the granite roll shell will be drawn into compression.
  • the compressive force on the roll shell is preferably sufficient to maintain a compression therein of at least 200 pounds per square inch when the roll shell is subjected to the maximum nip pressure.
  • a roll assembly comprising,
  • a second shoulder means on the other end of said shaft extending at right angles to the shaft axis in spaced relation to the outer surface of the second one of said heads, thereby providing for an axialspace between said second shoulder and said second head, and rigid means filling said space between said second shoulder and said second head whereby the tensile stress in said shaft causes said heads with said shell therebetween to be urged toward each other so that the shell is subjected to compressive forces.
  • a roll assembly constructed in accordance with claim 1 wherein said shaft has an annular recess and said space filling means includes a split collar with a retaining sleeve surrounding the collar holding it in said annular recess in the shaft.
  • a roll assembly constructed in accordance with claim 1 wherein said first shoulder is formed by an anlarger than the shaft.
  • a roll assembly comprising in combination,
  • a roll shaft having means at the ends for rotary support
  • a roll shell for engaging a radial load at one side positioned over the shaft to rotate therewith and being of a hard surfaced non-metallic material with a tensile stress less than metal
  • first end support means at one end of the shell axially fixed relative to the shaft end and axially supporting the end of the roll shell, and second end support means axially supporting the other end of the roll shell being fixedly mounted on the shaft and hold- 7 ing the shell in compression, said second end support means having an axially outwardly facing shoulder at right angles to the shaft axis, I I said shaft having an integral axially inwardly facing shoulder with a substantial area at right angles to the shaft axis axially supporting said shoulder of said second end support means and .fixing its axial position and holding said roll shell in compression. 7.
  • the shaft has an integral continuous circumferential radial surface engaging the axial outer end of the first support, and an integral continuous circumferential radial surface engaging a collar means between it and said second support.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

A roll assembly for a paper making machine with a rotary shaft and a roll shell surrounding the shaft to rotate therewith, the shell being of a material such as granite and being under compression by being held by an annular compression head at one end of the shaft and another annular compression head at the other end of the shaft. The first head axially engages a radial surface on the shaft and the other head axially engages a split collar axially engaging a radial surface on the shaft. In one arrangement, the collar is positioned in the recess by relatively extending the length of the shaft preferably by heating it relative to the granite roll shell.

Description

United States Patent 1 1 4 1111 3,737,962-
Hill 4 June 12, 1973 ROLL ASSEMBLY FOR PAPER MACHINE 1,504,179 8/1924 Bidwell 29/123 [75] Inventor: Lester M. Hill, Beloit, Wis. FOREIGN PATENTS 0R APPLICATIONS 1,280,873 11/1961 France 29/123 [73] Asslgnee Belo't Corpomhon 15,733 1908 Great Britain.... 29 123 [22] Filed: Mar. 3, 1971 230,119 3 1925 Great Britain.... 29 123 778,676 7 1957 Great Britain 29 123 [21] Appl. No.: 120,396
1 Primary ExaminerAlfred R. Guest [52] U.S. Cl. 29/123 Attorney-Hill, Sherman, Meroni, ss & imps n [51] Int. Cl B2lb 31/08 58 Field of Search 29 123, 110, 129.5; ABSTRACT /51 A roll assembly for a paper making machine with a rotary shaft and a roll shell surrounding the shaft to rotate [56] References Cited therewith, the shell being of a material such as granite UNITED STATES PATENTS and being under compression by being held by an annu- 1 208 454 12/1916 Baumeyer 85/51 P' head at end 0f the Shaft and 2:036:152 3/1936 Langman 35/51 other annular compression head at the other end of the 2,749,789 6/1956 Sam 85/51 shaft. The first head axially engages a radial surface on 188,670 3/1877 Poole... 29/123 X the shaft and the other head axially engages a split col- 285,476 9/1883 Frink 29/123 X lar axially engaging a radial surface on the shaft. In one 800,464 9/1905 Nlilne 29/123 X arrangement, the collar is positioned in the recess by 837,029 [1906 i 29/123 UX relatively extending the length of the shaft preferably g z 'gi by heating it relative to the granite roll shell. l,284:443 Ill 1918 Plant 29/ 123 7 Claims, 2 Drawin Figures 7 7 2/ 24 I l A I I if H 26 f l /a a y 3 30 29 32 31 MM iii h W V PATENIED JUN] 2 I975 3 INVENTOR.
s Les/er M /9 BY @WTTORNEQ ROLL ASSEMBLY FOR PAPER MACHINE BACKGROUND OF THE INVENTION FIELD OF THE INVENTION In a paper making machine after the paper web is formed on the fourdrinier section, it passes through subsequent machine sections including the press, the
driers, and a calender. In the press section granite rolls are frequently employed wherein the roll construction 1 employs an outer hardened ground granite surface. Different arrangements have been provided to obtain a granite roll and in one form of effective widely adopted construction, such a granite roll has a steel shaft extending through an outer granite roll shell. The steel shaft has ends equipped with bearings to rotatably support the roll and the outer granite roll shell is suitably supported on the shaft.
In a granite roll used in a press couple in a paper making machine the roll will be subjected to relatively high nip pressures as the web passes between it and a mating roll. Some deflection of the granite roll will occur, and in order to prevent cracking of the granite, and to give the roll assembly additional strength, the granite roll shell is placed under axial compression. Method and structures heretofore used employed nuts threaded onto the end of the roll shaft which have been discovered to have disadvantages which are obviated by the present invention. In a threaded shaft, as the roll rotates, continual stress reversals are encountered at the threads in the shaft resulting in fatigue of the metal and failure at the thread on the shaft. This condition is aggravated because of the high stress concentrations in the bottom of the thread. Such failure, of course, requires removal of the roll and reconstruction thereof with attendant loss in time of machine operation and cost of roll reconstruction. As is known to those skilled in the paper art, it is essential in paper making machine operation to attain as long continuous runs as possible since the cost of shut-down time in a machine is extreme, and a successful paper making machine cannot tolerate shut-downs for failure of many different areas of the machine, particularly since shut-downs are necessary in any event for certain replacements, such as, fourdrinier wire change.
It is, accordingly, an object of the present invention to provide a granite roll construction which employs a I granite roll shell wherein the; shell is held under compression and has a construction which will remain satisfactorily operative without failure for the normal operating life of the roll.
A further object of the invention is to provide a roll construction employing a roll shell with an internal shaft wherein an improved method and structure is employed for placing the roll shell under compression by forces applied by mechanical devices at each end of the shaft avoiding failure of the shaft due to such devices.
A still further object of the invention is to provide a granite roll construction wherein the granite roll shell is maintained under uniform compression without change for the life of the roll.
- Other objects and advantages will become more apparent with the disclosure of the preferred embodiments of the invention in connection with the disclosure and description of the drawings, in which:
DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view taken substantially DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a granite roll assembly with a steel center shaft 10 and an annular granite roll shell 11 0 placed over and concentric with the shaft 10. While particular advantages are obtained with a non-metallic roll shell such as granite, the features of the invention may be utilized with shells of other materials. The shaft is of a size to fit within the opening of the roll shell, and the outer surface 12 of the granite roll shell is ground and polished. The granite roll of FIG. 1 is adapted to coact with a mating roll, not shown, to form a roll couple for receiving a paper web in a press section to extract water therefrom. The opposing roll will provide a force against the granite roll along a nip line indicated by the arrowed lines shown at the top of FIG. 1. This will cause a downward bending deflection of the roll assembly and to give strength to the assembly, because of the inherent lack of tensile strength of the granite material, and to prevent the cracking of the granite material, it is placed under an axial compression by end supports or annular compression heads 15 and 16. The granite material is of a natural or synthesized stone, having a tensile strength less than steel.
The end supports or compression heads 15 and 16, which are in the form of shaped annular rings engage the axially facing end surfaces 14 and 13 of the granite roll shell 11. The end surfaces are slightly tapered so that the granite roll shell 11 will tend to remain centered under load, and to aid in holding the roll shell centered during assembly and during operation, centering rings 11a and 11b are positioned at the ends of the roll shell between the shaft 10 and roll shell 11. The space 11c between the shaft 10 and roll shell 11 contains a filler such as a plastic foam.
The shaft is shaped with surfaces and 17 for holding the annular compression heads 15 and 16 axially centered. The head 15 has a bearing support sleeve portion 18, and the end support 16 has a bearing support sleeve portion 19. On the sleeve portion 18 is mounted an annular bearing 20 which is supported in a bearing housing 22. On the sleeve 19 is mounted a bearing 21 which is supported in an annular housing 23. The sleeves 18 and 19 are tapered to receive the tapered inner surface of the bearings 20 and 21, and the bearings are pressed onto these tapered surfaces by locknuts 24 and 25 threaded onto the ends of the sleeves l8 and 19.
The housings 22 and 23 which support the bearings 20 and 21 for rotatably carrying the roll assembly are mounted in the frame of the machine to hold the roll assembly in the proper location for providing the press nip with the opposing roll.
The shaft is provided with an extension 26 at one endfor receiving a drive couple or other means for driving the roll assembly.
For axially holding the end support 15 on the shaft, the shaft has a flange 27 formed at one end with an axially inwardly facing shoulder 28 which receives the annular end 29 of the end support 15.
At the other end of the roll shell, the end support 16 is axially held by a split collar 32, 33. An annular groove 30 is formed in the end of the shaft to provide an inwardly axially facing shoulder 31. The annular end 36 of the end support 16 abuts the sections 32,
33 of the collar to hold the roll shell 1 l in compression.
To hold the sections 32, 33 of the collar in place, a ring 37 surrounds the collar sections and may be shrunkfit into position. Other devices such as a horseshoe shaped key may be used in place of the split collar 32, 33.
The compression force placed on the granite roll shell 11 is a function of the size of the roll shell, the size of the shaft 10, and the distance between the shoulders 28 and 31 on the shaft. The size of the roll shell, and the size of the shaft are dictated by the operating environment of the roll. When this is determined, with application of the known factors of stress versus strain of the roll shell and shaft, the distance between the surfaces 28 and 31 is readily computed to provide the desired compressive stress in the granite roll shell 11. The shaft is constructed accordingly, and for assembly, the
shaft is elongated relative to the roll shell in amount sufficient to provide clearance for dropping the sections 32, 33 of the split collar in place. In a preferred arrangement, the shaft is heated to a temperature sufficient to causeits elongation relative to the roll shell to permit placing the collar sections 32, 33 in place. This is preferably done by raising the temperature of the shaft with the end support in place and then slipping the shaft within the roll shell, placing the end support 16 over the shaft and placing the split collar sections 32, 33 in place and holding them with the ring 37 and permitting the shaft to cool. Preferably this is done by heating the shaft externally of the assembly, but it will be seen that internal heating means such as electrical resistance wires could be inserted into the shaft during its manufacture, or theshaft could be hollowed to accommodate such heating means. Also, mechanical relative compression of the roll shell and elongation of the shaft could be'performed, but these alternative procedures offer disadvantages that are avoided by externally heating the shaft before inserting it within the roll shell.
When the shaft has cooled to room temperature, the granite roll shell will be drawn into compression. The compressive force on the roll shell is preferably sufficient to maintain a compression therein of at least 200 pounds per square inch when the roll shell is subjected to the maximum nip pressure.
In prior art devices the collar 27 and ring 32, 33 are in the form of nuts threaded on the shaft 10. With the shaft 10 under high tensile stress severe stress concentrations will occur in the bottom of the threads causing the shaft to break at the thread area. With the structure of the present invention it will be observed that the threads have been eliminated. Generous radii may now be employed at critical stress areas such as at 41, 42, 43 and 44 on one end of the shaft 10 and at 51, 52, 53 and 54 at the other end thus eliminating the high stress concentration areas of the prior art.
Thus, it will beseen that I have provided a roll assembly which meets the objectives and advantages above set forth and which has a unique structure and which employs a new method of construction and assembly.
I claim as my invention:
1. A roll assembly comprising,
a shaft under tensile stress,
'nular ridge on the shaft of a diameter first and second annular compression heads axially slidably mounted on each end of the shaft,
an annular roll shell mounted on said shaft between said heads,
a first shoulder means on one end of said shaft extending at right angles to the shaft axis in axial abutting relationship with the outer surface of the first one of said heads,
a second shoulder means on the other end of said shaft extending at right angles to the shaft axis in spaced relation to the outer surface of the second one of said heads, thereby providing for an axialspace between said second shoulder and said second head, and rigid means filling said space between said second shoulder and said second head whereby the tensile stress in said shaft causes said heads with said shell therebetween to be urged toward each other so that the shell is subjected to compressive forces.
2. A roll assembly constructed in accordance with claim 1 wherein said roll shell is formed of granite.
3. A roll,assembly constructed in accordance with claim 2 wherein the shaft is under a tension so that the granite roll shell is held under a compression of at least 200 pounds per square inch at maximum nip load on the roll assembly.
4. A roll assembly constructed in accordance with claim 1 wherein said shaft has an annular recess and said space filling means includes a split collar with a retaining sleeve surrounding the collar holding it in said annular recess in the shaft.
5. A roll assembly constructed in accordance with claim 1 wherein said first shoulder is formed by an anlarger than the shaft.
6. A roll assembly comprising in combination,
a roll shaft having means at the ends for rotary support,
a roll shell for engaging a radial load at one side positioned over the shaft to rotate therewith and being of a hard surfaced non-metallic material with a tensile stress less than metal,
' first end support means at one end of the shell axially fixed relative to the shaft end and axially supporting the end of the roll shell, and second end support means axially supporting the other end of the roll shell being fixedly mounted on the shaft and hold- 7 ing the shell in compression, said second end support means having an axially outwardly facing shoulder at right angles to the shaft axis, I I said shaft having an integral axially inwardly facing shoulder with a substantial area at right angles to the shaft axis axially supporting said shoulder of said second end support means and .fixing its axial position and holding said roll shell in compression. 7. A roll assembly constructed in accordance with claim 6 wherein the shaft has an integral continuous circumferential radial surface engaging the axial outer end of the first support, and an integral continuous circumferential radial surface engaging a collar means between it and said second support.

Claims (7)

1. A roll assembly comprising, a shaft under tensile stress, first and second annular compression heads axially slidably mounted on each end of the shaft, an annular roll shell mounted on said shaft between said heads, a first shoulder means on one end of said shaft extending at right angles to the shaft axis in axial abutting relationship with the outer surface of the first one of said heads, a second shoulder means on the other end of said shaft extending at right angles to the shaft axis in spaced relation to the outer surface of the second one of said heads, thereby providing for an axial space between said second shoulder and said second head, and rigid means filling said space between said second shoulder and said second head whereby the tensile stress in said shaft causes said heads with said shell therebetween to be urged toward each other so that the shell is subjected to compressive forces.
2. A roll assembly constructed in accordance with claim 1 wherein said roll shell is formed of granite.
3. A roll assembly constructed in accordance with claim 2 wherein the shaft is under a tension so that the granite roll shell is held under a compression of at least 200 pounds per square inch at maximum nip load on the roll assembly.
4. A roll assembly constructed in accordance with claim 1 wherein said shaft has an annular recess and said space filling means includes a split collar with a retaining sleeve surrounding the collar holding it in said annular recess in the shaft.
5. A roll assembly constructed in accordance with claim 1 wherein said first shoulder is formed by an annular ridge on the shaft of a diameter larger than the shaft.
6. A roll assembly comprising in combination, a roll shaft having means at the ends for rotary support, a roll shell for engaging a radial load at one side positioned over the shaft to rotate therewith and being of a hard surfaced non-metallic material with a tensile stress less than metal, first end support means at one end of the shell axially fixed relative to the shaft end and axially supporting the end of the roll shell, and second end support means axially supporting the other end of the roll shell being fixedly mounted on the shaft and holding the shell in compression, said second end support means having an axially outwardly facing shoulder at right angles to the shaft axis, said shaft having an integral axially inwardly facing shoulder with a substantial area at right angles to the shaft axis axially supporting said shoulder of said second end support means and fixing its axial position and holding said roll shell in compression.
7. A roll assembly constructed in accordance with claim 6 wherein the shaft has an integral continuous circumferential radial surface engaging the axial outer end of the first support, and an integral continuous circumferential radial surface engaging a collar means between it and said second support.
US00120396A 1971-03-03 1971-03-03 Roll assembly for paper machine Expired - Lifetime US3737962A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12039671A 1971-03-03 1971-03-03

Publications (1)

Publication Number Publication Date
US3737962A true US3737962A (en) 1973-06-12

Family

ID=22389995

Family Applications (1)

Application Number Title Priority Date Filing Date
US00120396A Expired - Lifetime US3737962A (en) 1971-03-03 1971-03-03 Roll assembly for paper machine

Country Status (3)

Country Link
US (1) US3737962A (en)
JP (1) JPS5037282B1 (en)
CA (1) CA955093A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2818437A1 (en) * 1978-04-27 1979-10-31 Voith Gmbh J M STONE ROLLER
US4324820A (en) * 1980-07-18 1982-04-13 St. Regis Paper Company Method and apparatus for coating a paper web
US4691420A (en) * 1985-08-09 1987-09-08 J.M. Voith Gmbh Stone pressure roll for a web of fibers
EP0165750A3 (en) * 1984-06-12 1987-12-16 MASCHINEN UND WERKZEUGBAU MICHAEL BRÜMMER GmbH Elastic roll for treating thermoplastic film
US4866969A (en) * 1985-09-06 1989-09-19 Sms Schloemann-Siemag Aktiengesellschaft Three-part roll assembly with exchangeable center part
WO1990013706A1 (en) * 1989-05-12 1990-11-15 Feldmühle Aktiengesellschaft Roller for pressure treatment of webs
US4975153A (en) * 1989-08-23 1990-12-04 Beloit Corporation Press section apparatus with deflection compensated granite roll shell
US5155909A (en) * 1991-06-13 1992-10-20 Rock Of Ages Corporation Press roll apparatus and method of construction
DE4340134A1 (en) * 1993-11-25 1995-06-08 Schroeder Guenther Metal body and process for its production
US20150050103A9 (en) * 2012-12-14 2015-02-19 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Washer arrangement for an axial bearing arrangement

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US188670A (en) * 1877-03-20 Improvement in buffing or take-off rolls for finishing printed paper
US285476A (en) * 1883-09-25 Paper calender-roll
US800464A (en) * 1903-12-12 1905-09-26 Samuel Milne Roll of paper-making machines.
US837029A (en) * 1906-01-27 1906-11-27 L Art Ind Soc Rotary lithographic machine.
US874267A (en) * 1905-12-28 1907-12-17 Charlottenburger Farbwerke Ag Means for mounting stone lithographic rollers.
GB190815733A (en) * 1907-06-20 1908-12-03 Samuel Milne Improvements in and relating to the Press Rolls of Paper Making Machines.
US975686A (en) * 1909-11-22 1910-11-15 William S Granger Calender-roll.
US1208454A (en) * 1916-07-24 1916-12-12 William F Baumeyer Hub-liner.
US1284443A (en) * 1917-02-15 1918-11-12 Defiance Check Writer Corp Roller.
US1504179A (en) * 1922-08-02 1924-08-05 Perkins & Son Inc B F Roll for paper-manufacturing machines
GB230119A (en) * 1924-05-22 1925-03-12 John Lithgow Improvements in or relating to rollers for use in dyeing, bleaching and like machines
US2036152A (en) * 1935-10-11 1936-03-31 Langman Ransom Easily removable washer
US2749789A (en) * 1955-11-25 1956-06-12 Sam W Sam Removable, peripherally mounted retainer means resiliently retained on threadless bolt
GB778676A (en) * 1953-11-20 1957-07-10 Heraeus Schott Quarzschmelze Improvements in or relating to textile guiding drums
FR1280873A (en) * 1961-01-13 1962-01-08 Consolidation Coal Co Idler roller assembly intended in particular for a conveyor belt

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US188670A (en) * 1877-03-20 Improvement in buffing or take-off rolls for finishing printed paper
US285476A (en) * 1883-09-25 Paper calender-roll
US800464A (en) * 1903-12-12 1905-09-26 Samuel Milne Roll of paper-making machines.
US874267A (en) * 1905-12-28 1907-12-17 Charlottenburger Farbwerke Ag Means for mounting stone lithographic rollers.
US837029A (en) * 1906-01-27 1906-11-27 L Art Ind Soc Rotary lithographic machine.
GB190815733A (en) * 1907-06-20 1908-12-03 Samuel Milne Improvements in and relating to the Press Rolls of Paper Making Machines.
US975686A (en) * 1909-11-22 1910-11-15 William S Granger Calender-roll.
US1208454A (en) * 1916-07-24 1916-12-12 William F Baumeyer Hub-liner.
US1284443A (en) * 1917-02-15 1918-11-12 Defiance Check Writer Corp Roller.
US1504179A (en) * 1922-08-02 1924-08-05 Perkins & Son Inc B F Roll for paper-manufacturing machines
GB230119A (en) * 1924-05-22 1925-03-12 John Lithgow Improvements in or relating to rollers for use in dyeing, bleaching and like machines
US2036152A (en) * 1935-10-11 1936-03-31 Langman Ransom Easily removable washer
GB778676A (en) * 1953-11-20 1957-07-10 Heraeus Schott Quarzschmelze Improvements in or relating to textile guiding drums
US2749789A (en) * 1955-11-25 1956-06-12 Sam W Sam Removable, peripherally mounted retainer means resiliently retained on threadless bolt
FR1280873A (en) * 1961-01-13 1962-01-08 Consolidation Coal Co Idler roller assembly intended in particular for a conveyor belt

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2818437A1 (en) * 1978-04-27 1979-10-31 Voith Gmbh J M STONE ROLLER
US4272873A (en) * 1978-04-27 1981-06-16 J. M. Voith Gmbh Stone roller
US4324820A (en) * 1980-07-18 1982-04-13 St. Regis Paper Company Method and apparatus for coating a paper web
EP0165750A3 (en) * 1984-06-12 1987-12-16 MASCHINEN UND WERKZEUGBAU MICHAEL BRÜMMER GmbH Elastic roll for treating thermoplastic film
US4691420A (en) * 1985-08-09 1987-09-08 J.M. Voith Gmbh Stone pressure roll for a web of fibers
US4866969A (en) * 1985-09-06 1989-09-19 Sms Schloemann-Siemag Aktiengesellschaft Three-part roll assembly with exchangeable center part
WO1990013706A1 (en) * 1989-05-12 1990-11-15 Feldmühle Aktiengesellschaft Roller for pressure treatment of webs
US4975153A (en) * 1989-08-23 1990-12-04 Beloit Corporation Press section apparatus with deflection compensated granite roll shell
US5155909A (en) * 1991-06-13 1992-10-20 Rock Of Ages Corporation Press roll apparatus and method of construction
DE4214290A1 (en) * 1991-06-13 1992-12-17 Rock Of Ages Corp PRINT ROLLER DEVICE AND METHOD FOR THE PRODUCTION THEREOF
DE4214290C2 (en) * 1991-06-13 2001-09-27 Rock Of Ages Corp N D Ges D St Pressure roller device and method for its production
DE4340134A1 (en) * 1993-11-25 1995-06-08 Schroeder Guenther Metal body and process for its production
US5647831A (en) * 1993-11-25 1997-07-15 Schroeder; Gunther Metal part and process for its production
US20150050103A9 (en) * 2012-12-14 2015-02-19 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Washer arrangement for an axial bearing arrangement

Also Published As

Publication number Publication date
JPS5037282B1 (en) 1975-12-01
CA955093A (en) 1974-09-24

Similar Documents

Publication Publication Date Title
US3737962A (en) Roll assembly for paper machine
US2676387A (en) Mounting for smoothing press rolls
US3800381A (en) Covered roll for paper making
US3783097A (en) Hydrodynamically loaded web press with slipper bearing shoes
US5098523A (en) Press roll with wedge clamp for the press jacket edges
US4327468A (en) Controlled deflection roll
US3341263A (en) Combined journal and thrust bearing
US3833982A (en) Method of mounting rings of hard sintered metal on a rolling cylinder
US2265065A (en) Low friction bearing
US6379290B1 (en) Elastic roll and process of producing the same
US1987944A (en) Colloid mill and method of operating the same
US3167982A (en) Tool for tapering tubing ends
US3966279A (en) High-load capacity, non-tilting thrust bearing
US3443295A (en) Table roll
SU1579468A3 (en) Roll for transmitting effort pressing on fibrous material web
US3946499A (en) Heated dryer drum for paper machines and the like
US2354870A (en) High-speed bearing
US3158333A (en) Grinding apparatus for fibrous materials
JP2661008B2 (en) Rolling bearing assembly
JPH0547671B2 (en)
US3418703A (en) Antideflection roll with non-rotating beam and lever supports
US2306960A (en) Shafting
US5155909A (en) Press roll apparatus and method of construction
US2575830A (en) Thrust bearing
US7785445B2 (en) Arrangement for the treatment of cellulose pulp