[go: up one dir, main page]

US3733323A - 2-mercaptoquinoxaline-1-oxides,salts thereof and 2-(1-oxoquinoxalinyl)disulfides - Google Patents

2-mercaptoquinoxaline-1-oxides,salts thereof and 2-(1-oxoquinoxalinyl)disulfides Download PDF

Info

Publication number
US3733323A
US3733323A US00880413A US3733323DA US3733323A US 3733323 A US3733323 A US 3733323A US 00880413 A US00880413 A US 00880413A US 3733323D A US3733323D A US 3733323DA US 3733323 A US3733323 A US 3733323A
Authority
US
United States
Prior art keywords
mercaptoquinoxaline
oxide
salts
compounds
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00880413A
Inventor
M Douglass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Application granted granted Critical
Publication of US3733323A publication Critical patent/US3733323A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/44Benzopyrazines with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • antimicrobial compounds are useful alone, usually in aqueous solution, as microbicides or microbistats. They may also be included as constituents of hairdressings or shampoos because they are effective microbicides, even in the presence of oily materials, such as the sebum normally secreted by the human scalp.
  • This invention relates to sulfur-containing guinoxaline derivatives which have been found to be useful against microorganisms. More specifically, the invention is of new compounds which are Z-mercaptoquinoxaline 1- oxides, salts thereof or 2-(1-oxoquinoxalinyl) disulfides. Also included within the invention are methods for the manufacture of such compounds, uses thereof and compositions containing them, especially hairdressings and shampoos, although other antimicrobial compositions are also included.
  • microbicides or microbistats include such diverse compounds as derivatives of mercury, arsenic, silver and iodine, quaternary ammonium compounds, peroxides, hypochlorites, sulfides, sulfanilamides, penicillins and many other inorganic and organic compounds, both relatively simple and highly complex. Some such compounds have been found to be especially useful in particular applications and others may have widespread areas of utility.
  • a particularly difficult medium for successful employment of an antimicrobial compound is the human scalp and the hair thereon. Due to continued secretions of sebum and perspiration and deposits of dust, grease and oils on the scalp, often in part at least attributable to the use of preparations for treating the scalp and hair, particularly favorable conditions for the growth of microorganisms often prevail on the scalp. Even if the hair and scalp are washed fairly frequently, the growth of microorganisms there is generally faster than on most other parts of the human body and consequently, the actions of antimicrobial compounds employed thereon are often ineffective.
  • the present compounds may be used in solutions, emul- 810118 or suspensions, or as solids. They are usually in the forms of aqueous solutions or suspension and may be applited to sites on which microbial growth is to be counteracted. For ease of application to such sites, they may be included in various carrier compositions and are considered to be especially useful in hairdressing preparatrons and in shampoos. They aid in killing microorganisms on various substrates, such as proteinaceous materials, e.g., skin, gelatin, hair, wool and leather. Also, they are compatible with various other hairdressing and shampoo constituents, and with many other cosmetics.
  • R is hydrogen or an alkyl group of 1 to 12 carbon atoms, which may be the same as or different from other Rs.
  • R is hydrogen or an alkyl group of 1 to 12 carbon atoms, which may be the same as or different from other Rs.
  • R which may be the same or different from other Rs, is hydrogen or an alkyl group of 1 to 12 carbon atoms
  • M is mono-, dior trivalent metal, which is usually either alkali metal, an alkaline earth metal, a transition metal or a metal of one of groups IlI-A, IV-A or V-A, ammonium or quaternary ammonium wherein the substitutents on the quaternary nitrogen are alkyls of 1 to 18 carbon atoms or arylalkyls of 7 to 24 carbon atoms. Accordingly, n, representing the valence of M, will be 1, 2 or 3.
  • the preferred 2-mercaptoquinoxaline-loxides are those wherein the Rs are lower alkyl, usually of 1 to 4 carbon atoms, preferably of 1 to 2 carbon atoms, and wherein from 0 to 2 alkyl groups are present per molecule. Of these, those compounds are most preferred wherein R is hydrogen.
  • R is hydrogen.
  • M is an alkali metal, such as sodium an alkaline earth metal or a transition element, such as manganese.
  • the invented compounds may be made from known Starting materials by readily practiced processes. Start ing with quinoxaline, this is oxidized to quinoxaline-1,4-d1- oxide with 1.2 molar peracetic acid in acetic anhydride (melting point of the product equals 241.5242 C.). The yield obtained is 50 to 60% of theoretical. See Journal of the Chemical Society, page 2816 (1953, I. K. Landquist). The quinoxaline-1,4-dioxide is reacted with a 6 molar excess of benzenesulfonyl chloride and the grey-green solid obtained is then reacted with 10% aqueous sodium bicarbonate, to yield 2-chloroquinoxaline-l-oxide in 60% yield (M.P.
  • 2-(1-oxoquinoxalinyl) disulfide is obtainable from Z-mercaptoquinoxaline-l-oxide by oxidation of the 2-mercaptoquinoxalinel-oxide.
  • oxidation may be effected with air (with the Z-mercaptoquinoxaline-l-oxide being oxidized by the air in a solvent such as acetone, methanol, ethanol or other suitable solvent, preferably at an elevated temperature such as that at which the solvent boils) or with other oxidizing agents,
  • aqueous potassium triiodide, aqueous 3% hydrogen peroxide, or a dilute aqueous solution of a percarboxylic acid Such as aqueous potassium triiodide, aqueous 3% hydrogen peroxide, or a dilute aqueous solution of a percarboxylic acid.
  • Various other metal, ammonium or quaternary ammonium salts of 2-mercaptoquinoxaline-l-oxide may be obtained by treatment of a solution of a soluble salt thereof with an acid such as dilute hydrochloric acid or other suitable inorganic or organic acid, followed by addition of a dilute aqueous solution of the water soluble salt of the cation, e.g., a solution of the metalor ammonium halide or sulfate.
  • an acid such as dilute hydrochloric acid or other suitable inorganic or organic acid
  • quinoxaline instead of utilizing quinoxaline as the starting material, 5,6,7,B-tetramethylquinoxaline; 6,7- diethylquinoxaline; 6,7-dipropylquinoxaline; 5,8-dimethyl- 6,7-dibutylquinoxaline, 6,7-di-n-hexylquinoxaline; S-propylene tetramer quinoxaline; or 5,6-dimethyl-7-hexadecylquinoxaline or mixtures thereof may be employed as starting materials.
  • the alkyl groups are preferably straight chain alkyls, terminally bonded to the quinoxaline ring, but branched chain alkyl and medially or non-terminally bonded alkyl groups may also be employed. From such materials, the corresponding quinoxaline-1,4-dioxides are made.
  • the oxidation may be effected by any suitable mechanism, instead of employing peracetic acid in acetic anhydride.
  • various proportions of oxidizing agents may be employed, which will be known to those of skill in the art.
  • oxidizing reagents which can be used are perphthalic acid, permaleic acid, perbenzoic acid, and m-chloroperbenzoic acid.
  • the solvents to be employed will be such as are conducive to dissolving the reagents and which are unaffected by the reaction.
  • the 2-haloquinoxaline-l-oxide or alkyl-substituted derivative thereof is next reacted with sodium hydrosulfide or other metal hydrosulfide, preferably an alkali metal hydrosulfide.
  • the effect of this reaction which is usually conducted in the aqueous phase, utilizing two to five molar equivalents of the metal hydrosulfide, preferably 3, is the production of a solution of the corresponding metal salt of Z-mercaptoquinoxaline-l-oxide.
  • the salt of the Z-mercaptoquinoxaline-l-oxide may be converted to the corresponding 2-mercaptoquinoxaline-loxide compound by treatment with any suitable chemical for removing the salt-forming cation and replacing it with hydrogen.
  • any suitable chemical for removing the salt-forming cation and replacing it with hydrogen usually an aqueous solution of an acid, preferably a solution of a strong inorganic acid, such as hydrochloric acid or sulfuric acid, may be used to precipitate the Z-mercaptoquinoxaline-l-oxide compound.
  • a strong inorganic acid such as hydrochloric acid or sulfuric acid
  • salts of the Z-mercaptoquinoxaline-l-oxides may be obtained by treatment of a soluble salt thereof with a soluble metal, ammonium or quaternary ammonium or other suitable inorganic or organic salt. If the alkali metal salt is more soluble, it will often be possible to convert to other salts, such as heavy metal salts, merely by addition of a soluble heavy metal salt to the alkali metal salt of Z-mercaptoquinoxaline 1 oxide, preferably in aqueous solutions.
  • a preferred way to produce salts other than the alkali metal salts is to acidify an aqueous solution of an alkali metal salt to a pH of about 2.5-5.0, preferably a pH of about 4, with a dilute, strong, inorganic acid, such as hydrochloric acid or sulfuric acid, although other equivalent acids may also be employed, and to add to the acidified solution a dilute aqueous solution of the appropriate metal salt, preferably the halide or sulfate thereof.
  • the salts that may be made from the alkali metal salts, e.g., the sodium, potassium and lithium salts of 2- mercaptoquinoxaline-l-oxide, are the zinc, calcium, magnesium, manganese, chromium, iron, copper, tungsten, nickel, barium, strontium, ammonium and quaternary ammonium, e.g., cetyltrimethyl ammonium, triethyloctadecyl ammonium and dibenzyldilauryl ammonium.
  • the salts that may be employed include the corresponding chlorides, bromides, iodides, sulfates, phosphates, carbonates, borates, nitrates, acetates, citrates, propionates, phenates and the other useful water soluble salts.
  • the compounds produced exhibit exceptionally good antimicrobial properties. They are found to be effective in killing bacteria and in limiting the growths of various organisms. Thus they are very effective against the organism, Micracoccus pyogenes var. aureus, even when such organism is in a lipophilic environment, such as animal or mineral oil, fat or sebum. Often, when microorganisms are growing in such an environment, it is difficult to have an antimicrobial compound be eifective against them, due to the inhibiting action of the grease or lipophilic material on the microbicide.
  • ISuch inhibition may be either chemical or physical, whereby the lipophilic reacts with the antimicrobial compound to change it to a less effective compound or in which it prevents contact of the antimicrobial product with the microorganisms.
  • lipophilic reacts with the antimicrobial compound to change it to a less effective compound or in which it prevents contact of the antimicrobial product with the microorganisms.
  • these compounds are compatible with a wide variety of compositions and media in which they are employed.
  • aqueous and alcoholic solutions of these compounds are useful, as are cosmetic preparations containing them, whether based on aqueous or lipophilic media or combinations of both such phases.
  • the present antimicrobial compounds may be used in cosmetics or detergents, including liquid, solid, and semi-solid paste, cream or gelatinous preparations.
  • compositions containing these compounds are those which are used in contact with the hair or scalp, such as shampoos and hairdressings. After use of such preparations, microbial counts on the hair and scalp are reduced, compared to a control.
  • the Z-mercaptoquinoxaline-l-oxides, salts and the corresponding disulfides are effective against such potent gram-positive and gram-negative organisms as Micrococcus pyogenes var.
  • cosmetic and detergent compositions containing such compounds as active antimicrobial ingredients, and antimicrobial uses of the compounds and such compositions.
  • the present microbicides are useful in a wide variety of cosmetics and antimicrobial preparations, including hairdressings, hair tonics, hair waving solutions, hair dyes, bleaches, rinses, face creams, face powders, foot powders, body lotions, tanning agents, antiperspirants, sunscreens, personal deodorants, makeup preparations, bath oils, facial treatments, astringents, shaving creams, after-shave lotions and various other preparationsfor treatment of the hair or skin, in which antibacterial or antifungal activity is useful.
  • detergent compositions which can usefully include the present antimicrobial compounds are bar soaps, liquid soaps, soap shampoos, synthetic detergent shampoos, heavy duty synthetic organic detergents, inorganic detergent salts, pre-soak compositions, which may include enzymes, softeners, dishwashing products, synthetic detergents intended for washing hard surfaces, e.g., janitorial detergents, floor cleaning compositions and other deter gent-related products such as wax-removers, organic solvent solutions of surface active materials, compositions for employment with steam cleaning machinery, car washes, and sterilizing preparations.
  • the cosmetic compositions may contain from 0.1 to 99% of active ingredients for the primary purpose for which they are intended, together with from 0.1 to 20%, preferably from 0.1 to 3% of a compound of the present invention.
  • the cosmetics will contain from 1 to 100% of an aqueous or an oily phase or a solid material and sometimes, as in the cases of emulsions, will contain both aqueous and oily phase, often with a surface active material to aid in emulsification.
  • Such surface active agents may be anionic, nonionic, cationic or amphoteric and are usually present in emulsified cosmetics in proportions from 0.5 to 20% thereof.
  • hairdressings or other preparations intended for application to the hair may be essentially lipophilic, essentially hydrophilic or emulsions, and may even be inert powders
  • the present compounds may be employed in any such medium. If the medium is lipophilic, there will usually be present from 50 to 99% of oil, such as mineral oil, lanolin, lanolin derivatives or other lipophilic materials, together with one or more of the present compounds.
  • a solvent e.g., a lower alkanol such as ethanol or isopropanol, may also be used to thin the lipophilic phase to make it easier to apply.
  • the prepartion is hydrophilic, it will usually contain from 50 to- 99% of water, sometimes with 5 to 40% lower alkanol solvent associated therewith, plus one or more of the present antimicrobial compounds.
  • the emulsions may have from 1 to 99%, usually from to 80% of either lipophilic or hydrophilic materials, with essentially the balance thereof being of the other type.
  • the various active ingredients utilized to give the different cosmetic preparations their desired properties are well known and are exhaustively described in the text by Edward Sagarin, Cosmetics Science and Technology (1957), and therefore, will not be listed here. However, for example, it is mentioned that with respect to hairdressings, ordinarily a mineral oil and lanolin will be employed to condition the hair and facilitate its taking of waving or combing.
  • Antiperspirants will normally contain an active chemical for such purpose, such as aluminum chlorohydrate. Dusting powders will normally be based on talc, silica or other special form of such materials, such as pyrogenic silica. Skin creams or lotions will usually include stearic acid or other cold cream ingredients. The proportions of such active materials as was previously mentioned, may be varied widely, as is known in the art.
  • the detergent compositions in which the present antimicrobial compounds are useful may be either built or unbuilt products and may be based on anionic, cationic, nonionic and/or amphoteric surface active compounds. These are well known and are described in the text by Schwartz, Perry and Berch, Surface Active Agents and Detergents, volume II (1958), particularly at pages 321 and 621-625. Most frequently, the detergents employed will be anionic detergents, including the common higher fatty acid soaps of alkali metals and the synthetic anionic organic detergent salts such as those which are currently commercially used.
  • anionic synthetic organic detergents there may be mentioned the higher alkane sulfonates, higher fatty acid monoglyceride sulfates, linear higher alkyl benzene sulfonates, higher fatty acid soaps, polyoxyethylene sulfates, hydroxyalkylene sulfonates, higher alcohol sulfates, salts of lower alcohol esters of sulfofatty acids, aromatic polyethoxy ether sulfates, acyl sarcosinates, acyl esters of isethionates and acyl N-methyl taurides, to name only a few.
  • the salt-forming metals or other suitable salt-forming radicals for the detergents are preferably alkali metal, such as potassium or sodium but alkaline earth metals, ammonium, alkylamine, alkanolamine and magnesium salts may also be used.
  • alkali metal such as potassium or sodium but alkaline earth metals, ammonium, alkylamine, alkanolamine and magnesium salts may also be used.
  • Some specific examples of these detergents are sodium lauryl sulfate; sodium linear tridecyl benzene sulfonate; triethanolamine lauryl sulfate; sodium or potassium coconut oil-tallow soaps; sodium lauryl sulfonate; potassium hexadecylnaphthalene sulfonate; lauryl alcohol ethylene oxide sulfate comprising four ethoxy groups per molecule; potassium stearyl glycerylether sulfonate; sodium lauroyl sarcosinate; and magnesium
  • nonionic surface active agents are the condensation products of alkylated phenols of ethylene oxides, alkylthioethanols with ethylene oxide, higher fatty alcohols with ethylene oxide and polyalkylene glycols or other polyols with lower alkylene oxides.
  • cationic surface active materials are N-Z-aminoethyl higher alkyl amines; N-Z-aminoethyl higher fatty acid amides; and quaternary ammonium compounds wherein an alkyl group is of 12 to 18 carbon atoms and other groups attached to the nitrogen are alkyls of 1 to 3 carbon atoms.
  • amphoteric detergents containing both anionic and cationic groups, include the N-higher alkyl betaines, and related compounds of this class. Also suitable are the fatty imidazolines and betaines containing a sulfonic group instead of the carboxylic radical.
  • water soluble inorganic salt builders or organic builders are present to assist in dispersing, peptizing, sequestering, and alkalizing, whereby detergency is increased.
  • these are the pyrophosphates, tripolyphosphates, silicates, borates, carbonates, sesquisilicates and other water soluble alkaline salts, for which the salt-forming metal is usually an alkali metal, such as sodium or potassium.
  • the proportion of detergent will be from 5 to 99% and preferably, there will be present from 10 to 50% thereof.
  • the builder salts when present, will normally be from 15 to 60% of the composition and the active antimicrobial compound will be from 0.1 to 20% thereof, preferably from 0.1 to 5% thereof and most often will be from 0.5 to 3% of the total product.
  • the balance of such compositions will usually be an adjuvant or mixture thereof, being ordinarily from 0.1 to 25%, in total.
  • adjuvants include perfumes, dyes, bleaches, softening agents, antiredeposition agents, emollients, and brighteners.
  • detergents which are essentially unbuilt shampoo preparations
  • various adjuvants such as thickeners, foaming agents, perfumes, coloring materials, and conditioning agents.
  • the balance will be water, with possibly from 5 to 25% of lower alkanol, if desired.
  • the present antimicrobial preparations, cosmetics or detergents are used in accordance with normal techniques.
  • a suitable solution of the present 'Z-mercaptoquinoxaline-l-oxide or other compounds of this invention may be applied to the surface and allowed to remain there or it may be removed by rinsing after a suitable time.
  • the detergents and cosmetics are used in normal fashion.
  • the Z-mercaptoquinoxaline-l-oxide, its salt or the disulfide act to kill bacteria and fungi while on the surface which is a locus thereof, making such locus sterile or significantly decreasing the counts of microorganisms.
  • the amount or proportion of antimicrobial compound(s) in the preparations employed is enough to be effective for the particular use.
  • the portion remaining acts to prevent bacterial and/or fungus growths thereon.
  • Germicidal activity is important when the compositions are applied to the human hair and scalp, to obtain their antibacterial effects. In part, such activity might be attributed to the presence of sulfur in the invented compounds.
  • Various of the present compounds are found to be especially useful against bacteria and fungi which normally are resident in the hair, such as Micrococcus pyogenes var. Pityrosporum ovale.
  • EXAMPLE 1 1 gram mole of quinoxaline g. is oxidized by treatment with 3150 milliliters of a 1.2 molar solution of peracetic acid in acetic anhydride, according to the method of Lanquist, reported in the Journal of the Chemical Society at page 2816 (1953).
  • the 2-chloroquinoxaline-l-oxide is added to 900 milliliters of a one molar aqueous solution of sodium hydrosulfide.
  • the temperature of the reaction is 25 C. and byproduct H S is vaporized 01f, leaving a yellow aqueous solution of the sodium salt of Z-mercaptoquinoxaline-loxide in essentially quantitative yield.
  • quinoxaline corresponding alkyl-substituted derivatives thereof may be employed as starting materials, oxidizable to the corresponding 1,4-dioxides.
  • quinoxaline substituted in the 5,6,7 and 8 positions by methyl, butyl or hexyl may be used, as may be 5,6-dimethyl-7- hexadecyl quinoxaline and -dodecyl quinoxaline, among other such compounds.
  • the products obtained by treatment of the dioxides with benzenesulfonyl chloride may be neutralized with other neutralizing agents, e.g., sodium carbonate, sodium hydroxide, potassium carbonate, lithium hydroxide, magnesium hydroxide or zinc carbonate.
  • EXAMPLE 2 1 gram mole of the sodium salt of Z-mercaptoquinoxaline-l-oxide (200 grams) in 2.9 liters of aqueous or aqueous alcoholic solution is reacted with the stoichiometric proportion of zinc chloride or manganous sulfate. The reaction is carried out at about room temperature and the insoluble zinc or manganous salt of Z-mercaptoquinoxaliue-l-oxide is recovered by filtration.
  • such compounds are also produced from Z-mercaptoquinoxaline-l-oxide, sodium salt, after acidification of an aqueous solution thereof with dilute hydrochloric acid and subsequent addition of a dilute aqueous solution of zinc chloride or manganous sulfate.
  • the specific proportions of ingredients are not important, although it is preferred to employ dilute aqueous solutions of the reactants and generally enough of the heavy metal or other metal salt will be used to replace completely the more soluble sodium salt.
  • alkali metal salts may be employed, e.g., the potassium salt.
  • the metals replacing the alkali metal cation may be aluminum, chromium, copper, nickel, calcium, magnesium or other suitable alkaline earth metal, transition metal or Group III-A, IV-A or V-A metal.
  • the other salts of 2- mercaptoquinoxaline-l-oxides, described in Example 1 above may be employed as starting materials, with the production of the corresponding salts.
  • quaternary ammonium salts such cetyltrimethylammonium bromide or dimethyl benzyl lauryl ammonium chloride are reacted with the sodium salt of Z-mercaptoquinoxaline-l-oxide, the quaternary ammonium derivatives are made.
  • Such compounds combine antibacterial activities of both the quaternary-type product and the 2- mercaptoquinoxaline-l-oxide structure.
  • EXAMPLE 3 1 gram mole of Z-mercaptoquinoxaline-l-oxide (178 grams) is dissolved in boiling acetone and is oxidized by the passage of air through the boiling solution. In place of acetone, methanol or ethanol or other suitable low boiling solvent may also be employed. Alternatively, oxidation may be accomplished by the addition of stoichiometric quantities of a 0.1 molar aqueous solution of po tassium triiodide, a 3% aqueous solution of hydrogen peroxide, or a dilute solution of a percarboxylic acid to a suspension of 2-mercaptoquinoxaline-l-oxide in the water. The oxidations produce the disulfide, 2-(1-oxoquinoxalinyl) disulfide.
  • Corresponding alkyl-substituted disulfides are produced when the starting material is substituted at the 5, 6, 7 or 8 position or all or any of such positions With a lower alkyl, e.g., methyl, ethyl.
  • the disulfides are recovered in nearly quantitative yields by filtration and evaporation of the solvent.
  • EXAMPLE 4 Compounds produced as described in the preceding examples are formulated into cosmetic and detergent compositions by addition thereof to conventional detergent or cosmetic formulations.
  • the most preferred cosmetic is a hairdressing, while the best detergent formulation is a shampoo.
  • compositions are especially useful with respect to diminishing the bacterial counts of Micrococcus pyogenes var. aureus. Also, they are useful with respect to diminishing other bacterial and fungal counts and in particular, the sodium salt of Z-mercaptoquinoxaline-l-oxide is especially effective against Pityrosporum ovale, even in the presence of sebum.
  • the surface active agents used in the above preparations and in the present cosmetics, for their emulsifying, wetting or cleaning properties, may also include those mentioned in the previous specification as constituents of detergents and shampoos.
  • the paper disc agar plate diffusion method One test employed is known as the paper disc agar plate diffusion method.
  • a one-quarter inch disc of filter paper is saturated with an aqueous solution of micro bicide and surface active agent, after which it is dried.
  • the microbicide and the surface active agents are each present to the extent of 1% in the solution.
  • the microbicide is a salt of Z-mercaptoquinoxaline-l-oxide and the detergent is either an ordinary sodium soap of mixed coconut oil and tallow fatty acids or is sodium lauryl sulfate.
  • the agar plate is prepared by depositing a thin layer of agar-agar in a Petri dish.
  • the paper discs are placed on the agar-agar plate in replicates of four per sample and are incubated in a 35 C. oven. After 4 days, the microbial growth on the plate in areas unaffected by the germicide is significant. However, about the various discs containing the present germicides, zones of inhibition are noted, indicating the efiectiveness of the bactericides against the organism employed.
  • R is hydrogen or an alkyl group of 1 to 12 carbon atoms
  • M is selected from the group consisting of alkali metals, alkaline earth metals, transition element metals, Group III-A metals, Group IV-A metals, Group V-A metals, ammonium and quaternary ammonium, wherein the substituents on the quaternary nitrogen are selected from the group consisting of alkyl groups of 1 to 18 canbon atoms, and arylalkyl groups of 7 to 24' carbon atoms, and n, representing the valence of M, is either 1, 2 or 3.
  • R is either hydrogen or alkyl of 1 to 4 carbon atoms, and, if alkyl, no more than two alkyl groups are present per thioquinoxaline-l-oxide group and M represents alkali metal, alkaline earth metal or transition metal.
  • a compound according to claim 3 which is of the formula 5.
  • a compound according to claim 3 which is the salt of an alkali metal or an alkaline earth metal.
  • a method according to claim 10 wherein the 2-haloquinoxaline-l-oxide is 2-ch1oroquinoxaline-1-oxide and the hydrosulfide is alkali metal hydrosu'lfide.
  • hydrosuliide is sodium hydrosulfide and the reaction is effected in an aqueous medium to produce the sodium salt of 2- mercaptoquinoxaline-1-oxide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

2-MERCAPTOQUINOZALINE-1-OXIDES, SALTS THEREOF AND 2-(1OXOQUINOXALINYL) DISULFIDES ARE USEFUL ANTIMICROBIAL AGENTS, ACTIVE AGAINST GRAM-NEGATIVE AND GRAM-POSITIVE BACTERIA AND FUNGI, E.G., ESCHERICHIA COIL, BACILLUS SUBSTITIS, MICROCOCCUSPYOGENES VAR. AUREUS, TRICOPHYTON MENTAGROPHYTES, AND PITYROSPORUM OVALE. THE ANTIMICOROBIAL COMPOUNDS ARE USEFUL ALONE, USUALLY IN AQUEOUS SOLUTION, AS MICROBICIDES OR MICROBISTATS. THEY MAY ALSO BE INCLUDED AS CONSTITUENTS OF HAIRDRESSINGS OR SHAMPOOS BECAUSE THEY ARE EFFECTIVE MICROBICIDES, EVEN IN THE PRESENCE OF OILY MATERIALS, SUCH AS THE SEBUM NORMALLY SECRETED BY THE HUMAN SCALP.

Description

United States Patent 3,733,323 Z-MERCAPTOQUINOXALINE I-OXIDES, SALTS THEREOF AND 2 (I-OXOQUINOXALINYL) DISULFIDES Miriam Lois Douglass, Bound Brook, NJ., assignor to Colgate-Palmolive Company, New York, N.Y. No Drawing. Filed Nov. 26, 1969, Ser. No. 880,413 Int. Cl. (307d 51/78 U.S. Cl. 260-250 R 19 Claims ABSTRACT OF THE DISCLOSURE Z-mercaptoquinoxaline-l-oxides, salts thereof and 2-(1- oxoquinoxalinyl) disulfides are useful antimicrobial agents, active against gram-negative and gram-positive bacteria and fungi, e.g., Escherichia coil, Bacillus substilis, Micrococcus pyogenes var. aureus, T ricophyton mentagrophytes, and Pityrosporum ovale.
The antimicrobial compounds are useful alone, usually in aqueous solution, as microbicides or microbistats. They may also be included as constituents of hairdressings or shampoos because they are effective microbicides, even in the presence of oily materials, such as the sebum normally secreted by the human scalp.
This invention relates to sulfur-containing guinoxaline derivatives which have been found to be useful against microorganisms. More specifically, the invention is of new compounds which are Z-mercaptoquinoxaline 1- oxides, salts thereof or 2-(1-oxoquinoxalinyl) disulfides. Also included within the invention are methods for the manufacture of such compounds, uses thereof and compositions containing them, especially hairdressings and shampoos, although other antimicrobial compositions are also included.
The extensive research undertaken by individuals and corporations in the chemical, drug and cosmetic fields, in their efforts to discover acceptable and effective antimicrobial agents, has resulted in the discovery of many useful compounds which have been incorporated in various preparations for industrial, agricultural, business, government or personal use, resulting in improved sanitary and hygienic conditions. These microbicides or microbistats include such diverse compounds as derivatives of mercury, arsenic, silver and iodine, quaternary ammonium compounds, peroxides, hypochlorites, sulfides, sulfanilamides, penicillins and many other inorganic and organic compounds, both relatively simple and highly complex. Some such compounds have been found to be especially useful in particular applications and others may have widespread areas of utility. However, it is the usual case that after extensive experimentation, particular antimicrobial compounds are found to be best for particular purposes. Thus, there are few bactericides or bacteriostats that are useful against all bacteria or, if useful against a wide variety of bacteria, economic and other considerations will generally dictate employment in particular applications.
A particularly difficult medium for successful employment of an antimicrobial compound is the human scalp and the hair thereon. Due to continued secretions of sebum and perspiration and deposits of dust, grease and oils on the scalp, often in part at least attributable to the use of preparations for treating the scalp and hair, particularly favorable conditions for the growth of microorganisms often prevail on the scalp. Even if the hair and scalp are washed fairly frequently, the growth of microorganisms there is generally faster than on most other parts of the human body and consequently, the actions of antimicrobial compounds employed thereon are often ineffective. However, by the use of the compounds of this 3,733,323 Patented May 15., 1973 ice invention, good activity is obtained against microorgamsms, such as bacteria and fungi, even when they are growing in such a favorable environment as the human hair and scalp or in contact with oily materials, such as human sebum.
The present compounds may be used in solutions, emul- 810118 or suspensions, or as solids. They are usually in the forms of aqueous solutions or suspension and may be applited to sites on which microbial growth is to be counteracted. For ease of application to such sites, they may be included in various carrier compositions and are considered to be especially useful in hairdressing preparatrons and in shampoos. They aid in killing microorganisms on various substrates, such as proteinaceous materials, e.g., skin, gelatin, hair, wool and leather. Also, they are compatible with various other hairdressing and shampoo constituents, and with many other cosmetics.
In accordance with the present invention there are provided 2-mercaptoquinoxaline-l-oxides of the formula:
wherein R is hydrogen or an alkyl group of 1 to 12 carbon atoms, which may be the same as or different from other Rs. Also, within the invention are the related 2-(1- oxoquinoxalinyl) disulfides of the formula:
l j R Nrsor salts of the 2- mercaptoquinoxaline 1- oxides of the formula:
R R N\ it R is .1
wherein R, which may be the same or different from other Rs, is hydrogen or an alkyl group of 1 to 12 carbon atoms, and M is mono-, dior trivalent metal, which is usually either alkali metal, an alkaline earth metal, a transition metal or a metal of one of groups IlI-A, IV-A or V-A, ammonium or quaternary ammonium wherein the substitutents on the quaternary nitrogen are alkyls of 1 to 18 carbon atoms or arylalkyls of 7 to 24 carbon atoms. Accordingly, n, representing the valence of M, will be 1, 2 or 3. The preferred 2-mercaptoquinoxaline-loxides are those wherein the Rs are lower alkyl, usually of 1 to 4 carbon atoms, preferably of 1 to 2 carbon atoms, and wherein from 0 to 2 alkyl groups are present per molecule. Of these, those compounds are most preferred wherein R is hydrogen. As to the salts of the Z-mercaptoquinoxaline-l-oxides, those are preferred wherein M is an alkali metal, such as sodium an alkaline earth metal or a transition element, such as manganese. With respect to the mercaptoquinoxaline groups of derivative compounds, such as the 2-(l-oxoquinoxalinyl) disulfides, it is also preferred that from O to 2 Rs should be on a quinoxaline group and that R should be of 1 to 4 carbon atoms, preferably of l to 2 carbon atoms. When two Rs are present on the quinoxaline group, they should be in the 6 and 7 positions.
The invented compounds may be made from known Starting materials by readily practiced processes. Start ing with quinoxaline, this is oxidized to quinoxaline-1,4-d1- oxide with 1.2 molar peracetic acid in acetic anhydride (melting point of the product equals 241.5242 C.). The yield obtained is 50 to 60% of theoretical. See Journal of the Chemical Society, page 2816 (1953, I. K. Landquist). The quinoxaline-1,4-dioxide is reacted with a 6 molar excess of benzenesulfonyl chloride and the grey-green solid obtained is then reacted with 10% aqueous sodium bicarbonate, to yield 2-chloroquinoxaline-l-oxide in 60% yield (M.P. equals l15-l16 C.). See Journal of General Chemistry, U.S.S.R., volume 34, page 2836 (1964, A. S. Elina). The reaction of 2-chloroquinoxaline-l-oxide With three molar equivalents of one molar aqueous sodium hydrosulfide results in a yellow aqueous solution of the sodium salt of Z-mercaptoquinoxaline-l-oxide. The yield is essentially quantitative. The salt is convertible to the water-insoluble 2 mercaptoquinoxaline-l-oxide by precipitation thereof with an acid, such as concentrated aqueous hydrochloric acid. 2-(1-oxoquinoxalinyl) disulfide is obtainable from Z-mercaptoquinoxaline-l-oxide by oxidation of the 2-mercaptoquinoxalinel-oxide. Such oxidation may be effected with air (with the Z-mercaptoquinoxaline-l-oxide being oxidized by the air in a solvent such as acetone, methanol, ethanol or other suitable solvent, preferably at an elevated temperature such as that at which the solvent boils) or with other oxidizing agents, Such as aqueous potassium triiodide, aqueous 3% hydrogen peroxide, or a dilute aqueous solution of a percarboxylic acid. Various other metal, ammonium or quaternary ammonium salts of 2-mercaptoquinoxaline-l-oxide may be obtained by treatment of a solution of a soluble salt thereof with an acid such as dilute hydrochloric acid or other suitable inorganic or organic acid, followed by addition of a dilute aqueous solution of the water soluble salt of the cation, e.g., a solution of the metalor ammonium halide or sulfate.
The reactions described above are illustrated by the following equations:
N t N (A) 1' (B) J, J 0 o (D)/ SH N N 01 N IlI a im s In the previous equations, A=1.2 molar CH CO3H; B=C H SO Cl; C=NaHCO D=1 molar NaSH (2 moles); E=HCl; F=air, dilute H 0 dilute K1 or dilute RCO H (R=aryl or alkenyl); and G=Metal For clarity of presentation, the above description of methods of making the invented compounds has been given with respect to a particular starting material and corresponding derivatives thereof. However, it must be realized that such methods are also applicable to reactions utilizing different starting materials and effected by different reagents, which are equivalent in their activities to those described. Thus, instead of utilizing quinoxaline as the starting material, 5,6,7,B-tetramethylquinoxaline; 6,7- diethylquinoxaline; 6,7-dipropylquinoxaline; 5,8-dimethyl- 6,7-dibutylquinoxaline, 6,7-di-n-hexylquinoxaline; S-propylene tetramer quinoxaline; or 5,6-dimethyl-7-hexadecylquinoxaline or mixtures thereof may be employed as starting materials. The alkyl groups are preferably straight chain alkyls, terminally bonded to the quinoxaline ring, but branched chain alkyl and medially or non-terminally bonded alkyl groups may also be employed. From such materials, the corresponding quinoxaline-1,4-dioxides are made. Of course, the oxidation may be effected by any suitable mechanism, instead of employing peracetic acid in acetic anhydride. Also, various proportions of oxidizing agents may be employed, which will be known to those of skill in the art. Among other oxidizing reagents which can be used are perphthalic acid, permaleic acid, perbenzoic acid, and m-chloroperbenzoic acid. The solvents to be employed will be such as are conducive to dissolving the reagents and which are unaffected by the reaction.
The reaction of the quinoxaline-1,4-dioxide compound with benzenesulfonyl chloride or an equivalent material and the subsequent removal of the benzenesulfonic acid by treatment with aqueous sodium bicarbonate is a known reaction which the present inventor has shown to be useful in making the named substituted products, as well as 2-chloroquinoxaline-l-oxide. Of course, reagents other than benzenesulfonyl chloride which may have the same effect can be employed, as may be neutralizing materials other than sodium bicarbonate, with the end effect being to remove an oxygen atom from one of the nitrogens and to substitute a halogen atom for a hydrogen on a carbon adjacent to the remaining oxygen-containing nitrogen. The 2-haloquinoxaline-l-oxide or alkyl-substituted derivative thereof is next reacted with sodium hydrosulfide or other metal hydrosulfide, preferably an alkali metal hydrosulfide. The effect of this reaction, which is usually conducted in the aqueous phase, utilizing two to five molar equivalents of the metal hydrosulfide, preferably 3, is the production of a solution of the corresponding metal salt of Z-mercaptoquinoxaline-l-oxide. As will be seen from the previously given equation for this reaction it is a simple one in which the metal of the metal hydrosulfide is removed with the chlorine from the 2-chloroquinoxalineloxide compound to form the metal chloride, the chlorine is replaced by the SM group, and evolution of hydrogen sulfide completes the material balance. Instead of using the sodium or potassium hydrosulfide, although these are preferred, one may also employ hydrosulfides of other materials which form soluble salts. The proportion of hydrosulfide in the aqueous system employed is usually from 0.5 to 3 molar for best results. The soluble salt may be obtained from the solution by any of various known means, including evaporation, crystallization, selective absorption or adsorption or other known fractionating techmque.
The salt of the Z-mercaptoquinoxaline-l-oxide may be converted to the corresponding 2-mercaptoquinoxaline-loxide compound by treatment with any suitable chemical for removing the salt-forming cation and replacing it with hydrogen. Thus, usually an aqueous solution of an acid, preferably a solution of a strong inorganic acid, such as hydrochloric acid or sulfuric acid, may be used to precipitate the Z-mercaptoquinoxaline-l-oxide compound. The stoichiometric quantity of acid will normally be employed, but variations are permissible. Of course, variations may also be made in the types of acid and the concentrations employed, provided that sufiicient acid is used to convert the salt to the acid form. Other salts of the Z-mercaptoquinoxaline-l-oxides may be obtained by treatment of a soluble salt thereof with a soluble metal, ammonium or quaternary ammonium or other suitable inorganic or organic salt. If the alkali metal salt is more soluble, it will often be possible to convert to other salts, such as heavy metal salts, merely by addition of a soluble heavy metal salt to the alkali metal salt of Z-mercaptoquinoxaline 1 oxide, preferably in aqueous solutions. However, a preferred way to produce salts other than the alkali metal salts is to acidify an aqueous solution of an alkali metal salt to a pH of about 2.5-5.0, preferably a pH of about 4, with a dilute, strong, inorganic acid, such as hydrochloric acid or sulfuric acid, although other equivalent acids may also be employed, and to add to the acidified solution a dilute aqueous solution of the appropriate metal salt, preferably the halide or sulfate thereof. Again, it is preferred to employ approximately stoichiometric proportions of such salt and the corresponding alkali metal salt of Z-mercaptoquinoxaline-l-oxide, but variations, usually plus or minus to from stoichiometric proportions, are also useful. Among the salts that may be made from the alkali metal salts, e.g., the sodium, potassium and lithium salts of 2- mercaptoquinoxaline-l-oxide, are the zinc, calcium, magnesium, manganese, chromium, iron, copper, tungsten, nickel, barium, strontium, ammonium and quaternary ammonium, e.g., cetyltrimethyl ammonium, triethyloctadecyl ammonium and dibenzyldilauryl ammonium. The salts that may be employed include the corresponding chlorides, bromides, iodides, sulfates, phosphates, carbonates, borates, nitrates, acetates, citrates, propionates, phenates and the other useful water soluble salts.
From Z-mercapoquinoxaline-l-oxide there may be produced the corresponding 2-(1-oxoquinoxalinyl) disulfide by oxidation. In such oxidation, as will be seen from the equations, hydrogen atoms adjacent to the sulfur of the Z-mercaptoquinoxaline-l-oxide are removed, to be combined with oxygen to form water. Thus, the sulfur atoms bond together, forming the disulfide. Such oxidation may be effected by any suitable means, preferably utilizing air, another gaseous or chemical source of oxygen, or other oxidizing agents such as potassium triiodide, hydrogen peroxide, or percarboxylic acids.
The compounds produced, whether in the form of the Z-mercaptoquinoxaline-l-oxide compound or a salt thereof or in the form of the corresponding disulfide, exhibit exceptionally good antimicrobial properties. They are found to be effective in killing bacteria and in limiting the growths of various organisms. Thus they are very effective against the organism, Micracoccus pyogenes var. aureus, even when such organism is in a lipophilic environment, such as animal or mineral oil, fat or sebum. Often, when microorganisms are growing in such an environment, it is difficult to have an antimicrobial compound be eifective against them, due to the inhibiting action of the grease or lipophilic material on the microbicide. ISuch inhibition may be either chemical or physical, whereby the lipophilic reacts with the antimicrobial compound to change it to a less effective compound or in which it prevents contact of the antimicrobial product with the microorganisms. In addition to the excellent utilities of the present compounds in such difficult environments, which are encountered on human or animal bodies and on the scalp or hair, it is found that these compounds are compatible with a wide variety of compositions and media in which they are employed. Thus, aqueous and alcoholic solutions of these compounds are useful, as are cosmetic preparations containing them, whether based on aqueous or lipophilic media or combinations of both such phases. For example, the present antimicrobial compounds may be used in cosmetics or detergents, including liquid, solid, and semi-solid paste, cream or gelatinous preparations. They may be employed in soaps, shampoos, hairdressings, dusting powders or tales, food powders, aerosol spray preparations of various types, anti-perspirants, deodorants, antiseptics and many other materials intended for cleaning, grooming or sanitizing purposes. Preferred compositions containing these compounds are those which are used in contact with the hair or scalp, such as shampoos and hairdressings. After use of such preparations, microbial counts on the hair and scalp are reduced, compared to a control. The Z-mercaptoquinoxaline-l-oxides, salts and the corresponding disulfides are effective against such potent gram-positive and gram-negative organisms as Micrococcus pyogenes var. aureus and Escherichia coli and the fungi Pityrosporum ovale and trichopltylon mentagrophytes. Such effects of these compositions have not been noted before and the active antimicrobial compounds and compositions containing them have not been taught or suggested by the prior art.
The closest prior art reference known, wherein antibacterial activities are mention is US. 3,23 6,733, but that patent is for the use of pyridinethiones and oxides thereof which are substantially different from the present compounds. Also, althrough US. Pats. 2,537,870; 2,537,- 871; 3,157,654; and 3,249,610 describe compounds which bear some resemblances to the present compounds, they are not for the present compounds and do not make them obvious. The structurally closest reference compound found is in 94 Gazz. Chim. Ital. 3-30 (1964), wherein at page 17 and 30 formulas are given for Z-mercaptoquinoxaline-l-oxide. That reference discloses no method for the manufacture of the present compounds and the utilities of such compounds, described in this specification, are not mentioned in the reference.
In addition to the new compounds and methods for their manufacture, also within the present invention are cosmetic and detergent compositions containing such compounds as active antimicrobial ingredients, and antimicrobial uses of the compounds and such compositions. It is considered that the present microbicides are useful in a wide variety of cosmetics and antimicrobial preparations, including hairdressings, hair tonics, hair waving solutions, hair dyes, bleaches, rinses, face creams, face powders, foot powders, body lotions, tanning agents, antiperspirants, sunscreens, personal deodorants, makeup preparations, bath oils, facial treatments, astringents, shaving creams, after-shave lotions and various other preparationsfor treatment of the hair or skin, in which antibacterial or antifungal activity is useful. Among the detergent compositions which can usefully include the present antimicrobial compounds are bar soaps, liquid soaps, soap shampoos, synthetic detergent shampoos, heavy duty synthetic organic detergents, inorganic detergent salts, pre-soak compositions, which may include enzymes, softeners, dishwashing products, synthetic detergents intended for washing hard surfaces, e.g., janitorial detergents, floor cleaning compositions and other deter gent-related products such as wax-removers, organic solvent solutions of surface active materials, compositions for employment with steam cleaning machinery, car washes, and sterilizing preparations.
The cosmetic compositions may contain from 0.1 to 99% of active ingredients for the primary purpose for which they are intended, together with from 0.1 to 20%, preferably from 0.1 to 3% of a compound of the present invention. Usually, the cosmetics will contain from 1 to 100% of an aqueous or an oily phase or a solid material and sometimes, as in the cases of emulsions, will contain both aqueous and oily phase, often with a surface active material to aid in emulsification. Such surface active agents may be anionic, nonionic, cationic or amphoteric and are usually present in emulsified cosmetics in proportions from 0.5 to 20% thereof.
Although the most preferred embodiments of the invention, hairdressings or other preparations intended for application to the hair, may be essentially lipophilic, essentially hydrophilic or emulsions, and may even be inert powders, the present compounds may be employed in any such medium. If the medium is lipophilic, there will usually be present from 50 to 99% of oil, such as mineral oil, lanolin, lanolin derivatives or other lipophilic materials, together with one or more of the present compounds. A solvent, e.g., a lower alkanol such as ethanol or isopropanol, may also be used to thin the lipophilic phase to make it easier to apply. It will usually be from to 80% of the cosmetic, If the prepartion is hydrophilic, it will usually contain from 50 to- 99% of water, sometimes with 5 to 40% lower alkanol solvent associated therewith, plus one or more of the present antimicrobial compounds. The emulsions may have from 1 to 99%, usually from to 80% of either lipophilic or hydrophilic materials, with essentially the balance thereof being of the other type. The various active ingredients utilized to give the different cosmetic preparations their desired properties are well known and are exhaustively described in the text by Edward Sagarin, Cosmetics Science and Technology (1957), and therefore, will not be listed here. However, for example, it is mentioned that with respect to hairdressings, ordinarily a mineral oil and lanolin will be employed to condition the hair and facilitate its taking of waving or combing.
Antiperspirants will normally contain an active chemical for such purpose, such as aluminum chlorohydrate. Dusting powders will normally be based on talc, silica or other special form of such materials, such as pyrogenic silica. Skin creams or lotions will usually include stearic acid or other cold cream ingredients. The proportions of such active materials as was previously mentioned, may be varied widely, as is known in the art.
The detergent compositions in which the present antimicrobial compounds are useful may be either built or unbuilt products and may be based on anionic, cationic, nonionic and/or amphoteric surface active compounds. These are well known and are described in the text by Schwartz, Perry and Berch, Surface Active Agents and Detergents, volume II (1958), particularly at pages 321 and 621-625. Most frequently, the detergents employed will be anionic detergents, including the common higher fatty acid soaps of alkali metals and the synthetic anionic organic detergent salts such as those which are currently commercially used.
As examples of the anionic synthetic organic detergents there may be mentioned the higher alkane sulfonates, higher fatty acid monoglyceride sulfates, linear higher alkyl benzene sulfonates, higher fatty acid soaps, polyoxyethylene sulfates, hydroxyalkylene sulfonates, higher alcohol sulfates, salts of lower alcohol esters of sulfofatty acids, aromatic polyethoxy ether sulfates, acyl sarcosinates, acyl esters of isethionates and acyl N-methyl taurides, to name only a few. The salt-forming metals or other suitable salt-forming radicals for the detergents are preferably alkali metal, such as potassium or sodium but alkaline earth metals, ammonium, alkylamine, alkanolamine and magnesium salts may also be used. Some specific examples of these detergents are sodium lauryl sulfate; sodium linear tridecyl benzene sulfonate; triethanolamine lauryl sulfate; sodium or potassium coconut oil-tallow soaps; sodium lauryl sulfonate; potassium hexadecylnaphthalene sulfonate; lauryl alcohol ethylene oxide sulfate comprising four ethoxy groups per molecule; potassium stearyl glycerylether sulfonate; sodium lauroyl sarcosinate; and magnesium methyl tauride.
Among the nonionic surface active agents are the condensation products of alkylated phenols of ethylene oxides, alkylthioethanols with ethylene oxide, higher fatty alcohols with ethylene oxide and polyalkylene glycols or other polyols with lower alkylene oxides. Among the cationic surface active materials are N-Z-aminoethyl higher alkyl amines; N-Z-aminoethyl higher fatty acid amides; and quaternary ammonium compounds wherein an alkyl group is of 12 to 18 carbon atoms and other groups attached to the nitrogen are alkyls of 1 to 3 carbon atoms. Among such are ethyldimethylstearyl ammonium chloride; benzyl dimethylstearyl ammonium chloride; and trimethylcetyl ammonium bromide. The amphoteric detergents, containing both anionic and cationic groups, include the N-higher alkyl betaines, and related compounds of this class. Also suitable are the fatty imidazolines and betaines containing a sulfonic group instead of the carboxylic radical.
In the built detergents, water soluble inorganic salt builders or organic builders are present to assist in dispersing, peptizing, sequestering, and alkalizing, whereby detergency is increased. Among these are the pyrophosphates, tripolyphosphates, silicates, borates, carbonates, sesquisilicates and other water soluble alkaline salts, for which the salt-forming metal is usually an alkali metal, such as sodium or potassium.
Generally, in the detergent compositions, the proportion of detergent will be from 5 to 99% and preferably, there will be present from 10 to 50% thereof. The builder salts, when present, will normally be from 15 to 60% of the composition and the active antimicrobial compound will be from 0.1 to 20% thereof, preferably from 0.1 to 5% thereof and most often will be from 0.5 to 3% of the total product. The balance of such compositions will usually be an adjuvant or mixture thereof, being ordinarily from 0.1 to 25%, in total. Such adjuvants include perfumes, dyes, bleaches, softening agents, antiredeposition agents, emollients, and brighteners. In the preferred detergents, which are essentially unbuilt shampoo preparations, there will be present from 5 to 35% of soap or synthetic organic detergent or mixture thereof, from 0.1 to 5% of antimicrobial compound and from 1 to 20% of various adjuvants, such as thickeners, foaming agents, perfumes, coloring materials, and conditioning agents. The balance will be water, with possibly from 5 to 25% of lower alkanol, if desired.
The present antimicrobial preparations, cosmetics or detergents are used in accordance with normal techniques. Thus, to sterilize or make antimicrobial a particular surface, a suitable solution of the present 'Z-mercaptoquinoxaline-l-oxide or other compounds of this invention may be applied to the surface and allowed to remain there or it may be removed by rinsing after a suitable time. The detergents and cosmetics are used in normal fashion. The Z-mercaptoquinoxaline-l-oxide, its salt or the disulfide act to kill bacteria and fungi while on the surface which is a locus thereof, making such locus sterile or significantly decreasing the counts of microorganisms. Of course, the amount or proportion of antimicrobial compound(s) in the preparations employed ,whether solutions or more complex compositions, is enough to be effective for the particular use. When the microbicide is not completely removed from the surface, by rinsing or other means, the portion remaining acts to prevent bacterial and/or fungus growths thereon. Germicidal activity is important when the compositions are applied to the human hair and scalp, to obtain their antibacterial effects. In part, such activity might be attributed to the presence of sulfur in the invented compounds. Various of the present compounds are found to be especially useful against bacteria and fungi which normally are resident in the hair, such as Micrococcus pyogenes var. Pityrosporum ovale.
The following examples are given to illustrate specific preferred embodiments of this invention. Clearly, the invention is not limited thereto. All temperatures are given in degrees Centigrade and all parts are by weight, unless otherwise indicated.
EXAMPLE 1 1 gram mole of quinoxaline g.) is oxidized by treatment with 3150 milliliters of a 1.2 molar solution of peracetic acid in acetic anhydride, according to the method of Lanquist, reported in the Journal of the Chemical Society at page 2816 (1953). The product, quinoxaline- 1,4-dioxide, having a melting point of between 241.5 and 242.0 C. (with decomposition), is obtained in 5060% yield. It is reacted with 530 grams of benzenesulfonyl chloride at a temperature of 25 C. for 1 to 12 hours and the resulting grey-green solid product is treated with 440 milliliters of a 10% aqueous solution of sodium bicarbonate, to produce 2chloroquinoxaline-l-oxide. The ploduct obtained has a melting point of 115-116 C. after crystallization from cyclohexane or methanol. It is obtained in approximately 60% yield. The method for this reaction is reported in the Journal of General Chemistry, U.'S.S.R., volume 34, page 2836 (1964).
The 2-chloroquinoxaline-l-oxide is added to 900 milliliters of a one molar aqueous solution of sodium hydrosulfide. The temperature of the reaction is 25 C. and byproduct H S is vaporized 01f, leaving a yellow aqueous solution of the sodium salt of Z-mercaptoquinoxaline-loxide in essentially quantitative yield.
When the aqueous solution of the sodium salt of 2- mercaptoquinoxaline-l-oxide is treated with concentrated aqueous hydrochloric acid (11.6 N) at a temperature of 25 C. until the pH of the suspension reaches 2,2-mercaptoquinoxaline-l-oxide is precipitatde. The product has a melting point of l24.5125.4 C. and the precipitate is obtained in 90% yield.
Analysis.Calculated for C H N OS (percent): C=53.9; H=3.4; N=15.7; S=18.0-. Found (percent): :545; H=3.3; N=15.6; S=18.2.
Instead of quinoxaline, corresponding alkyl-substituted derivatives thereof may be employed as starting materials, oxidizable to the corresponding 1,4-dioxides. Thus, quinoxaline substituted in the 5,6,7 and 8 positions by methyl, butyl or hexyl may be used, as may be 5,6-dimethyl-7- hexadecyl quinoxaline and -dodecyl quinoxaline, among other such compounds. The products obtained by treatment of the dioxides with benzenesulfonyl chloride may be neutralized with other neutralizing agents, e.g., sodium carbonate, sodium hydroxide, potassium carbonate, lithium hydroxide, magnesium hydroxide or zinc carbonate.
To make the desired salts of Z-mercaptoquinoxalinel-oxide, other hydrosulfides such as potassium hydrosulfide, lithium hydrosulfide or magnesium hydrosulfide may be used. Also, to precipitate the acid form of Z-mercaptoquinoxaline-l-oxide or alkyl-substituted derivatives thereof, there may be employed gaseous hydrogen chloride, sulfuric acid, acetic acid or any other suitable acid, although strong inorganic acids in aqueous solution are preferred.
EXAMPLE 2 1 gram mole of the sodium salt of Z-mercaptoquinoxaline-l-oxide (200 grams) in 2.9 liters of aqueous or aqueous alcoholic solution is reacted with the stoichiometric proportion of zinc chloride or manganous sulfate. The reaction is carried out at about room temperature and the insoluble zinc or manganous salt of Z-mercaptoquinoxaliue-l-oxide is recovered by filtration.
Analysis.-Calculated for C H N 0 S Zn (percent);
C=45.6; H=2.4; N=13.4. Found: 0:458; H=2.5;
Calculated for C H N O S Mn (percent):
C=47.0; H=2.5; N=13.7;. Found: (percent): (3:470; 11:29; N: 14.1.
Alternatively, such compounds are also produced from Z-mercaptoquinoxaline-l-oxide, sodium salt, after acidification of an aqueous solution thereof with dilute hydrochloric acid and subsequent addition of a dilute aqueous solution of zinc chloride or manganous sulfate. In such reactions, the specific proportions of ingredients are not important, although it is preferred to employ dilute aqueous solutions of the reactants and generally enough of the heavy metal or other metal salt will be used to replace completely the more soluble sodium salt.
Instead of the sodium salt of 2-mercaptoquinoxaline-1- oxide as starting material, corresponding alkali metal salts may be employed, e.g., the potassium salt. Also, the metals replacing the alkali metal cation may be aluminum, chromium, copper, nickel, calcium, magnesium or other suitable alkaline earth metal, transition metal or Group III-A, IV-A or V-A metal. Also, the other salts of 2- mercaptoquinoxaline-l-oxides, described in Example 1 above, may be employed as starting materials, with the production of the corresponding salts. Instead of the metal salts, when quaternary ammonium salts, such cetyltrimethylammonium bromide or dimethyl benzyl lauryl ammonium chloride are reacted with the sodium salt of Z-mercaptoquinoxaline-l-oxide, the quaternary ammonium derivatives are made. Such compounds combine antibacterial activities of both the quaternary-type product and the 2- mercaptoquinoxaline-l-oxide structure.
EXAMPLE 3 1 gram mole of Z-mercaptoquinoxaline-l-oxide (178 grams) is dissolved in boiling acetone and is oxidized by the passage of air through the boiling solution. In place of acetone, methanol or ethanol or other suitable low boiling solvent may also be employed. Alternatively, oxidation may be accomplished by the addition of stoichiometric quantities of a 0.1 molar aqueous solution of po tassium triiodide, a 3% aqueous solution of hydrogen peroxide, or a dilute solution of a percarboxylic acid to a suspension of 2-mercaptoquinoxaline-l-oxide in the water. The oxidations produce the disulfide, 2-(1-oxoquinoxalinyl) disulfide.
Analysis.Ca1culated for C H N O S (percent): (1:542; H=2.8; N=15.8; S=18.1. Found (percent): C=53.8; H=2.8; N=15.9; S=18.6.
Corresponding alkyl-substituted disulfides are produced when the starting material is substituted at the 5, 6, 7 or 8 position or all or any of such positions With a lower alkyl, e.g., methyl, ethyl. The disulfides are recovered in nearly quantitative yields by filtration and evaporation of the solvent.
EXAMPLE 4 Compounds produced as described in the preceding examples are formulated into cosmetic and detergent compositions by addition thereof to conventional detergent or cosmetic formulations. The most preferred antimicrobial compounds of this invention, in such applications, are the metal salts. The most preferred cosmetic is a hairdressing, while the best detergent formulation is a shampoo. Therefore, 1.0% of the sodium, manganese or zinc salt of Z-mercaptoquinoxaline-l-oxide is incorporated in shampoos comprising 15% potassium hexadecyl sulfate; 15% sodium coco-fatty acids monoglyceride sulfate; 5% coconut oil fatty acids diethanolamide; 3% lauric myristic monoethanolamide; 1% perfume; 1% lanolin esters; 0.2% sodium carboxymethyl cellulose; 1.5% free oil; 2% glycerine and the balance Water. When used to wash human hair, the bacterial count thereon is substantially decreased, when compared with a control not containing these bactericides. Also, fungal growth is inhibited. When the detergent solution is applied to hard surfaces, either with an additional builder added, such as 20% of sodium tripolyphosphate, in replacement of some of the water, or without builder, a similar effect is obtained. Such results are also obtainable by utilizing other shampoo formulations, based on nonionic or cationic detergents or other of the previously mentioned synthetic detergents instead of the mentioned combination of anionic detergents. A similar result is noted when the shampoo is based on soluble higher fatty acid soap. Usually, for shampoo applications, the milder of the mentioned detergents will be selected, so as to avoid unduly drying or embrittling the hair.
Hairdressings of various types are made, to which are added various proportions of antimicrobial compounds of this invention. Among these formulas are the following:
Percent Light mineral oil, white deodorized 45.0 Stearic acid 5.0
Cetyl alcohol 2.0 Triethanolamine 2.5
Perfume 0.7 Zinc salt of Z-mercaptoquinoxaline-l-oxide 2.0 Water 42.8
Percent Sodium carboxymethyl cellulose 1.0 Polyethylene glycol 600 laurate 10.0 Propylene glycol laurate 2.0 Ethanol 30.0
Perfume 1.0 Lanolin esters 2.0 Manganese salt of Z-mercaptoquinoxaline-l-oxide 0.7
Water 53.3
When human hair and the scalp are treated with the above compositions, using approximately three cubic centimeters per application, the presence of the Z-mercaptoquinoxaline-l-oxide salt counteracts microbial growth. By repeated daily usage over a period of weeks, diminished microbial counts are continually obtained. The compositions are especially useful with respect to diminishing the bacterial counts of Micrococcus pyogenes var. aureus. Also, they are useful with respect to diminishing other bacterial and fungal counts and in particular, the sodium salt of Z-mercaptoquinoxaline-l-oxide is especially effective against Pityrosporum ovale, even in the presence of sebum.
In place of the particular salts of Z-mercaptoquinoxaline-l-oxide of the above formulas, similar proportions or variations in proportions, within the ranges described in the specification, may be employed with respect to other salts, e.g., the copper, nickel, chromium, trimethylcetyl ammonium, ammonium, alkanolamine and other such salts, the acid form and the disulfide, with the obtaining of similar antimicrobial activities. It is noted that the bactericides are especially useful against Micrococcus pyogenes var. aureus, even in sebum, which is present in the normally oily environment of the scalp and hair. They are also effective in the lipophilic phases of hairdressings.
Similar results are obtained when the mentioned bactericides are used in similar proportions in other cosmetics, e.g., hair setting compositions, aerosol hair sprays, hair dyes, skin creams, talcum powders and foot powders.
The surface active agents used in the above preparations and in the present cosmetics, for their emulsifying, wetting or cleaning properties, may also include those mentioned in the previous specification as constituents of detergents and shampoos.
EXAMPLE In addition to in vivo activity of the present compounds in various cosmetic and detergent formulations, laboratory experiments prove the effectiveness of the various active ingredients against representative microbes. Thus, when tested by a standard in vitro test employed to determine effectiveness of antimicrobial compounds, significant activities obtain for Z-mercaptoquinoxaline-l-oxide, its disulfides and various metal salts thereof, including the sodium, manganese, zinc, and other metal salts, such as the copper, magnesium, calcium, lithium, potassium and nickel salts.
One test employed is known as the paper disc agar plate diffusion method. In this test, a one-quarter inch disc of filter paper is saturated with an aqueous solution of micro bicide and surface active agent, after which it is dried. The microbicide and the surface active agents are each present to the extent of 1% in the solution. The microbicide is a salt of Z-mercaptoquinoxaline-l-oxide and the detergent is either an ordinary sodium soap of mixed coconut oil and tallow fatty acids or is sodium lauryl sulfate. The agar plate is prepared by depositing a thin layer of agar-agar in a Petri dish. This is inocculated with the microorganism, in some cases with sebum or other possibly interfering lipophilic material also being present. The paper discs are placed on the agar-agar plate in replicates of four per sample and are incubated in a 35 C. oven. After 4 days, the microbial growth on the plate in areas unaffected by the germicide is significant. However, about the various discs containing the present germicides, zones of inhibition are noted, indicating the efiectiveness of the bactericides against the organism employed.
When tested against Micrococcus pyogenes var. aureus, that microorganism plus sebum, and Pityrosporum ovale, with or without sebum, it is found that the sodium salt of 2-mercapto quinoxaline-l-oxide is outstanding. Also, the zinc and maganese salts of Z-mercaptoquinoxaline-l-oxide exhibit activity against Micrococcus pyogelzes var. aureus, with the manganese salt being better than the zinc salt in this respect. Similar results against bacteria and fungi are also obtainable when other salts of Z-mercaptoquinoxalinel-oxide, such as the copper, nickel, potassium, lithium, chromium and ammonium salts are employed. Such results also obtain when the compound tested is 2-mercaptoquinoxaline-l-oxide or disulfide.
When a serial dilution test of antimicrobrial activity is used to evaluate various compounds of this invention it is found that the sodium, zinc, nickel and manganese salts of Z-mercaptoquinoxaline-l-oxide are most effective against S. aureus; the sodium, zinc and manganese salts are most effective against Str. mitis and B. subtilis; the S0- dium and Zinc salts are most effective against E. c011; the sodium and manganese salts are most effective against yeasts (P. ovale); and the sodium, nickel and manganese salts are best against molds (T. mentaphyres). By such tests, the disulfide is most effective against Str. mitis, B. subtilis and P. ovale, of the various microorganisms against which it is tested. Of course, while the above-mentioned results are reported for the most effective compounds of the invention, other such compounds also exhibit significant antimicrobial activities, as had been previously mentioned.
The invention has been described with respect to various illustrations and embodiments thereof. However, the invention is broader than the illustrations given and it will be evident to one of ordinary skill in the art that substitutes and equivalent may be employed, within the invention concept.
What is claimed is:
1. A compound selected from the group consisting of 2- mercaptoquinoxaline-l-oxides of the formula salts thereof of the formula M R N S- and disulfides thereof of the formula R R Q 1 I Q R S S R J, l
wherein R is hydrogen or an alkyl group of 1 to 12 carbon atoms, M is selected from the group consisting of alkali metals, alkaline earth metals, transition element metals, Group III-A metals, Group IV-A metals, Group V-A metals, ammonium and quaternary ammonium, wherein the substituents on the quaternary nitrogen are selected from the group consisting of alkyl groups of 1 to 18 canbon atoms, and arylalkyl groups of 7 to 24' carbon atoms, and n, representing the valence of M, is either 1, 2 or 3.
2. A compound according to claim 1 wherein R is either hydrogen or alkyl of 1 to 4 carbon atoms, and, if alkyl, no more than two alkyl groups are present per thioquinoxaline-l-oxide group and M represents alkali metal, alkaline earth metal or transition metal.
3. A compound according to claim 2 wherein all the Rs are hydrogen.
4. A compound according to claim 3, which is of the formula 5. A compound according to claim 3 which is the salt of an alkali metal or an alkaline earth metal.
6. A compound according to claim 3 of the formula (Il a is is 7. A compound according to claim 3 of the formula 8. A compound according to claim of the formula 9. A compound according to claim 3 of the formula /N\ l Mn 3 2 10. A method for the manufacture of a compound of the formula R )j R N SM wherein R is hydrogen or an alkyl group of 1 to 12 carbon atoms and M is a metal or radical in accordance with claim 1, which comprises reacting the corresponding Z-haloquinoxaline-l-oxide with a hydrosulfide. 1
11. A method according to claim 10 wherein the 2-haloquinoxaline-l-oxide is 2-ch1oroquinoxaline-1-oxide and the hydrosulfide is alkali metal hydrosu'lfide.
12. A method according to claim 11 wherein the hydrosuliide is sodium hydrosulfide and the reaction is effected in an aqueous medium to produce the sodium salt of 2- mercaptoquinoxaline-1-oxide.
13. A method according to claim 10 in which the 2- mercaptoquinoxaline-l-oxide salt produced is converted to the corresponding Z-mercaptoquinoxaline-l-oxide by reacting with an acid.
14. A method according to claim 12 wherein the sodium salt of 2-mercaptoquinoxaline-l-oxide produced is converted to Z-mercaptoquinoxaline-l-oxide by reaction with a strong aqueous solution of strong mineral acid.
15. A method according to claim 13 wherein the 2- mercaptoquinoxalinel-oxide produced is oxidized to the corresponding disulfide.
16. A method according to claim 15 wherein Z-mercaptoquinoxaline-l-oxide, made by the reaction recited in claim 14, is oxidized to 2-(1-oxoquinoxalinyl) disulfide by air while dissolved in a solvent at an elevated temperature.
17. A method according to claim 15 wherein Z-mercaptoquinoxaline-l-oxide, made by the reaction recited in claim 14, is oxidized to 2-(1-oxoquinoxa1inyl) disulfide by aqueous potassium triiodide.
18. A method according to claim 15 wherein Z-mercaptoquinoxaline-l-oxide, made by the reaction recited in claim 14, is oxidized to 2-(1-oxoquinoxalinyl) disulfide by aqueous hydrogen peroxide.
19. A method according to claim 15 wherein Z-mercaptoquinoxaline-l-oxide, made by the reaction recited in claim 14, is oxidized to 2-(1-oxoquinoxalinyl) disulfide by a dilute aqueous solution of a percarboxylic acid.
References Cited UNITED STATES PATENTS 3,223,706 12/1965 Sasse et al 260-250 R 3,091,613 5/1963 Sasse et al. 260250 R NICHOLAS S. RIZZO, Primary Examiner US. Cl. X.R.
US00880413A 1969-11-26 1969-11-26 2-mercaptoquinoxaline-1-oxides,salts thereof and 2-(1-oxoquinoxalinyl)disulfides Expired - Lifetime US3733323A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88041369A 1969-11-26 1969-11-26

Publications (1)

Publication Number Publication Date
US3733323A true US3733323A (en) 1973-05-15

Family

ID=25376227

Family Applications (1)

Application Number Title Priority Date Filing Date
US00880413A Expired - Lifetime US3733323A (en) 1969-11-26 1969-11-26 2-mercaptoquinoxaline-1-oxides,salts thereof and 2-(1-oxoquinoxalinyl)disulfides

Country Status (1)

Country Link
US (1) US3733323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB387790I5 (en) * 1973-08-13 1975-01-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB387790I5 (en) * 1973-08-13 1975-01-28
US3925380A (en) * 1973-08-13 1975-12-09 Du Pont Quinoxalinylthioallophanate fungicides

Similar Documents

Publication Publication Date Title
US4049665A (en) Unsymmetrical disulfides as antimicrobial agents
US4048181A (en) Derivatives of mercaptopyridine-1-oxide
JP5269776B2 (en) Antibacterial composition
US3824307A (en) Method of controlling bacteria,yeast and fungal species with phenylbismuth bis(2-pyridinethiol-1-oxide)
US3860645A (en) Bacteriostatic substituted carbanilides
US2846398A (en) Antiseptic detergent composition
US4732990A (en) Quaternized nitrogen containing compounds
US3971725A (en) 2-Mercaptoquinoxaline-1-oxides, salts thereof and 2-(1-oxoquinoxalinyl)disulfides in detergent compositions
KR20180056400A (en) Cosmetic composition including 2,3-butanediol
US4041033A (en) Novel derivatives of pyridazine-2-oxide
US3223704A (en) Quaternary ammonium sulfamates
US3733323A (en) 2-mercaptoquinoxaline-1-oxides,salts thereof and 2-(1-oxoquinoxalinyl)disulfides
ES2215872T3 (en) NEW DIAMONY-QUATERNARY COMPOUNDS.
US3966928A (en) Novel derivatives of pyridazine-2-oxide
US3961054A (en) Combatting dandruff with mercapto quinoline N-oxides
US3852443A (en) 2-mercaptoquinoxaline-1-oxides, salts thereof and-(1-oxoquinoxalinyl) disulfides for treating hair and skin
JP2007500683A (en) Use of substituted 2,4-bis (alkylamino) pyrimidines or -quinazolines as antibacterial agents
JP2005520829A (en) Benzyl alcohol derivative
US3917815A (en) Cosmetic compositions containing N-oxypyridyl derivatives
JP2003026675A (en) 4-amino-2-(2-pyridyl)pyrimidine as microbicidal active substance
US4211871A (en) Heavy metal derivatives of mercaptopyridine-1-oxide
US4834970A (en) Cosometic compositions containing quaternized nitrogen containing compound
US3749788A (en) Microbicidal and germicidal compositions containing n-halophenyldichloroisothiazolones
US3723435A (en) Metal complexes of mercapto quinoline n-oxides
US4837013A (en) Quaternized nitrogen containing compounds