US3730091A - Image transfer layers for infrared transfer - Google Patents
Image transfer layers for infrared transfer Download PDFInfo
- Publication number
- US3730091A US3730091A US00083397A US3730091DA US3730091A US 3730091 A US3730091 A US 3730091A US 00083397 A US00083397 A US 00083397A US 3730091D A US3730091D A US 3730091DA US 3730091 A US3730091 A US 3730091A
- Authority
- US
- United States
- Prior art keywords
- transfer material
- transfer
- particles
- layer
- wax
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 106
- 239000002245 particle Substances 0.000 claims abstract description 82
- 239000000203 mixture Substances 0.000 claims description 45
- 238000010276 construction Methods 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- 239000000395 magnesium oxide Substances 0.000 claims description 8
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000005672 electromagnetic field Effects 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 3
- 239000005751 Copper oxide Substances 0.000 claims description 3
- 229910000431 copper oxide Inorganic materials 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 46
- 230000008569 process Effects 0.000 abstract description 30
- 239000001993 wax Substances 0.000 description 55
- 239000000975 dye Substances 0.000 description 33
- 239000003921 oil Substances 0.000 description 30
- 235000019198 oils Nutrition 0.000 description 30
- 238000009472 formulation Methods 0.000 description 19
- 230000005855 radiation Effects 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 9
- 230000011514 reflex Effects 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 235000010919 Copernicia prunifera Nutrition 0.000 description 3
- 244000180278 Copernicia prunifera Species 0.000 description 3
- 239000004166 Lanolin Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 235000019388 lanolin Nutrition 0.000 description 3
- 229940039717 lanolin Drugs 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- WPPDXAHGCGPUPK-UHFFFAOYSA-N red 2 Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=2C=3C4=CC=C5C6=CC=C7C8=C(C=9C=CC=CC=9)C9=CC=CC=C9C(C=9C=CC=CC=9)=C8C8=CC=C(C6=C87)C(C=35)=CC=2)C4=C1C1=CC=CC=C1 WPPDXAHGCGPUPK-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000012178 vegetable wax Substances 0.000 description 2
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- 238000006222 Berchtold homologation reaction Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 239000004163 Spermaceti wax Substances 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 229940054021 anxiolytics diphenylmethane derivative Drugs 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012185 ceresin wax Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical class C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000019385 spermaceti wax Nutrition 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000001018 xanthene dye Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/392—Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/025—Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet
- B41M5/04—Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet using solvent-soluble dyestuffs on the master sheets, e.g. alcohol-soluble
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/38285—Contact thermal transfer or sublimation processes characterised by magnetic components in the transfer ink
Definitions
- thermo-transfer Appl' 83,397 duplicating processes is accomplished by means of dispersing a plurality of thermally conductive particles [52] U.S. Cl. ..10l/47l, 101/473, 1 17/356, in the dye-wax layer of transfer material used in such 250/65 T processes and applying an electrical or magnetic field [51] Int. Cl. B41!!! 5/02, G01" 21/34 to the transfer material layer sufficient to orient and Field of Search align the particles parallel to the direction of the field.
- the improved dye-wax layer of transfer material is capable of greater thermal conductivity in [56] References Cited the direction transverse to the layer than in the lateral UNITED STATES PATENTS direction of the layer.
- thermo-transfer processes used to make reproductions from image-com taining originals by methods which effect the transfer of images directly onto copy sheets or which alternatively provide master duplicating sheets usable in solvent duplicating processes. More specifically, however, this invention relates to means for improving image resolution in various thermo-transfer processes.
- thermo-transfer processes are used in making both facsimile copies, i.e. single copies prepared directly from and to the size of an image-containing original, and duplication master sheets for later use in solvent, duplicating processes.
- a complete description of such thermo-transfer processes, the materials used therein and compositions of the thermal transfer layers can be found in US. Pat. Nos. 3,122,997 and 3,122,998 the entire disclosures of which are hereby incorporated by reference.
- the thermo-transfer processes useful in preparing either facsimile copies or master sheets employ an original, carrying infrared radiation absorbing characters and designs, and a waxy dye-containing transfer material capable of responding to heat patterns generated on the original which correspond to the characters and designs imprinted thereon.
- infrared radiation absorbing characters carried on an original sheet are subjected to the controlled exposure of infrared radiation, a differential heat pattern is generated in the sheet so that the areas in the sheet corresponding to the infrared radiation absorbing characters are elevated to high temperatures relative to the rather lower temperatures achieved in the nonimaged areas of the sheet.
- an image-containing original sheet can be made to develop a dominant heat pattern corresponding identically to the distinctive-infrared radiation absorption pattern on the imaged original sheet.
- the next step in the thermotransfer process is to transfer the heat pat-tern produced from the original by conduction to a suitable transfer material coated on a suitable base. More specifically, transfer of the heat pattern is desirably accomplished by placing the original sheet in conductive relation with the transfer material during the interval in which the original sheet is exposed to infrared radiation. After exposure, the differential heat pattern generated on the original is conducted through any intervening layer to the transfer material.
- an electrical or magnetic field to the layer of transfer material while it is in the molten state for a time to align the particles contained therein into positions parallel to the field and transverse to the layer of transfer material. Dispersion and alignment of the particles render the layer of transfer material capable of greater thermal conductivity in the direction transverse to the layer than in the lateral direction of the layer, and as a result, cause images reproduced from the transfer material to have improved resolution and sharpness.
- Particles suitable for use in the improved dye-wax transfer material are those which can be aligned by the action of an electromagnetic field and include metals and metal oxides such as copper, silver, iron, nickel, cobalt, iron oxide, nickel oxide, copper oxide, manganese dioxide, and magnesium oxide.
- Magnetically active particles, such as iron are caused to align by the action of a magnetic field.
- Electrically conductive particles, such as silver are aligned by means of an electrical field.
- the preferred lateral particle frequency in the dye-wax layer of transfer material is about 10 to 20 particles per millimeter to accomplish effective image resolution through thermo-transfer process techniques.
- FIG. 2 is an elevational view of the construction shown in FIG. 1 with portions of the transfer material and the copy sheet broken away;
- FIGS. 5 and 6 are diagrammatic representations of another assemblage for use in thermo-transfer processes.
- the thermally anisotropic transfer material of this invention is prepared by mixing thermally conductive particles with the transfer material of wax and dye in a ball mill or the like, under controlled temperature conditions sufficient to melt the transfer material, melt coating the mixture of thermally conductive particles and molten transfer material on a substrate and then subjecting the coated material to a perpendicular, electrical or magnetic field, e.g. perpendicular to the direction of the layer of transfer material in order to align the uniformly dispersed particles in a transverse direction with regard to the layer of transfer material and in a direction parallel to the direction of the electrical or magnetic field.
- the electrical or magnetic field is applied fora time sufficient to permit the particle-containing layer of transfer material to cool and solidify.
- the thermally anisotropic transfer material of this invention comprises a plurality of thermally conductive particles 11 dispersed in a layer of transfer material 12. Particles 11 are uniformly spaced in transfer material 12 and are oriented perpendicular to the lateral direction of the layer.
- the dispersed particle-containing layer 12 is coated on a suitable base, the transfer sheet 14.
- a copy sheet or a duplicating master l5, usually referred to herein as a copy sheet, is placed next to the coating of transfer material 12.
- the spacing of particles 11 in transfer layer 12, e.g., lateral particle frequency is desirably equivalent to at least about 10 particles per millimeter to accomplish high resolution copying in the'rmo-transfer processes.
- the lateral particle frequency is about ID to 20 particles per millimeter.
- electrically insulating particles such as magnesium oxide
- magnesium oxide has other properties which are deemed to make it the presently preferred material for the anisotropic particles.
- Magnesium oxide particles are highly reflective, thereby lowering absorption of infrared radiation in the thermal transfer layer and com sequently avoiding temperature increase in the layer; the particles have good heat conductivity thereby speeding up imagewise conduction of the heat pattern in the direction of particle alignment through the transfer layer.
- plastic as used herein, describes a condition of the transfer material softening that permits adhesion or intermingling between the transfer material and adjacent contacting surfaces.
- isotropic is a condition of the transfer material softening that permits adhesion or intermingling between the transfer material and adjacent contacting surfaces.
- the transfer material used for making facsimile copy should be relatively hard" so that the copy prepared therewith will not be subject to smearing during the course of normal handling.
- the transfer material used in preparing lithographic masters should also be relatively hard” so as to withstand the impression pressures to which the master sheet is subjected during each of its duplication cycles.
- the transfer used in preparing solvent duplicating master sheets should desirably be applied to its paper base stock in relatively thick quantities to provide a master sheet capable of producing a multiplicity of copies, and the composition of the material must be such as to effect a sharp pull out of a well delineated plug of transfer material from the supply sheet which forms the image.
- the dyes used in the dye-wax transfer materials also depend upon the particular thermo-transfer process employed.
- the preferred dyes used in the spirit-type duplicating process are water-alcohol soluble type dyes selected from the group of xanthene dyes, such as triphenyl methane and diphenyl methane derivatives typified by crystal violet, methyl violet, rhodamine and nitrosene dyes.
- included in the group of dyes suitable for use, the preparation of facsimile copy and lithographic masters are the oil soluble dyes, such as Azo dyes, e.g., Azo Oil Blue B.
- thermo-transfer processes disclosed in the aforementioned US. Pat. Nos. 3,122,997 and 3,122,998 can be used in this invention to improve image resolution.
- the layer of the transfer composition must be of a definite, uniform thickness and present a very smooth surface in order to make complete, intimate contact with the surface to which transfer is to be effected.
- the formulations of the composition for both the spirit type duplicating master sheets for use with the shoot-through technique and the spirit type duplicating master sheets for use with the reflex technique areessentially the same, the main difference between these two types of master sheets being in thicknesses of the composition layers employed and the different types of support sheet employed.
- the dyes used in the formulations for the transfer compositions of the spirit duplicating type are alcohol soluble, non-infrared absorbing dyes, having specific oil absorption characteristics which permit these dyes to be dispersed and distributed homogeneously into an oil or wax base vehicle.
- This oil absorption characteristic is determined on the basis of the quantity of oil that can be uniformly absorbed by a given quantity and kind of dye.
- crystal violet dye a practical maximum oil absorption characteristic (Gardner-Holman method) is a milliliter of oil per five grams of. dye.
- the total weight of dye as to other constituents in the formulation may range between 20 and 65 percent, the upper limit being determined by the amount of oil used in the formulation and the oil absorption characteristics of the particle dye used.
- the preferred dyes for this invention do not absorb infrared radiation and have been found to include crystal violet, as previously mentioned, nigrosine and methyl violet.
- waxes selected from the group of natural waxes including paraffin wax, microcrystalline and ceresin wax, natural mined waxes including montan and ozokerite, and natural vegetable waxes including carnauba, candelilla, Japan wax, flax wax and sugar cane wax and oils including mineral oil,
- castor oil and lanolin can be combined under precise conditions and formulations to give a transfer material having the desired properties of plasticity permitting localized adherence or cementation with a contacting surface and permitting mechanical disruption of the layer of transfer material so that there can occur a release and transfer of a discrete plug of composition from its layer to its contacting master sheet by use in the infrared transfer process.
- this formulation it is not necessary, and actually it is not preferred, that the composition should attain a liquid state in effecting this unique kind of material transfer wherein a plug of the material is transferred from this supply sheet.
- Wax Microcrystalline wax 262
- Candellila 2 Major Oilz' Mineral Oil (Red 2 Oil) 10 Minor Oil 0
- the dye employed in the above formulation is crystal violet.
- the mixture in an actual formulation is as follows:
- Wax Carnauba 44 Major Oil: Mineral Oil (Red 2 Oil) Minor Oil: Castor Oil 12 Lanolin 4 wherein the mixture of dyes employed is 90 percent crystal violet and 10 percent methyl violet and the total dye content of the formulation is percent by weight.
- This dye-wax transfer material formulation attains a condition of plasticity at a temperature ofabout 143F.
- particles such as iron oxide, nickel, copper, silver, iron, nickel oxide, cobalt, magnesium oxide, or the like, are dispersed in the wax formulation simultaneous with the addition of dye. Sufficient particles are added to the wax to achieve an overall particle frequency of 10 to 20 particles per millimeter of transfer material length.
- all three components, wax, dye and particles are ball milled together at temperatures sufficient to render the transfer material molten. Thereafter, the mixture of components are passed through a plastic roll mill to further homogenize the mixture. This homogeneous mixture is then melt coated on a suitable substrate.
- a magnetic or electrical field sufficient to orient the dispersed particles is applied to the coating while it is still in the molten state and is maintained for a time sufficient to permit the coating to cool and solidify.
- the particles in the molten dye-wax layer will align parallel to the field and thereby be aligned perpendicular to the two lateral film directions.
- FIGS. 3 and 4 An assemblage used for producing direct reading images by a reflex technique is illustrated in FIGS. 3 and 4.
- Transfer sheet 14 is placed nearest to an infrared light source 13.
- the upper surface of transfer sheet carries a 0.5 mil thick layer of dye-wax transfer material 12 containing aligned particles 11 dispersed therein.
- a copy sheet 15 is placed in contiguous relationship with the layer of transfer material 12.
- original sheet a 16 carrying images 17 facing light source 13 is placed on top of copy sheet 15. When light source 13 is activated, the transfer image 17a is locally cemented onto the surface of the copy sheet 15 to form a direct reading image.
- this assemblage can be used to prepare a facsimile copy or an offset lithographic master sheet.
- FIGS. 5 and 6 Another assemblage is shown in FIGS. 5 and 6 in which the so-called reflex technique is used.
- radiation from an infrared source 13, placed below the assemblage is directed through the assemblage to the images 17 where it is absorbed to produce a heat pattern which is conducted through the transfer backing sheet 14 to the transfer layer 12.
- This assemblage can be used to produce a hectograph or spirit duplicating master.
- dispersed thermally'conductive particles 11 in the layer of transfer material is to improve the resolution of images transferred from original 15 to transfer sheet 14. Improved image resolution is believed to result from the fact that the dispersed particles in the layer of dye-wax transfer material render the dye-wax layer thermally anisotropic, e.g., higher thermal conductivity in transverse direction of layer than in lateral direction of layer; and thus allows high differentiation of the transferred image.
- thermally conductive and electromagnetic particles described herein are black in finely divided form. Since the particles are aligned in the transfer layer, the overall light transmission capability of the layer is relatively high. During the thermal imaging process, however, transfer material melts and flows. As a result, the particles tend to randomize or lose the anisotropic orientation during the thermal imaging process and the master image will appear to be very black due to a reduction of light transmission which may be as great as 50 to 100 times. Accordingly, when a single fax copy is made, the presence of dye in the transfer layer is not required.
- a wax layer for example, containing aligned, geometrically anisotropic black particles such as ferric oxide, can be thermally imaged to produce a copy directly on plain paper, in one step, employing either a shootthrough or reflex technique. If higher quality copies are desired, independent of variations in paper thickness, of original substrate light transmission characteristics and of copy paper substrate, a reverse reading reflex master can be made and then transferred to plain paper with the mere application of heat and/or pressure. This latter technique is capable of producing more than one copy if not all the material on the master is transferred at once.
- a layered construction comprising an original sheet having at least one surface containing radiationabsorbing-heat generating images and a transfer sheet in a direction transverse to said transfer sheet than in a direction lateral to said transfer sheet.
- said transfer material contains a plurality of uniformly dispersed thermally conductive particles responsive to applied electromagnetic fields selected from the group of metals and metal oxides consisting of copper, silver, iron, nickel, cobalt, iron oxide, copper oxide, manganese dioxide, nickel oxide, and magnesium oxide.
- thermo transfer transversely through said transfer material is selectively effected through portions thereof occupied by said plurality of thermally conductive particles.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
An improved image resolution in thermo-transfer duplicating processes is accomplished by means of dispersing a plurality of thermally conductive particles in the dye-wax layer of transfer material used in such processes and applying an electrical or magnetic field to the transfer material layer sufficient to orient and align the particles parallel to the direction of the field. In this way the improved dye-wax layer of transfer material is capable of greater thermal conductivity in the direction transverse to the layer than in the lateral direction of the layer.
Description
Elmted tates atn 1 1 1 1 9 9 Gaynor 1 1 May 1, 1973 IMAGE TRANSFER LAYERS FOR 3,217,641 ll/1965 4 Goffredo... ..101/401.1 x INFRARED TRANSFER 3,435,222 3/1969 Hotine ..250/65 R [75] Inventor: Joseph Gaynor, Arcad1a, Cahf. Primary Examiner clyde I coughenour [73] Assignee: Bell & Howell Company, Chicago, AIl0meyJack Hall [57] ABSTRACT [22] Filed: Oct. 23, 1970 An improved image resolution in thermo-transfer [21] Appl' 83,397 duplicating processes is accomplished by means of dispersing a plurality of thermally conductive particles [52] U.S. Cl. ..10l/47l, 101/473, 1 17/356, in the dye-wax layer of transfer material used in such 250/65 T processes and applying an electrical or magnetic field [51] Int. Cl. B41!!! 5/02, G01" 21/34 to the transfer material layer sufficient to orient and Field of Search align the particles parallel to the direction of the field. 117/356; 250/65 T In this way the improved dye-wax layer of transfer material is capable of greater thermal conductivity in [56] References Cited the direction transverse to the layer than in the lateral UNITED STATES PATENTS direction of the layer.
3,l22,998 3/1964 Raczynski ..101/471 11 Claims, 6 Drawing Figures 2,764,693 9/1956. Jacobs et al. ...250/65 R 250/65 R 2,866,903 12/1958 Berchtold Patenfied May 1, 1973 3,7301%? o o 0 o o o o n 0 90000 00 15 17/oo0 lOo0oo J5 12 17a (17a l l UL ,1 I
bug-6 17 17 1 F L 14 ----------l2 1 10677151".- Joseph Gaynor.
IMAGE TRANSFER LAYERS FOR INFRARED TRANSFER BACKGROUND OF THE INVENTION This invention relates to the thermo-transfer processes used to make reproductions from image-com taining originals by methods which effect the transfer of images directly onto copy sheets or which alternatively provide master duplicating sheets usable in solvent duplicating processes. More specifically, however, this invention relates to means for improving image resolution in various thermo-transfer processes.
In general, thermo-transfer processes are used in making both facsimile copies, i.e. single copies prepared directly from and to the size of an image-containing original, and duplication master sheets for later use in solvent, duplicating processes. A complete description of such thermo-transfer processes, the materials used therein and compositions of the thermal transfer layers can be found in US. Pat. Nos. 3,122,997 and 3,122,998 the entire disclosures of which are hereby incorporated by reference. In general, however, the thermo-transfer processes useful in preparing either facsimile copies or master sheets employ an original, carrying infrared radiation absorbing characters and designs, and a waxy dye-containing transfer material capable of responding to heat patterns generated on the original which correspond to the characters and designs imprinted thereon.
When infrared radiation absorbing characters carried on an original sheet are subjected to the controlled exposure of infrared radiation, a differential heat pattern is generated in the sheet so that the areas in the sheet corresponding to the infrared radiation absorbing characters are elevated to high temperatures relative to the rather lower temperatures achieved in the nonimaged areas of the sheet. Thus, by means of controlled exposure, an image-containing original sheet can be made to develop a dominant heat pattern corresponding identically to the distinctive-infrared radiation absorption pattern on the imaged original sheet.
After generation of a differential heat pattern on the imaged original sheet, the next step in the thermotransfer process is to transfer the heat pat-tern produced from the original by conduction to a suitable transfer material coated on a suitable base. More specifically, transfer of the heat pattern is desirably accomplished by placing the original sheet in conductive relation with the transfer material during the interval in which the original sheet is exposed to infrared radiation. After exposure, the differential heat pattern generated on the original is conducted through any intervening layer to the transfer material.
When direct copies of the original are desired, a copy sheet is intimately contacted with the transfer material. Then a heat pattern is generated on the original sheet and transferred to the waxy transfer material so that selective portions of the transfer material bond to the copy sheet. Production of the copy is thereafter accomplished by separating the non-adhered transfer material on the copy sheet thereby effecting an exact duplication on the copy sheet of the imaged characters or designs carried by the original.
It has been observed that lateral thermal diffusion in the waxy transfer layer degrades image resolution. One reason for this observed resolution degradation is the isotropic character of the dye and wax-containing transfer processes. in short, the dye-wax materials are equally thermally conductive in all directions. Thus, a differential heat pattern generated on the original and transferred to the dye-wax material has a tendency to spread laterally so as to cause blurred images on the final copy or master sheets.
SUMMARY OF THE lNVENTlON As a result of the poor image resolution sometimes observed in thermo-transfer processes and particularly in spirit duplicating processes,. it has now been discovered that the image resolution problem can be obviated by using a thermally anisotropic dye-wax material capable of high thermal conductivity in a transverse direction and low thermal conductivity in a lateral direction. According to this invention, an anisotropic dye-wax transfer material useful in various thermo-transfer processes can be prepared by dispersing a plurality of thermally conductive particles in a layer of dye-wax transfer material and applying an electromagnetic field, i.e. an electrical or magnetic field, to the layer of transfer material while it is in the molten state for a time to align the particles contained therein into positions parallel to the field and transverse to the layer of transfer material. Dispersion and alignment of the particles render the layer of transfer material capable of greater thermal conductivity in the direction transverse to the layer than in the lateral direction of the layer, and as a result, cause images reproduced from the transfer material to have improved resolution and sharpness.
Particles suitable for use in the improved dye-wax transfer material are those which can be aligned by the action of an electromagnetic field and include metals and metal oxides such as copper, silver, iron, nickel, cobalt, iron oxide, nickel oxide, copper oxide, manganese dioxide, and magnesium oxide. Magnetically active particles, such as iron, are caused to align by the action of a magnetic field. Electrically conductive particles, such as silver, however, are aligned by means of an electrical field. In addition, the preferred lateral particle frequency in the dye-wax layer of transfer material is about 10 to 20 particles per millimeter to accomplish effective image resolution through thermo-transfer process techniques.
Among the advantages resulting from the dispersion and orientation of thermally conductive particles in a layer of dye-wax transfer material is improve image resolution for copies made by various thermo-transfer processes employing the improved dye-wax transfer layer. in addition, this improved image resolution is accomplished without the necessity of major process changes and is particularly applicable'to known liquid duplicating techniques.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be more readily understood by reference to the following drawings in which:
FIG. 1 is a cross-sectional end view of one form of the invention showing a layer of dye-wax transfer material containing uniformly dispersed particles wherein the transfer material coated on a transfer sheet is positioned adjacent to a copy sheet;
FIG. 2 is an elevational view of the construction shown in FIG. 1 with portions of the transfer material and the copy sheet broken away;
FIGS. 3 and 4 are diagrammatic representations of one assemblage useful in the practice of thermotransfer processes; and
FIGS. 5 and 6 are diagrammatic representations of another assemblage for use in thermo-transfer processes.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, the thermally anisotropic transfer material of this invention is prepared by mixing thermally conductive particles with the transfer material of wax and dye in a ball mill or the like, under controlled temperature conditions sufficient to melt the transfer material, melt coating the mixture of thermally conductive particles and molten transfer material on a substrate and then subjecting the coated material to a perpendicular, electrical or magnetic field, e.g. perpendicular to the direction of the layer of transfer material in order to align the uniformly dispersed particles in a transverse direction with regard to the layer of transfer material and in a direction parallel to the direction of the electrical or magnetic field. The electrical or magnetic field is applied fora time sufficient to permit the particle-containing layer of transfer material to cool and solidify.
In addition to rendering the transfer material anisotropic, alignment of the particles by reducing the cross-section presented to incident radiation, reduces infrared absorption by the particles themselves, thereby reducing interference with thermal image formation. For example, when particles are not aligned, infrared radiation is absorbed by the particles and the dye-wax transfer layer may be heated to its melting point before the image on the original is heated. Contrariwise, if the particles are aligned, the transfer material becomes virtually transparent to radiation incident nearly perpendicular to said transfer layer thereby reducing heating effects in the dye-wax layer due to infrared absorption by the particles.
As shown in FIGS. 1 and 2, the thermally anisotropic transfer material of this invention comprises a plurality of thermally conductive particles 11 dispersed in a layer of transfer material 12. Particles 11 are uniformly spaced in transfer material 12 and are oriented perpendicular to the lateral direction of the layer. The dispersed particle-containing layer 12 is coated on a suitable base, the transfer sheet 14. A copy sheet or a duplicating master l5, usually referred to herein as a copy sheet, is placed next to the coating of transfer material 12.
In the thermo-transfer process, the particle-containing layer of transfer material 12 is exposed to a thermal flux produced by preferential absorption of infrared radiation by the black portions of an image-bearing original, e.g. sheet 16 of FIGS. 3-6 described in detail below. During application of the thermal flux, the thermally conductive particles 11 are preferentially heated because of their small diameters and high thermal conductivity. Particles 11 can rapidly attain an elevated temperature because their heat capacity is relatively low and they are surrounded by thermally insulating transfer material 12. Consequently, the entire thickness of the layer of transfer material immediately adjacent to these particles melts quickly so as to transfer images from transfer sheet 14 onto copy sheet 15. Since the aligned particles 1 l are spaced and uniformly dispersed throughout layer 12, the thermally transferred image can be readily differentiated and the degradation through lateral spread of the transferred image can be largely prevented.
Although various shapes and sizes of particles can be used in the practice of this invention, long, cylindricalshaped or needle-shaped particles are found to be particularly suitable in rendering the transfer layer 12 thermally anisotropic, e.g., higher thermal conductivity in a transverse direction than in a lateral direction. It should be understood that the thermally conductive particles should desirably be anisotropic geometrically. Preferably, the ratio of the length of particles 11 to their diameter will be at least 2:1 For example, particle lengths should be less than 0.5 mils and preferably between 0.40 and 0.45 mils, if the layer thickness is 0.5 mils, which is normal for commercial transfer materials. Smaller particles can be used in the practice of this invention, however, since the application of electrical or magnetic fields cause smaller particles to move together into a continuous chain. In addition, the spacing of particles 11 in transfer layer 12, e.g., lateral particle frequency, is desirably equivalent to at least about 10 particles per millimeter to accomplish high resolution copying in the'rmo-transfer processes. Preferably, however, the lateral particle frequency is about ID to 20 particles per millimeter.
The preferred transfer material useful in this invention is a combination dye and wax material. This dyewax transfer material is desirably a kind which is stable at normal handling temperatures to about 1 10 End at atmospheric pressures, but is capable of being rendered plastic at temperatures above about l 10 F. at atmospheric pressures. Although any thermally conductive material can be used for particles 11', metals and metal oxides, such as copper, iron, silver, nickel, cobalt, iron oxide, and magnesium oxide are preferred in the practice of this invention. When magnetic particles, such as iron, are used, alignment is accomplished by means of a magnetic field. In contrast, when electrically conductive particles, such as silver or copper, are used, an electrical field is employed to align the particles.
It should be understood, however, that electrically insulating particles, such as magnesium oxide, can also be used in the practice of this invention. in fact, magnesium oxide has other properties which are deemed to make it the presently preferred material for the anisotropic particles. Magnesium oxide particles are highly reflective, thereby lowering absorption of infrared radiation in the thermal transfer layer and com sequently avoiding temperature increase in the layer; the particles have good heat conductivity thereby speeding up imagewise conduction of the heat pattern in the direction of particle alignment through the transfer layer.
The term plastic, as used herein, describes a condition of the transfer material softening that permits adhesion or intermingling between the transfer material and adjacent contacting surfaces. The term isotropic,
as used herein, refers to the characteristic of a material, e.g., transfer layer 12, to exhibit the same value of a physical property, e.g., thermal conductivity, on axes in all directions. The term anisotropic, in contrast, refers to the characteristic of a material, e.g., transfer layer 12,, to exhibit different values of a physical property, e.g., thermal conductivity, on axes in different directions.
In addition to being rendered plastic at temperatures above about 110F, it is desirable that the transfer material used for making facsimile copy should be relatively hard" so that the copy prepared therewith will not be subject to smearing during the course of normal handling. The transfer material used in preparing lithographic masters should also be relatively hard" so as to withstand the impression pressures to which the master sheet is subjected during each of its duplication cycles. Moreover, the transfer used in preparing solvent duplicating master sheets should desirably be applied to its paper base stock in relatively thick quantities to provide a master sheet capable of producing a multiplicity of copies, and the composition of the material must be such as to effect a sharp pull out of a well delineated plug of transfer material from the supply sheet which forms the image. These and other parameters for the dye-wax layer of transfer material used in this invention are set forth in the aforementioned US. Pat. Nos. 3,122,997 and 3,122,998.
The composition of the dye-wax transfer material used in the practice of this invention, of course, varies according to the specific thermo-transfer process for 1 which it is used. Typically, a formulation of wax, dye and oil is used as the dye-wax transfer material. Waxes suitable for use include naturally occurring waxes selected from the group consisting of petroleum based wax, such as paraffin wax, vegetable wax, such as Carnauba, animal wax, such as spermaceti wax, insect wax, such as beeswax, and mined wax, such as montan wax. In addition, various synthetic waxes, such as carbwax,
tion.
As in the case of waxes, the dyes used in the dye-wax transfer materials also depend upon the particular thermo-transfer process employed. The preferred dyes used in the spirit-type duplicating process are water-alcohol soluble type dyes selected from the group of xanthene dyes, such as triphenyl methane and diphenyl methane derivatives typified by crystal violet, methyl violet, rhodamine and nitrosene dyes. included in the group of dyes suitable for use, the preparation of facsimile copy and lithographic masters are the oil soluble dyes, such as Azo dyes, e.g., Azo Oil Blue B.
The various oils used in the dye-wax transfer material compositions serve as a plasticizer for the compositions and are absorbed by the dyes. The oils that have been found to give the proper absorbency and plasticity characteristics are selected from the group of mineral oils, such as saturated mineral oils, for example, Red 2 oil, from the group of unsaturated vegetable oils, such as castor oils and from the group of animal oils, such as lanolin. In the exemplary formulations in which the group of mineral oils are in major proportion and the groups of unsaturated vegetable oils and animal oils are in minor proportion are best suited to the purpose of this invention and for that reason the groups are can be used in the dye-wax transfer material formula- 1 referred to as Major Oils and Minor Oils," respectively.
The specific formulations and coating condition of a particular mixture depend upon its usage, and at present there are considered four basic types of master sheets as follows:
1. For solvent type duplication by the shoot-through technique;
2. For solvent type duplication by the reflex technique;
3. For lithographic master sheet preparation by both shoot-through and reflex techniques; and
4. For thepreparation of facsimile copies by both shoot-through and reflex techniques.
These and other types of thermo-transfer processes disclosed in the aforementioned US. Pat. Nos. 3,122,997 and 3,122,998 can be used in this invention to improve image resolution.
Considering first the master sheets employed for solvent type duplication by shoot-through technique and the master sheets for the solvent type duplication using the reflex technique, in each case the layer of the transfer composition must be of a definite, uniform thickness and present a very smooth surface in order to make complete, intimate contact with the surface to which transfer is to be effected. The formulations of the composition for both the spirit type duplicating master sheets for use with the shoot-through technique and the spirit type duplicating master sheets for use with the reflex technique areessentially the same, the main difference between these two types of master sheets being in thicknesses of the composition layers employed and the different types of support sheet employed.
The dyes used in the formulations for the transfer compositions of the spirit duplicating type are alcohol soluble, non-infrared absorbing dyes, having specific oil absorption characteristics which permit these dyes to be dispersed and distributed homogeneously into an oil or wax base vehicle. This oil absorption characteristic is determined on the basis of the quantity of oil that can be uniformly absorbed by a given quantity and kind of dye. For crystal violet dye, a practical maximum oil absorption characteristic (Gardner-Holman method) is a milliliter of oil per five grams of. dye. in this circumstance, it means that five grams or less of crystal violet dye can be evenly dispersed and distributed in a milliliter of oil but that if a greater quantity of dye is inserted in a milliliter of oil, the dispersement and distribution of that dye would not be uniform. It has been found, as disclosed hereinafter, that in the formulations of transfer material for solvent type duplication usage, the total weight of dye as to other constituents in the formulation may range between 20 and 65 percent, the upper limit being determined by the amount of oil used in the formulation and the oil absorption characteristics of the particle dye used. The preferred dyes for this invention do not absorb infrared radiation and have been found to include crystal violet, as previously mentioned, nigrosine and methyl violet.
It has been found that these dyes with waxes selected from the group of natural waxes including paraffin wax, microcrystalline and ceresin wax, natural mined waxes including montan and ozokerite, and natural vegetable waxes including carnauba, candelilla, Japan wax, flax wax and sugar cane wax and oils including mineral oil,
castor oil and lanolin, can be combined under precise conditions and formulations to give a transfer material having the desired properties of plasticity permitting localized adherence or cementation with a contacting surface and permitting mechanical disruption of the layer of transfer material so that there can occur a release and transfer of a discrete plug of composition from its layer to its contacting master sheet by use in the infrared transfer process. In this formulation, it is not necessary, and actually it is not preferred, that the composition should attain a liquid state in effecting this unique kind of material transfer wherein a plug of the material is transferred from this supply sheet. While it is not completely understood, it can be shown that the specific wax blends play a most significant part in effecting the characteristic of localized cementation which must necessarily occur before there can be any mechanical disruption and which is critical to achieving a discrete and exact transfer of the transfer material from the supply sheet to the master sheet.
A more specific disclosure of various acceptable dyewax transfer material formulations is contained in US. Pat. Nos. 3,122,997 and 3,122,998. By way of example, however, a range of acceptable mixtures of wax to major to minor oil for spirit type duplicating formulations where dye content is percent by weight is illustrated below:
Percent (Wt.) Wax 80:15 Major Oil 20:15 Minor Oil 0115 An actual formulation mixture is:
Percent (Wt.) Wax: Microcrystalline wax 262) 88 Candellila 2 Major Oilz' Mineral Oil (Red 2 Oil) 10 Minor Oil 0 The dye employed in the above formulation is crystal violet.
Another illustration of the dye-wax transfer material formulations useful in the practice of this invention is given below:
Percent (Wt.) Wax 50i15 Major Oil :15 Minor Oil 20:15
The mixture in an actual formulation is as follows:
Percent (Wt.) Wax: Carnauba 44 Major Oil: Mineral Oil (Red 2 Oil) Minor Oil: Castor Oil 12 Lanolin 4 wherein the mixture of dyes employed is 90 percent crystal violet and 10 percent methyl violet and the total dye content of the formulation is percent by weight. This dye-wax transfer material formulation attains a condition of plasticity at a temperature ofabout 143F.
In order to disperse the thermally conductive particles in the above dye-wax transfer material, particles, such as iron oxide, nickel, copper, silver, iron, nickel oxide, cobalt, magnesium oxide, or the like, are dispersed in the wax formulation simultaneous with the addition of dye. Sufficient particles are added to the wax to achieve an overall particle frequency of 10 to 20 particles per millimeter of transfer material length. Next, all three components, wax, dye and particles, are ball milled together at temperatures sufficient to render the transfer material molten. Thereafter, the mixture of components are passed through a plastic roll mill to further homogenize the mixture. This homogeneous mixture is then melt coated on a suitable substrate. Immediately thereafter, a magnetic or electrical field sufficient to orient the dispersed particles is applied to the coating while it is still in the molten state and is maintained for a time sufficient to permit the coating to cool and solidify. The particles in the molten dye-wax layer will align parallel to the field and thereby be aligned perpendicular to the two lateral film directions.
An assemblage used for producing direct reading images by a reflex technique is illustrated in FIGS. 3 and 4. Transfer sheet 14 is placed nearest to an infrared light source 13. The upper surface of transfer sheet carries a 0.5 mil thick layer of dye-wax transfer material 12 containing aligned particles 11 dispersed therein. A copy sheet 15 is placed in contiguous relationship with the layer of transfer material 12. Finally, original sheet a 16 carrying images 17 facing light source 13 is placed on top of copy sheet 15. When light source 13 is activated, the transfer image 17a is locally cemented onto the surface of the copy sheet 15 to form a direct reading image.
Through the use of appropriate transfer sheets 14 and copy sheet 15, this assemblage can be used to prepare a facsimile copy or an offset lithographic master sheet.
Another assemblage is shown in FIGS. 5 and 6 in which the so-called reflex technique is used. A reverse-reading image 17a can be obtained by reversing the copy sheet 15 and the transfer sheet 14 of the FIG. 4 assemblage so that the transfer sheet 14 is adjacent to the images 17 on the original sheet 16 with transfer layer 12 still facing the copy=sheet 15. In the same manner as in FIG. 4, radiation from an infrared source 13, placed below the assemblage, is directed through the assemblage to the images 17 where it is absorbed to produce a heat pattern which is conducted through the transfer backing sheet 14 to the transfer layer 12. This assemblage can be used to produce a hectograph or spirit duplicating master.
The use of dispersed thermally'conductive particles 11 in the layer of transfer material, of course, is to improve the resolution of images transferred from original 15 to transfer sheet 14. Improved image resolution is believed to result from the fact that the dispersed particles in the layer of dye-wax transfer material render the dye-wax layer thermally anisotropic, e.g., higher thermal conductivity in transverse direction of layer than in lateral direction of layer; and thus allows high differentiation of the transferred image.
It should be recognized that many of the thermally conductive and electromagnetic particles described herein are black in finely divided form. Since the particles are aligned in the transfer layer, the overall light transmission capability of the layer is relatively high. During the thermal imaging process, however, transfer material melts and flows. As a result, the particles tend to randomize or lose the anisotropic orientation during the thermal imaging process and the master image will appear to be very black due to a reduction of light transmission which may be as great as 50 to 100 times. Accordingly, when a single fax copy is made, the presence of dye in the transfer layer is not required. A wax layer, for example, containing aligned, geometrically anisotropic black particles such as ferric oxide, can be thermally imaged to produce a copy directly on plain paper, in one step, employing either a shootthrough or reflex technique. If higher quality copies are desired, independent of variations in paper thickness, of original substrate light transmission characteristics and of copy paper substrate, a reverse reading reflex master can be made and then transferred to plain paper with the mere application of heat and/or pressure. This latter technique is capable of producing more than one copy if not all the material on the master is transferred at once.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
l. A layered construction comprising an original sheet having at least one surface containing radiationabsorbing-heat generating images and a transfer sheet in a direction transverse to said transfer sheet than in a direction lateral to said transfer sheet.
2. The layered construction of claim 1 wherein said transfer material contains a plurality of uniformly dispersed thermally conductive particles responsive to applied electromagnetic fields selected from the group of metals and metal oxides consisting of copper, silver, iron, nickel, cobalt, iron oxide, copper oxide, manganese dioxide, nickel oxide, and magnesium oxide.
3. The layered construction of claim l wherein said transfer material is a composition comprising dye, wax and oil.
4. The layered construction of claim 3 wherein the lateral particle frequence of said particles contained in said transfer material is at least about 10 particles per millimeter.
5. The layered composition of claim 1 wherein the length of said particles is less than the thickness of said layer of transfer material.
6. The layered composition of claim 5 wherein the thickness of said layer of transfer material is about 0.5 mils.
7. The layered construction of claim 1 wherein said transfer material has greater optical transparency in said transverse direction than in said lateral direction.
8. The layered construction of claim 1 wherein said particles have a substantially greater thermal conductivity than the remainder of said transfer material and are aligned transversely with respect to said layer of transfer material.
9. The layered construction in accordance with claim 8 wherein said transfer material is thermally responsive in a transverse direction and substantially unresponsive thermally in a lateral direction.
10. The layered construction in accordance with claim 8 wherein thermal transfer through said transfer material is effected substantially entirely in a transverse direction therethrough.
11. The layered construction in accordance with claim 8 wherein thermal transfer transversely through said transfer material is selectively effected through portions thereof occupied by said plurality of thermally conductive particles.
Claims (10)
- 2. The layered construction of claim 1 wherein said transfer material contains a plurality of uniformly dispersed thermally conductive particles responsive to applied electromagnetic fields selected from the group of metals and metal oxides consisting of copper, silver, iron, nickel, cobalt, iron oxide, copper oxide, manganese dioxide, nickel oxide, and magnesium oxide.
- 3. The layered construction of claim 1 wherein said transfer material is a composition comprising dye, wax and oil.
- 4. The layered construction of claim 3 wherein the lateral particle frequence of said particles contained in said transfer material is at least about 10 particles per millimeter.
- 5. The layered composition of claim 1 wherein the length of said particles is less than the thickness of said layer of transfer material.
- 6. The layered composition of claim 5 wherein the thickness of said layer of transfer material is about 0.5 mils.
- 7. The layered construction of claim 1 wherein said transfer material has greater optical transparency in said transverse direction than in said lateral direction.
- 8. The layered construction of claim 1 wherein said particles have a substantially greater thermal conductivity than the remainder of said transfer material and are aligned transversely with respect to said layer of transfer material.
- 9. The layered construction in accordance with claim 8 wherein said transfer material is thermally responsive in a transverse direction and substantially unresponsive thermally in a lateral direction.
- 10. The layered construction in accordance with claim 8 wherein thermal transfer through said transfer material is effected substantially entirely in a transverse direction therethrough.
- 11. The layered construction in accordance with claim 8 wherein thermal transfer transversely through said transfer material is selectively effected through portions thereof occupied by said plurality of thermally conductive particles.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US8339770A | 1970-10-23 | 1970-10-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3730091A true US3730091A (en) | 1973-05-01 |
Family
ID=22178031
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00083397A Expired - Lifetime US3730091A (en) | 1970-10-23 | 1970-10-23 | Image transfer layers for infrared transfer |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3730091A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3962526A (en) * | 1974-07-23 | 1976-06-08 | The Mazer Corporation | Tissueless pre-printed spirit duplicating masters |
| US4005237A (en) * | 1974-07-23 | 1977-01-25 | The Mazer Corporation | Non-bleed pre-printed spirit duplicating masters |
| US4049843A (en) * | 1973-02-07 | 1977-09-20 | Bell & Howell Company | Image transfer layers for infrared transfer processes |
| US20140144604A1 (en) * | 2011-07-27 | 2014-05-29 | Sharp Kabushiki Kaisha | Heat storage member |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2764693A (en) * | 1951-05-25 | 1956-09-25 | Gen Electric | Process and apparatus for image production and recordation |
| US2866903A (en) * | 1954-11-02 | 1958-12-30 | Berchtold Jean | Process for photoelectric reproductions and apparatus therefor |
| US3122998A (en) * | 1960-06-02 | 1964-03-03 | Infrared transfer process | |
| US3217641A (en) * | 1963-04-24 | 1965-11-16 | Goffredo Daniel Louis | Plastic printing plate method and product |
| US3435222A (en) * | 1966-03-25 | 1969-03-25 | Gen Dynamics Corp | Infrared sensitive photoconductive matrix |
-
1970
- 1970-10-23 US US00083397A patent/US3730091A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2764693A (en) * | 1951-05-25 | 1956-09-25 | Gen Electric | Process and apparatus for image production and recordation |
| US2866903A (en) * | 1954-11-02 | 1958-12-30 | Berchtold Jean | Process for photoelectric reproductions and apparatus therefor |
| US3122998A (en) * | 1960-06-02 | 1964-03-03 | Infrared transfer process | |
| US3217641A (en) * | 1963-04-24 | 1965-11-16 | Goffredo Daniel Louis | Plastic printing plate method and product |
| US3435222A (en) * | 1966-03-25 | 1969-03-25 | Gen Dynamics Corp | Infrared sensitive photoconductive matrix |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4049843A (en) * | 1973-02-07 | 1977-09-20 | Bell & Howell Company | Image transfer layers for infrared transfer processes |
| US3962526A (en) * | 1974-07-23 | 1976-06-08 | The Mazer Corporation | Tissueless pre-printed spirit duplicating masters |
| US4005237A (en) * | 1974-07-23 | 1977-01-25 | The Mazer Corporation | Non-bleed pre-printed spirit duplicating masters |
| US20140144604A1 (en) * | 2011-07-27 | 2014-05-29 | Sharp Kabushiki Kaisha | Heat storage member |
| US9482473B2 (en) * | 2011-07-27 | 2016-11-01 | Sharp Kabushiki Kaisha | Gelatinous latent heat storage member with benard cell regions |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3122998A (en) | Infrared transfer process | |
| US4617224A (en) | Thermal transfer recording medium | |
| JPS58219086A (en) | Heat-sensitive transfer recording medium | |
| US3730091A (en) | Image transfer layers for infrared transfer | |
| JPS63227378A (en) | Thermal transfer material | |
| US4049843A (en) | Image transfer layers for infrared transfer processes | |
| US4510206A (en) | Thermal ink transfer recording | |
| US3970002A (en) | Image transfer layers for infrared transfer processes | |
| US3852091A (en) | Thermographic transfer sheets | |
| US4756950A (en) | Gradation recording heat-transfer sheet | |
| JPH0665516B2 (en) | Thermal transfer recording medium and thermal transfer recording method | |
| US5118211A (en) | Thermocolor ribbon | |
| JPS60234888A (en) | Thermal transfer recording medium | |
| US3703143A (en) | Thermal transfer sheet and method of thermally transferring images | |
| US3479953A (en) | Method of producing and regenerating regenerable printing forms | |
| JPS60253587A (en) | Thermal transfer recording medium | |
| JPS6172588A (en) | Thermal transfer recording medium | |
| JPS5871196A (en) | Heat-transfer recording medium | |
| US3216350A (en) | Duplicating process and products | |
| JPS6399987A (en) | Thermal transfer material | |
| JPS6172587A (en) | Thermal transfer recording medium | |
| US4818605A (en) | Thermosensitive image transfer recording medium | |
| JPS60189489A (en) | Thermal transfer material | |
| US3248236A (en) | Thermo-wax transfer sheets | |
| JPS62124982A (en) | thermal transfer media |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:BHW MERGER CORP.;REEL/FRAME:005001/0520 Effective date: 19880516 |