US3770418A - Method of melting iron with lumps of carbon coke - Google Patents
Method of melting iron with lumps of carbon coke Download PDFInfo
- Publication number
- US3770418A US3770418A US00145861A US3770418DA US3770418A US 3770418 A US3770418 A US 3770418A US 00145861 A US00145861 A US 00145861A US 3770418D A US3770418D A US 3770418DA US 3770418 A US3770418 A US 3770418A
- Authority
- US
- United States
- Prior art keywords
- lumps
- percent
- coke
- bed
- cupola
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000571 coke Substances 0.000 title claims abstract description 113
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 81
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 72
- 238000002844 melting Methods 0.000 title claims abstract description 49
- 230000008018 melting Effects 0.000 title claims abstract description 49
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims description 51
- 239000000446 fuel Substances 0.000 claims abstract description 51
- 239000002245 particle Substances 0.000 claims abstract description 40
- 230000001590 oxidative effect Effects 0.000 claims abstract description 11
- 230000006872 improvement Effects 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 239000002893 slag Substances 0.000 claims description 8
- 230000003009 desulfurizing effect Effects 0.000 claims description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 238000011068 loading method Methods 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 238000004227 thermal cracking Methods 0.000 claims description 4
- 235000019738 Limestone Nutrition 0.000 claims description 3
- 239000006028 limestone Substances 0.000 claims description 3
- 238000011017 operating method Methods 0.000 claims description 3
- 238000010079 rubber tapping Methods 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 235000017550 sodium carbonate Nutrition 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 22
- 239000011230 binding agent Substances 0.000 abstract description 16
- 239000011233 carbonaceous binding agent Substances 0.000 abstract description 7
- 239000003039 volatile agent Substances 0.000 abstract description 4
- 239000000047 product Substances 0.000 description 54
- 239000002184 metal Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 30
- 239000000203 mixture Substances 0.000 description 21
- 238000002156 mixing Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 238000010304 firing Methods 0.000 description 10
- 239000002006 petroleum coke Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 239000012467 final product Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910001060 Gray iron Inorganic materials 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229910000805 Pig iron Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 238000004939 coking Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 239000011280 coal tar Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011269 tar Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001296 Malleable iron Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- -1 petroleum coke Chemical compound 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/08—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0066—Preliminary conditioning of the solid carbonaceous reductant
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
Definitions
- ABSTRACT Metallurgical coke is made from carbon particles by heating the particles to shrink them. Thereafter, the shrunk carbon particles are mixed with a carbonaceous binder and formed into lumps which are heated in a non-oxidizing atmosphere to drive off volatiles and carbonize the binder.
- Such coke used for melting iron takes less air, less fuel and permits lower bed heights than conventional fuel.
- the carbon particles are pre-shrunk by heating prior to mixing with the binder.
- the mixture is also preferably degassed prior to compaction to improve the coherence of the carbon particles with a minimum amount of binder, and permits continuous extrusion at relatively low pressure.
- the resulting product has good strength because of the improved coherence due to the degassing, and has good porosity and density for fast and complete burning, which is required in the operation of cupola furnaces.
- the mixture is extruded in a rod having an' external diameter of 2 to 6 inches, and it is cut off at a length of in the range of 2 to 8 inches.
- this invention provides an improved metallurgical coke comprising lumps of carbon particles bonded together to have an apparent specific gravity of at least about 1.25.
- the carbon particles are selected from either petroleum or gilsonite coke, or a mixture of both.
- the coke has a random bulk loading density of at least 42 pounds per cubic foot.
- the compressible strength of each individual lump is at least about 5000 pounds per square inch and ash content is not more than about 3 percent.
- the binder conveniently is charred coal-tar,-but it can be any suitable carbonaceous material such as petroleum tar.
- the improved metallurgical coke increases the carbon content and temperature of the metal, increases the rate of melting and decreases the quantity of both fuel and air required. As a consequence, wear of the furnace lining is reduced.
- the degassed mixture is passed from the mixer into a hopper 14 of an elongated auger extruder 15 in which is mounted a rotatable feed screw 16.
- One end of the extruder is closed, and the feed screw drives the mixture in it toward the other end, which includes a tapered reduction section 18 and an extrusion die 19.
- the size and configuration of the product is determined by the shape of the die and the operation of the cutter blade 20 at the discharge end of the die.
- the pressure at which the mixture is extruded through the die affects the properties of the final product, and while the pressure is not entirely critical, it is fairly closely controlled. It is one of the advantages of this invention that the mixture can be extruded at relatively low pressure, and on a continuous basis.
- the unfired product is started in the kiln at about 400F, and kiln temperature increases uniformly to the maximum. Firing time can vary, and depends on the product size and kiln efficiency. Total heating cycles of 2 to hours have been used to produce the improved metallurgical coke of this invention. if the carbon particles are not pre-shrunk as described above, the preferred heating time is about 12 hours. Pre-shrinking reduces the preferred heating time to about 6 hours.
- cupola fuel The function of cupola fuel is to provide heat for melting and to provide carbon in the resulting molten iron.
- the nature of the cupola operation is such that a delicate balance must be established between the metal-to-coke ratio, the air-to-coke ratio, the bed height of the burning fuel andthe nature of the metal charge to satisfactorily maintain control. Basic rules of operation must be adhered to for optimum results.
- the aggregate is cooled immediately upon discharge from the preheat unit to a temperature of not more than about 350F to facilitate subsequent handling and mixing.
- the type of cooling apparatus is not critical providing that the cooling is carried out under conditions which minimize loss of aggregate carbon through oxidation, say, in a non-oxidizing atmosphere.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Metallurgical coke is made from carbon particles by heating the particles to shrink them. Thereafter, the shrunk carbon particles are mixed with a carbonaceous binder and formed into lumps which are heated in a non-oxidizing atmosphere to drive off volatiles and carbonize the binder. Such coke used for melting iron takes less air, less fuel and permits lower bed heights than conventional fuel.
Description
United States Patent [191 Wilde 1 Nov. 6, 1973 METHOD OF MELTKNG IRON WKTH LUMPS 01F CARBON COKE [76] Inventor: Thomas ,1. Wilde, Box 411, Frazier Park, Calif. 93225 [22} Filed: May 21, 1971 [2]] Appl. No.: 145,861
Related 11.8. Application Data [60] Division of Ser. No. 814,706, April 9, 1969, Patv No. 3,619,148, which is a division of Ser. No. 714,398, March 4, 1963, Pat. No. 3,444,047, which is a continuation-in-part of Ser. No. 547,683, April 1, 1966, abandoned, which is a continuation-in-part of Ser. No. 329,090, Dec. 9, 1963, abandoned.
1,666,312 4/1928 Runyan 75/44 X 2,184,318 12/1934 3,058,821 10/1962 3,190,745 6/1965 3,190,746 6/1965 2,808,326 10/1957 454,209 6/1891 485,927 11/1892 Graf 75/43 OTHER PUBLICATIONS Handbook of Cupola Operation; American Foundrymens Assoc; 1946', pages 25, 283291.
Primary ExaminerL. Dewayne Rutledge Assistant Examiner M. J. Andrews Att0rney-Christie, Parker. & Hale c [57] ABSTRACT Metallurgical coke is made from carbon particles by heating the particles to shrink them. Thereafter, the shrunk carbon particles are mixed with a carbonaceous binder and formed into lumps which are heated in a non-oxidizing atmosphere to drive off volatiles and carbonize the binder. Such coke used for melting iron takes less air, less fuel and permits lower bed heights than conventional fuel.
9 Claims, 1 Drawing Figure BLT/0.418
PATENTEDunv s 1915 INVENTOR. THOMAS J: W/L DE METHOD F MELTING IRON WITH LUMPS OF CARBON COKE REFERENCE TO RELATED APPLlCATIONS This invention relates to an improved metallurgical coke, and is a divisional application of my copending application Ser. No. 814,706, filed Apr. 9, 1969, now U.S. Pat. No. 3,619,148, which is a divisional application of application Ser. No. 714,398, filed Mar. 4, i968, now US. Pat. No. 3,444,047, which is a continuation-in-part application of application Ser. No.
547,683, filed Apr. 1, 1966 (now abandoned), which is a continuation-in-part application of application Ser. No. 329,090, filed Dec. 9, 1963 (now abandoned).
In certain parts of the industrialized world, metallurgical coke (also referred to as foundry, furnace, and cupola coke) must be shipped from relatively great distances, adding to its cost. In these same areas, there is an abundance of basic raw materials which will burn, but which have not been put in the form of metallurgical coke. Examples of such materials are carbon particles known as petroleum coke, which is produced from the thermal cracking of petroleum and gilsonite coke as available from standard delayed or fluidized coking processes. This invention provides an improved process for converting these carbonaceous materials into a unique metallurgical coke for use in furnaces, cupolas, and the like. Such coke must be mechanically strong to withstand the severe mechanical shock and weight loads to which it is subjected in the cupolas and furnaces. it should also burn freely to a low ash content and have a low sulfur impurity. The coke of this invention meets all of these requirements.
An improvement in this fuel product over those of the prior art is the high carbon content and low impurities. Fuel of low ash content is also desirable in cupola operations, since, among other things, these impurities are a waste lay-product discharged as slag which presents disposal problems. Foundry cokes of the prior art are made from coal, principally bituminous, but sometimes with anthracite additions. Such raw materials include impurities laid down in the their natural formation. Highest quality coke products made from carefully selected coals asused in cupolas have ash contents in the range of 6 percent to 9 percent by weight. The metallurgical coke of this invention contains less than about 3 percent ash as a result of the inherent high purity of the raw materials used in its manufacture. This negligible amount of ash does not form an interfering coat over the coke as it burns, and, therefore, does not retard burning or inhibit the dissolving of the carbon into the molten metal in the furnace. Dissolving of carbon permits the use of less expensive metal in cupola furnace operation Another disadvantage of conventional foundry coke is that it is discharged from ovens in a solid mass which breaks into lumps of irregular size and shape along shrinkage fissures developed in coking. This creates undesirable variation in coke lump size and shape, and requires costly size selection prior to shipment. The size of the coke of this invention, as well as its shape, is predetermined and made uniform by controlled compaction of individual pieces.
In terms of method, this invention includes a process for forming lumps of metallurigcal coke from carbon particles selected from the group consisting of fluid petroleum coke and gilsonite coke. The carbon particles are mixed with a carbonaceous binder. The mixture is compacted and extruded continuously through a die. The extruded mixture is cut off to form lumps of the desired size, and the lumps are subsequently heat processed to carbonize them.
Preferably, the carbon particles are pre-shrunk by heating prior to mixing with the binder. The mixture is also preferably degassed prior to compaction to improve the coherence of the carbon particles with a minimum amount of binder, and permits continuous extrusion at relatively low pressure. The resulting product has good strength because of the improved coherence due to the degassing, and has good porosity and density for fast and complete burning, which is required in the operation of cupola furnaces.
The gilsonite and fluid petroleum coke particles are usually spherical, and are ordinarily difficult to bond together in that form without excessive pressure and relatively large amounts of special binder. In addition tothe pre-shrinking and degassing steps described above, preferably, at least percent of the carbon particles are fractured to less than 100 mesh by an impact milling and crushing process which destroys the spherical shape of the carbon particles and imparts to them angular and irregular surfaces to obtain the desired agglomeration in the large lumps and to provide high reactivity of the final product.
Preferably, the mixture is extruded through a die at a pressure of 100 to 1200 pounds per square inch. This relatively low pressure extrusion permits the product to be manufactured on a substantially continuous basis,
making it available at a price to permit its use as a.
foundry coke. At the present time, the mixture is extruded in a rod having an' external diameter of 2 to 6 inches, and it is cut off at a length of in the range of 2 to 8 inches.
Theextruded and cut material is preferably heated in the range of 1100 to 2500F. for 2 to 15 hours, and preferably about l2 hours to increase its strength. I have found that heating of the product can be accomplished in a direct-fired kiln where air in excess of that required to burn the kiln fuel is freely admitted to the heating chamber. The oxidizing atmosphere entering the kiln is rapidly made reducing by burning volatile hydrocarbons dishcarged from the product upon heating. The hydrocarbon volatiles form a protective blanket of unburned and reducing gases immediately surrounding the product to avoid its unwanted burning during the heating step. After carbonizing, which reduces the volatile content of the final product to less than about 3 percent by weight, the hot product is quenched in a water spray immediately upon removing from the kiln to avoid air burning.
In those cases where the carbon particles have some sulfur present in an amount in excess of that desired intimate distribution of the agent intimately with the sulfur in the carbon particles greatly increases the effectiveness of the desulfurizing agent and eliminates the extra step required in present practice when it is necessary to add desulfurizing agents separately to molten metals.
ln terms of product, this invention provides an improved metallurgical coke comprising lumps of carbon particles bonded together to have an apparent specific gravity of at least about 1.25. The carbon particles are selected from either petroleum or gilsonite coke, or a mixture of both.
The lumps of coke are substantially uniform, i.e., less than 5 percent by weight of the lumps deviate from an average nominal size by more than about percent.
Preferably, the lumps are at least about 40 cubic inches each. The lumps may be of any desired size greater than this, but normally will not be more than 200 cubic inches.
Preferably, the coke has a random bulk loading density of at least 42 pounds per cubic foot. The compressible strength of each individual lump is at least about 5000 pounds per square inch and ash content is not more than about 3 percent.
The binder conveniently is charred coal-tar,-but it can be any suitable carbonaceous material such as petroleum tar.
The majority of the particles in the lumps are preferably smaller than lOO mesh in particle size.
In a process for melting iron in a furnace, cupola or the like, the improved metallurgical coke increases the carbon content and temperature of the metal, increases the rate of melting and decreases the quantity of both fuel and air required. As a consequence, wear of the furnace lining is reduced.
These and other aspects of the invention will be more fully understood from the following detailed description and the accompanying drawing, which is a schematic flow sheet of the presently preferred process for making metallurgical coke in accordance with this invention.
Referring to the drawing, carbon particles, such as those produced as fluid coke in petroleum refining, or those available as gilsonite coke from standard delayed coking or fluidizing coking processes, are pre-shrunk by heating in a non-oxidizing atmosphere between about l600F and about 1800F until most of the inherent shrinkage of the particles is removed. The preshrunk carbon particles are then cooled in a nonoxidizing atmosphere to a temperature of not more than about 350F, and subjected to fracturing in an impact mill or roll crusher 10. This is not a conventional milling operation as such to provide a fixed sizing of aggregate. Most conventional size milling tends to smooth the surface of the particles by rapid attrition and wear. This is exactly what the fracturing step of this process avoids, and is particularly important when handling naturally occurring spherical particles such as those produced from fluid petroleum coke or gilsonite coke. It has been found that particles of this nature are best fractured into surfaces which are irregular or angular by high speed impact milling, or roll crushing, and to fracture at least 60 percent of the spherical particles to particles with surfaces which are irregular and angular and which are reduced to less than 100 mesh size. This type of fracturing provides the desired agglomeration.
shrunk after milling instead of before as described above.
When required, the desulfurizing agents, such as limestone, soda ash, and the like, are added with the carbon aggregate into the roll crusher or impact mill for fine grinding and intimate mixing with the carbon. If desired, the desulfurizing agent may be separately ground and added to the mixture with the carbonaceous binders.
The fractured carbon aggregate is dumped into a mixing stage 12, which includes a conventional paddle mixer or pug mill, and mixed thoroughly with a carbonaceous binder. The mixing of carbon aggregate with carbonaceous binders has been practiced for some time in the manufacture of carbon and graphite electrodes. Experience in this prior art has dictated prolonged mixing times of about 30 to minutes duration. It has been surprising to find, therefore, that with similar mixing equipment, a mixing time of only about 3 to 5 minutes is sufficient to produce the improved metallurgical coke of this invention. 1 have found that the degree of mixing controls the density of the final product to a marked degree. For example, amixing time of 3 minutes provided a final product with a density of 1.26 grams per cc, whereas a 5-minute mixing time produced a final product with a density of 1.48 grams per cc, other conditions being equal.
Various petroleum and coal tar derivatives are used as binders in this invention, their selection being based on economy and availability. Although satisfactory metallurgical coke has been made by this method with various binders, best results have been obtained using a coal tar which is highly viscous at room temperature, and very fluid at F. to 300F. Therefore, the binder and aggregate are preferably heated to about 150F. to about 300F. in the mixer so that the binder is fluid and thoroughly wets the carbon aggregate. The binder is added in the range of 8 percent to 18 percent of the weight of the total mixture with the carbon particles.
' The vacuum pump subjects the mixture to a vacuum of 5 to 29, and preferably 10 to 29, inches of mercury to remove air which was beat into the mixture during the mixing step. The removal of the air increases the cohesion of the mixture and permits it to be extruded at a relatively low pressure, which increases its reactivity when used as cupola furnace fuel.
The degassed mixture is passed from the mixer into a hopper 14 of an elongated auger extruder 15 in which is mounted a rotatable feed screw 16. One end of the extruder is closed, and the feed screw drives the mixture in it toward the other end, which includes a tapered reduction section 18 and an extrusion die 19. The size and configuration of the product is determined by the shape of the die and the operation of the cutter blade 20 at the discharge end of the die. The pressure at which the mixture is extruded through the die affects the properties of the final product, and while the pressure is not entirely critical, it is fairly closely controlled. It is one of the advantages of this invention that the mixture can be extruded at relatively low pressure, and on a continuous basis. The forces generated by the auger extruder are relatively fixed so that variations in pressure on the product are obtained by controlling the ratio of the auger barrel size to the die opening, as well as the configuration of the tapered reduction section connecting the barrel to the die. Lumps formed at 100 to 1200 pounds per square inch in the die provide the improved product of this invention. Preferably, the die has an inside diameter of 2 to 5 inches so that the mixture is extruded in the form of a rod 22 of that diameter range. The cutter is operated to cut the extruded rod into lumps about 2 to 8 inches long.
The extruded and cut mixture 24 is fed onto one end of an endless conveyor belt 25, which carries the cut pieces into the inlet of a kiln 26. A mixture of kiln fuel, such as natural gas and air, is fed into the kiln through a supply line 2'7, and is burned at burner 23 within the kiln to provide a direct-fired kiln operation. The lumps pass through the kiln in a free standing or unsupported position on graphite trays 29 on the endless belt and are heated to about 1909? withinafew hours flhe lumps can be heated to between about llO0lF and 25001F, but preferably about 1700F to 2000? The unfired product is started in the kiln at about 400F, and kiln temperature increases uniformly to the maximum. Firing time can vary, and depends on the product size and kiln efficiency. Total heating cycles of 2 to hours have been used to produce the improved metallurgical coke of this invention. if the carbon particles are not pre-shrunk as described above, the preferred heating time is about 12 hours. Pre-shrinking reduces the preferred heating time to about 6 hours.
Carbonization techniques in the prior art required reducing atmospheres such as in the coking of coal for foundry coke and in carbon electrode manufacture. In prior practice, heat was applied by conduction through the heating chamber walls. in the present process, carbonization of the lumps is accomplished in the directfired kiln where air in excess of that required to burn the kiln fuel is freely admitted to the heating chamber. The oxidizing atmosphere entering the kiln is rapidly made reducing by the burning of the volatile hydrocarbon matter discharged from the mixture, especially the coal tar, upon heating. The firing cycle of the method assures that a protective blanket of unburned volatile gases evolved from the product immediately surrounds the product to avoid its burning. These volatile hydrocarbon waste gases are burned within the kiln but spaced from the product to provide a supplemental source of heat.
The fully-heated product, which has a volatile content of less than about 3 percent by weight, is discharged from the end of the kiln and is quenched in a water spray 3t} immediately upon removal from the kiln to avoid air burning.
The product of this invention has burning characteristics which are a vast improvement over metallurgical cokes made in the prior art. One example of such an improvement is that the product of this invention has a much higher density than conventional foundry coke, and yet is more reactive, i.e., burns faster and to a greater weight loss. This is contrary to what normally would be expected. For example, conventional electrode carbon with a density in excess of 1.5 gm/cc is less reactive and slower burning than foundry coke, which has a density of about 1.0 gm/cc. The product of this invention has a relationship of burning rate to density which is the opposite from the established pattern. The following table exemplifies this unique characteris tic:
Test Material Density Weight Loss l Foundry coke 0.95 gm/cc 33% l Product A L28 gm/cc 50% ll Foundry coke 0.95 gm/cc 25% ll Product B 1.26 gm/cc 40% The results of the above table are given in terms of percentage loss in weight as the result of burning in air, simultaneously and under the same conditions, two conventional foundry cokes and two samples (A and B) of a product made in accordance with the process of this invention. in both instances, the weight loss of the products of this invention is at least 1% times that of the conventional foundry coke burned at the same time, indicating a burning rate of the same order of increase.
ln using the cupola furnace fuel of this invention, that is, a fuel with low ash content, high density, and uniform size, in melting iron in a cupola furnace, improvements in melting are obtained by a unique method of operating the cupola. Compared with conventional melting of iron with ordinary foundry coke, available improvements provided by the coke of this invention include a higher carbon content in the metal, higher metal temperatures as tapped from the cupola, and increase in melting rate, less air required, and reduce lining wear during the melt period.
Suitable apparatus for this unique use of the coke of this invention consists of a vertical shaft type furnace comprised of a cylindrical metal shell, refractory lined and constructed with tuyeres or nozzles in the lower portion for the introduction of air. An opening is provided in the upper portion for charging of metal stock and lump carbon fuel. Holes and spouts for molten metal and slag removal are located near the bottom.
A particular feature of this apparatus is that descending melting stock is intimately contacted by ascending hot gases providing an efficient and direct heat exchange. Lump carbon burned from the initial bed of fuel is continuously replaced by descending fuel to uniforrnly maintain the height of this bed.
A conventional cupola fulfills this description and is the preferred unit for this method.
The function of cupola fuel is to provide heat for melting and to provide carbon in the resulting molten iron. The nature of the cupola operation is such that a delicate balance must be established between the metal-to-coke ratio, the air-to-coke ratio, the bed height of the burning fuel andthe nature of the metal charge to satisfactorily maintain control. Basic rules of operation must be adhered to for optimum results.
Standard operating procedures for the cupola are based on sound theory. in practice, however, best results are established by trial and error. It has been learned over the years that minor changes carefully made during operation will be followed by certain symptoms, each of which indicates specific conditions within the working cupola. These have been published and successfully practiced for decades.
The use of low-ash compacted coke of this invention in accordance with established operating practice for' conventional coke frequently created adverse conditions. This led to the conclusion that the coke of this invention was not satisfactory for cupola furnace operation. However, suprising results were disclosed in further trials when certain changes were undertaken contrary to those of prior normal practice to correct symptoms of imbalance. Over-all melting conditions with the coke of this invention were thus improved beyond the optimum heretofore attainable with prior conventional coke.
The following will disclose the individu a! changes from conventional operating procedure included in this new method:
The height of the coke bed is among the most critical items in the operation of a cupola. Tables are available in which coke bed heights in inches above the tuyeres are established in very narrow ranges for various size cupolas, for example:
27 inches inside diameter 36 inches to 42 inches bed height 54 inches inside diameter 45 inches to 51 inches bed height 78 inches inside diameter 47 inches to 53 inches bed height The bed heights being established in this new method of operation with the coke of this invention are as much as /3 less than conventional, forexample:
Conventional New Method Bed Height Bed Height Change 60" 40" 335596 lower 50" 35" 30% lower 42 36" lower 36" 29 lower These consistently downward adjustments made to establish individual optimum bed heights for this new method were undertaken in the face of symptoms indicating that the bed was already too low. For example, the color of the slag is used in checking bed performance. The normally grayish-green color of acid cupola slag becomes dull black in color when the bed has fallen below its normal operating height using conventional coke. in operating trials in over 30 individual cupolas with the coke of this invention, the slag consistently became black when initial bed height was set at normal. Instead of adding more coke to raise the bed as dictated by established practice, the bed height was lowered as stated above, resulting in better, instead of worse, operating conditions and product.
The cupola lining is eroded during operations in a band at the operating height of the coke bed due to the high temperature of the melting zone. Examination of the refractory bum-out sustained at the end of the melt period is conclusive evidence of the lower bed height maintained during operation by this method. An attendant feature is less lining loss to be replaced per ton of metal melted.
Further, an optimum relationship exists between air input, coke charge and melting rate. Published data is rigidly adhered to for good melting practice. A new norm is automatically established for the combustion process when the air blast is increased or decreased. Here again, a procedure contrary to established practice with conventional coke is followed to obtain optimum results for the new type of fuel.
conventionally, slower melting in the cupola is obtained by using 1) more conventional coke, or 2) less air; and the rate of melting is increased by using 1) more air, or 2) less coke. With the low-ash compacted fuel of this invention, both less air and less coke are used to get higher melt rates. Reduction in both air volume and coke charge, then, is a departure from normal prior practice to increase melt rate.
Air volumes established in this new coke are as much as at; less than conventional, for example:
Conventional New Method Change Air Volume Air Volume 6300 cfm 5400 cfm [5% lower 3600 cfm 2900 cfm 20% lower 2400 cfm I600 cfm 338696 lower Further, the improved coke charge is consistently 5 percent to 10 percent less than that required in conventional practice with ordinary foundry coke.
in general, it is desirable to obtain high metal temperatures, melt rates and carbon pick-up. For economy, low fuel usage, air volume and lining loss are also desired.
Higher temperature metal is cleaner and more slagfree; the carbon pick-up is improved with temperature contributing to greater fluidity and the undesirable sulfur pick-up from coke is lower at high temperature.
It is economically advantageous to obtain the highest melt rate possible from a cupola melting unit. ln fact, demands often exceed capacity in periods of expanding business conditions, and increased melt rates are frequently desired.
Carbon pick-up from coke fuel in a cupola has a substantial effect on hot metal cost. Metal charged to ironmelting operations is selected from: 1) pig iron high in carbon (about 4 percent); 2) cast iron scrap having somewhat lower carbon content (3 to 3-7 percent); and 3) steel scrap (less than l percent carbon). Sprues and returns from the casting area automatically become a portion of the charge in most instances. ln value, the higher carbon content metal (pig iron) carries the highest cost. This can be as much as double the cost of steel, the lowest cost metal in most instances. The greater the carbon pick-up from the coke, then, the lower the cost of charging metals.
The least amount of coke fuel consumed to comply with any particular set of melting requirements is obviously desired for economy.
Similarly, the lowest air volume is desired, not only from the standpoint of horsepower requirements, but also because lower air is conducive to less lining wear or heat loss through the cupola shell.
Most cupolas are relined frequently so that the least amount of lining material required is desirable.
For each melting operation, optimum results are largely dependent on the characteristics of the fuel which govern its over-all capabilities. Available con ventional foundry coke is limited in its capacity to provide the desirable features itemized above. In practice, over a period of time, each conventional melting operation ultimately reaches the limitiations of the fuel.
The compacted carbon fuel of this invention raises the capabilities of cupola furnaces for melting iron for castings to new standards heretofore unavailable from established melting practice with conventional foundry coke.
The new fuel is used to achieve:
1. increase in carbon content of the metal as much as 12.5 percent, e.g., from 3.2 percent to 3.6 percent;
metal temperature increase as much as F; increase in melt rate as much as 15 percent; reduction in fuel charge as much as 15 percent; reduction in air volume as much as 30 percent; reduction in lining wear as much as 50 percent. The fuel is made principally from petroleum coke or gilsomte coke particles compacted into Individual lumps of substantially uniform size of at least 40 cubic inches each, with ash content of less than 3 percent, ap-
parent specific gravity of at least 1.25 grams per cubic centimeter, random bulk density of at least 45 pounds per cubic foot, and compressive strength of at least 5000 pounds per square inch. The actual or real specharge was reduced from 400 pounds to 380 pounds for a percent reduction. Metal temperatures were maintained above'the 2800F. minimum requirement. Carbon content of the metal was maintained at 3.58
cific gravity of the carbon particles is about 1.95. 5 percent,
The following tabulation indicates the comparison between conventional foundry coke and the com- EXAMPLE 4 pacted carbon fuel used in this process for melting iron: Metal temperature increases have been realized through use of the product of this invention as follows: Foundry Coke Compacted Carbon h Fuel Metal As 5.610.4 Maximum 3 v Inside to- Melt Metal Temp, "F. In- Apparent specific gravity, 0.68-0.97 Minimum 1.25 Cok'e Rate C'onvem Improved Ease Bulk density, lb./cu. ft. 24.80-32.20 Minimum 42 Ram ms/ht Compressive strength, psi 700-3270 Minimum 5000 Size unifonnity, weight 30-70 Maximum 5 36 711 3 120 less than nominal 42" 12:1 11 2780 2930 150 The following examples show how the product of this 36 10:1 6 2900 3050 150 invention is used: EXAMPLE 5 EXAMPLE 1' Reduction in air volume has been possible through A cuopla of 60-inch inside diameter melting 12 tons of thls Improved coke as .fonows:
Inside Melt Air Volume, CFM per hour of gray iron for thin-wall castings had its operc Raw g lmpwvcd ating conditions stabilized with conventional foundry meter Ratio Tons/hr. torllal Coke duction coke as follows: the charge consisted of cast iron 70-85 10% 16% 8 5 5000 16.6 percent and pig iron 15-30 percent. This produced 42" 9%:1 7 /2 4000 2800 30.0 metal with an average carbon content of 3.35 percent. EXAMPLE 6 It was desirable to increase the carbon content of the gray iron and also to decrease the quantity of pig iron Cupola lining replacement material has been reduced in the charge. In using this melting process which emby this improved coke principally by virtue of reduced ployed the compacted carbon fuel as described herein, air volume as follows:
Lining material, lbs. Metal-to- Melt Melt Inside coke rate time Conven- Improved Percent diameter ratio (tons/hr.) (hrs/day) tional coke coke reduction the average carbon content of the gray iron was in- EFFECT OF PRE-SHRINKING THE CARBON creased to 3.52 percent while the pig iron portion of PARTICLES the charge was reduced to zero to 10 pgmem A principal factor governing the heating time of the EXAMPLE 2 mixture of carbon particles and binder in the kiln is the effect of the variation of heating on the strength of the h meltmg method. :dpphed to 42- final fired product. For example, as the heating time is inch inside diameter cupola was stabilized to provide a melt rate of 54% tons p hourwith 8404 metal to reduced, the resultant strength of the product is lessened. conventional coke ratio, 100 percent cast iron charge. The average carbon content of the resulting gray iron t h l f ofdprodust j 2 9 thls dewas maintained at 3.50 percent by adding lump graphermmaion. Is a prom 3 y as ite to the charge in the amount of 12% percent of the 5 dard to indicate the resistance to impact of coke. This weight of the foundry coke charged (30 pounds graphdeslgzlated as the M i shatter test i ite, 240 pounds foundry coke). The product of this in- SKI-es percent by 1 t of coke hh vention provided an increased average carbon content mug r e dwPPmg uhder h cohdmohs to a of the metal from the cupola at 3.60 percent with com- 55 Size Phssmg a 2 Square hereeh The greater the plete elimination of the lump graphite addition. The quhhhty hot passlhg the 2 Screehi the hlgher the rnetal-to-coke ratio was established at 10-to-1, which reslsthhce to h 'f h Strength amounted to a 16.6 percent reduction in coke charged Uh1fonhly hlgh Strength lmpommt to metallurto the cupola (240 pounds reduced to 200 pounds} gical coke products. In the field of coke used as cupola fuel, a minimum of 96 percent retained on a 2 inch EXA 3 screen after the shatter test indicates a product of high The coke of this invention was used in a 60-inch inq yside diameter cupola melting gray iron for thin-wall In the h as dcscl'lbed y copendmg pp castings to increase the melt rate from the 15 tons per Q the minimum heatmg time among other g h maximum tt i bl f ti l lti 6S limited by the strength requirements described above.
practice. The melt rate was increased to l6-r tons per hour for a 10 percent gain. The metal-to-coke ratio was improved from l0-to-1 to 10-% -to -1. Coke weight per For example, without pre-shrinking petroleum coke particles, and under a particular set of heat processing conditions, a heating time of 1 hours provided a prod- 11 uct strength of 98 percent in the drop shatter test. With the firing cycle reduced to 6 hours while maintaining other conditions constant, the drop shatter fell to as low as 47 percent, well below the commercial requirement for cupola fuel.
When the method of this invention is used in conjunction with that of my copending application above mentioned, product strength can be maintained at the required 98 percent drop shatter while the throughput of the particular heat processing unit is doubled by reducing the heating period from 12 to 6 hours.
By heating petroleum coke used as the basic raw material (carbon particles) for the metallurgical coke of this invention prior to its mixing with the tar binder and compacting into large lumps, the firing time can be greatly reduced without weakening the finished product. The temperature of such preheating is important. It should be in the range of about 1600F to about 1800F, and preferably at about 1675F. The lower limit of about 1600F has been found to be the minimum required to gain the fullest benefit of this preheating stage. On the other hand, preheating to a temperature over about 1800F adversely affects the burning characteristics of the final product, with substantial loss These include, but are not limited to: rotary kilns, mul-,
tiple-hearth furnaces, fluid bed heaters, rotating-hearth furnaces, and the like.
The aggregate is cooled immediately upon discharge from the preheat unit to a temperature of not more than about 350F to facilitate subsequent handling and mixing. The type of cooling apparatus is not critical providing that the cooling is carried out under conditions which minimize loss of aggregate carbon through oxidation, say, in a non-oxidizing atmosphere.
The preheating step causes a volumetric shrinkage of the petroleum coke aggregate prior to mixing with the binder and firing the mixture. For example, a particular petroleum coke was found to have a shrinkage of 19 percent by volume when heated to 1700F in a nonoxidizing atmosphere. When this coke was used without preheating 4-h inch diameter piecesof the compacted product were reduced in size to 4-H; inch diameter upon firing. This shrinkage of the compacted product in firing is believed to weaken the finished pieces when fired too rapidly. When this same coke was preshrunk at a temperature within the range of about 1600F and 1800F, no size reduction occurred in firing the compacted lumps, and even when the firing time was cut in half, there was no loss in strength.
Consequently, the preheating is carried out at a temperature sufficiently high to insure that most of the inherent shrinkage of the aggregate coke is removed prior to compacting and subsequent firing.
The main factor affecting the upper limit of preheating temperature is the result of heating on the reactivity, or burning characteristics, of the finished product. It is generally known to those familiar with the art that the resistance of coke to oxidation is increased by increasing the calcining temperature. It is for this reason, among others, that the coke aggregate making up carbon electrodes, anodes, and similar products, is first preheated or calcined at high temperatures. This is normally carried out at a temperature of at least 2400F and preferably is taken to 2800F.
When the product of this invention has its coke aggregate preheated to those temperatures used in prior art processing of electrodes, and the like, the finished product undergoes a substantial loss in efficiency in its burning characteristics. This is apparently the result of the aggregate not burning as rapidly as the residue remaining from heat the tar binder within the body when the product is heated processed. Severe mechanical loss of aggregate particles has been noted when bu'rning a product made with coke calcined at temperatures in the range of 2400F to 2800F. When the preheating temperature is held to not more than l800F, this adverse condition is eliminated.
GRAPHITE TRAYS This invention also improves the service life of the trays or product-carrier members used to pass the lumps through the kiln when carbonizing the binder of the compacted product. Such carrier members, of necessity, undergo the same temperature cycle as the product. In re-use, this heat cycling is constantly repetitive which causes fatigue in most materials leading to costly replacement. This is greatly accentuated when the'supporting members are allowed to go through the water-quenching phase of the process along with the product.
In this invention the product supporting members are made of graphite to carry the product through the kiln. Graphite has a high refractoriness and an outstanding capability to withstand repetitive heating and cooling cycles because of its low coefficient of expansion and high thermal conductivity. The limitations for use of graphite at elevated temperatures are generally recognized as being within non-oxidizing conditions. Specific design features of the kiln used in this invention would normally preclude the consideration of graphite memoxidizing atmosphere of tar volatiles is maintained in the vicinity of the product. This same condition protects the carrier members when made of graphite because they are immediately adjacent to the product. Thus the non-oxidizing atmosphere produced by the volatile from the carbonaceous binder in the kiln protects both the carbon product and the grahpite carrier members from oxidation.
In summary, when the improved cupola fuel compacted from high purity carbon, such as petroleum coke, is used in the cupola melting of iron to prepare gray, ductile, and malleable iron in molten form for castings, improvements in melting results are obtained. Compared with melting with conventional foundry coke, the available improvements include: 1) higher carbon content in the metal; 2) higher metal temperatures as tapped from the cupola; 3) increase in melting rate; 4) reduced air volume; 5) less coke charged; 6) less lining wear during the melt period. The product of this invention can be used as a method to achieve one or more of these without adverse effect on the others.
What is claimed is:
1. In a method of melting iron in a cupola including the steps of charging the cupola with fuel, a source of iron, and a source of slag; igniting the charge; passing oxidizing gas through the charge for combustion therewith; and tapping molten iron from the cupola; the improvement in combination therewith comprising the steps of:
forming a bed containing fuel comprising lumps of carbon coke particles produced by thermal cracking and bonded together, the lumps having an ash content of less than about 3 percent by weight and an apparent specific gravity of at least 1.25 gm/cc, the lumps having a volume of at least 40 cubic inches.
2. in an improved method of melting iron in a cupola as defined in claim l the further improvement wherein the step of forming a bed includes forming the bed with a fuel in which the lumps are substantially uniform and less than about 5 percent of them by weight differ more than percent in volume from the nominal size of the lumps.
3. in an improved method of melting iron as defined in claim l the further improvement wherein the step of forming a bed includes forming the bed with a fuel having a volatile content less than about 3 percent by weight.
4. In an improved method of melting iron in a furnace as defined in claim 3 the further improvement wherein the step of forming a bed includes forming the bed with a fuel in which the lumps are substantially uniform and less than about 5 percent of them by weight differ more than 20 percent in volume from the nominal size of the lumps, the lumps having a random bulk loading density of at least about 42 pounds per cubic foot.
5. In a method of melting iron in a cupola having tuyeres including the steps of charging the cupola with fuel, a source of iron and a source of slag to form a bed; igniting the fuel; passing oxidizing gas through the bed for combustion therewith; and tapping molten iron from the cupola; the improvement in combination therewith comprising:
14 employing primarily a cupola fuel comprising lumps of carbon coke particles produced by thermal cracking and bonded together; said lumps having an ash content of less than about 3 percent by weight, a volatile content of less than about 3 percent by weight, the lumps having a volume of at least about 40 cubic inches; and wherein less than about 5 percent by weight of the lumps differ more than 20 percent in volume from the nominal size of the lumps.
6. in an improved method of melting iron as defined in claim 5, wherein the lumps have a random bulk loading density of at least about 42 pounds per cubic foot.
7. In an improved method of melting iron in a cupola as defined in claim 6, the further improvement comprising the step of:
maintaining the height of the bed above the tuyeres in the range of from about 15 to 33% percent lower than conventional operating procedure, said conventional procedure having a bed height from about 36 to 42 inches in a 27 inch inside diameter furnace, from about 45 to 5! inches in a 54 inch inside diameter furnace, and from about 47 to 53 inches in a 78 inch inside diameter furnace.
8. In an improved method of melting iron in a cupola as defined in claim 6, the further improvement wherein the step of forming a bed comprises:
forming the bed containing fuel comprising lumps of carbon particles bonded together and having clesulfurizing agents including elements having a high affinity for sulfur dispersed therein.
9. In an improved method of melting iron as defined in claim 8 the improvement wherein the desulfurizing agent is selected from the class consisting of limestone and soda ash.
740$:RDS
UNITED STATES PATENT OFFICE 55/ 6g) CERTIFICATE OF CORRECTION Patent No. 3 ,-770,418 Dated November 6, 1973 Inventofls) Thomas J. Wilde It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Col. 9, line 20 "cuopla" should read --cupo1a-- Col. 12, line 8v "heat" should read -carbonizing-- Col. 12, line 9 ,"heated" should read --heat-- Col. 12, line 49 "grahpite" should read --graphite-- Signed and sealed this 31st day of December 1974.
(SEAL) Attest:
MCCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents w Disclaimer 3,770,418.Th0mas J. W z'lde, Fullerton, Calif. METHOD OF MELTING IRON WITH LUMPS OF CARBON COKE. Patent dated Nov. 6, 1973. Disclaimer filed Apr. 26, 1973, by the inventor and the assignee, Amaze Carbon Products, Inc. Hereby disclaims the portion of the term of the patent subsequent to N0v.9,1988.
[Oyficz'al Gazette Februm'y 19,1974]
Claims (8)
- 2. In an improved method of melting iron in a cupola as defined in claim 1 the further improvement wherein the step of forming a bed includes forming the bed with a fuel in which the lumps are substantially uniform and less than about 5 percent of them by weight differ more than 20 percent in volume from the nominal size of the lumps.
- 3. In an improved method of melting iron as defined in claim 1 the further improvement wherein the step of forming a bed includes forming the bed with a fuel having a volatile content less than about 3 percent by weight.
- 4. In an improved method of melting iron in a furnace as defined in claim 3 the further improvement wherein the step of forming a Bed includes forming the bed with a fuel in which the lumps are substantially uniform and less than about 5 percent of them by weight differ more than 20 percent in volume from the nominal size of the lumps, the lumps having a random bulk loading density of at least about 42 pounds per cubic foot.
- 5. In a method of melting iron in a cupola having tuyeres including the steps of charging the cupola with fuel, a source of iron and a source of slag to form a bed; igniting the fuel; passing oxidizing gas through the bed for combustion therewith; and tapping molten iron from the cupola; the improvement in combination therewith comprising: employing primarily a cupola fuel comprising lumps of carbon coke particles produced by thermal cracking and bonded together; said lumps having an ash content of less than about 3 percent by weight, a volatile content of less than about 3 percent by weight, the lumps having a volume of at least about 40 cubic inches; and wherein less than about 5 percent by weight of the lumps differ more than 20 percent in volume from the nominal size of the lumps.
- 6. In an improved method of melting iron as defined in claim 5, wherein the lumps have a random bulk loading density of at least about 42 pounds per cubic foot.
- 7. In an improved method of melting iron in a cupola as defined in claim 6, the further improvement comprising the step of: maintaining the height of the bed above the tuyeres in the range of from about 15 to 33 1/3 percent lower than conventional operating procedure, said conventional procedure having a bed height from about 36 to 42 inches in a 27 inch inside diameter furnace, from about 45 to 51 inches in a 54 inch inside diameter furnace, and from about 47 to 53 inches in a 78 inch inside diameter furnace.
- 8. In an improved method of melting iron in a cupola as defined in claim 6, the further improvement wherein the step of forming a bed comprises: forming the bed containing fuel comprising lumps of carbon particles bonded together and having desulfurizing agents including elements having a high affinity for sulfur dispersed therein.
- 9. In an improved method of melting iron as defined in claim 8 the improvement wherein the desulfurizing agent is selected from the class consisting of limestone and soda ash.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US71439868A | 1968-03-04 | 1968-03-04 | |
| US81470669A | 1969-04-09 | 1969-04-09 | |
| US14586171A | 1971-05-21 | 1971-05-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3770418A true US3770418A (en) | 1973-11-06 |
Family
ID=27386327
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00145861A Expired - Lifetime US3770418A (en) | 1968-03-04 | 1971-05-21 | Method of melting iron with lumps of carbon coke |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3770418A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2741070A1 (en) * | 1976-09-16 | 1978-03-23 | Arbed | METALLURGICAL COOK PRODUCTION METHOD |
| US4388152A (en) * | 1980-08-04 | 1983-06-14 | Conoco Inc. | Process for producing blast furnace grade coke, a distillable product and fuel gases from a heavy, high sulfur, crude oil |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US52554A (en) * | 1866-02-13 | Improved mode of utilizing coal-dust and cinder | ||
| US454209A (en) * | 1891-06-16 | Process of melting iron | ||
| US485927A (en) * | 1892-11-08 | Process of melting iron | ||
| US1233144A (en) * | 1911-12-06 | 1917-07-10 | Wetcarbonizing Ltd | Smelting process. |
| US1666312A (en) * | 1921-03-31 | 1928-04-17 | William B Runyan | Metallurgical briquette and process of using it |
| US2184318A (en) * | 1934-11-15 | 1939-12-26 | Ruzicka Stevan | Process for simultaneous production of alumina cement and pig iron in blast furnaces |
| US2665977A (en) * | 1949-01-29 | 1954-01-12 | Gen Motors Corp | Coke breeze bonded by portland cement |
| US2808326A (en) * | 1953-12-23 | 1957-10-01 | Great Lakes Carbon Corp | Method of melting ferrous metals |
| US3058821A (en) * | 1960-02-18 | 1962-10-16 | Great Lakes Carbon Corp | Manufacture of coke |
| US3089766A (en) * | 1958-01-27 | 1963-05-14 | Chemetron Corp | Controlled chemistry cupola |
| US3185635A (en) * | 1961-05-10 | 1965-05-25 | Us Smelting Refining And Minin | Method for producing metallurgical coke and metal-coke from both coking and non-coking coals |
| US3190746A (en) * | 1962-09-28 | 1965-06-22 | Great Lakes Carbon Corp | Process for use of raw petroleum coke in blast furnaces |
| US3190745A (en) * | 1962-09-17 | 1965-06-22 | Great Lakes Carbon Corp | Method of improving blast furnace performance using raw petroleum coke |
-
1971
- 1971-05-21 US US00145861A patent/US3770418A/en not_active Expired - Lifetime
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US52554A (en) * | 1866-02-13 | Improved mode of utilizing coal-dust and cinder | ||
| US454209A (en) * | 1891-06-16 | Process of melting iron | ||
| US485927A (en) * | 1892-11-08 | Process of melting iron | ||
| US1233144A (en) * | 1911-12-06 | 1917-07-10 | Wetcarbonizing Ltd | Smelting process. |
| US1666312A (en) * | 1921-03-31 | 1928-04-17 | William B Runyan | Metallurgical briquette and process of using it |
| US2184318A (en) * | 1934-11-15 | 1939-12-26 | Ruzicka Stevan | Process for simultaneous production of alumina cement and pig iron in blast furnaces |
| US2665977A (en) * | 1949-01-29 | 1954-01-12 | Gen Motors Corp | Coke breeze bonded by portland cement |
| US2808326A (en) * | 1953-12-23 | 1957-10-01 | Great Lakes Carbon Corp | Method of melting ferrous metals |
| US3089766A (en) * | 1958-01-27 | 1963-05-14 | Chemetron Corp | Controlled chemistry cupola |
| US3058821A (en) * | 1960-02-18 | 1962-10-16 | Great Lakes Carbon Corp | Manufacture of coke |
| US3185635A (en) * | 1961-05-10 | 1965-05-25 | Us Smelting Refining And Minin | Method for producing metallurgical coke and metal-coke from both coking and non-coking coals |
| US3190745A (en) * | 1962-09-17 | 1965-06-22 | Great Lakes Carbon Corp | Method of improving blast furnace performance using raw petroleum coke |
| US3190746A (en) * | 1962-09-28 | 1965-06-22 | Great Lakes Carbon Corp | Process for use of raw petroleum coke in blast furnaces |
Non-Patent Citations (1)
| Title |
|---|
| Handbook of Cupola Operation; American Foundrymen s Assoc.; 1946; pages 25, 283 291. * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2741070A1 (en) * | 1976-09-16 | 1978-03-23 | Arbed | METALLURGICAL COOK PRODUCTION METHOD |
| US4388152A (en) * | 1980-08-04 | 1983-06-14 | Conoco Inc. | Process for producing blast furnace grade coke, a distillable product and fuel gases from a heavy, high sulfur, crude oil |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3444047A (en) | Method for making metallurgical coke | |
| AU714097B2 (en) | Method of producing reduced iron pellets | |
| CA1332286C (en) | Method of refining oxide nickel ore or the like | |
| US3941583A (en) | Ilmenite coated pellet and process for reducing same | |
| US2806779A (en) | Method of producing iron | |
| US4015977A (en) | Petroleum coke composition | |
| KR20120035946A (en) | Process for producing ferro coke | |
| US4613363A (en) | Process of making silicon, iron and ferroalloys | |
| US3619376A (en) | Method of making metallurgical coke briquettes from coal, raw petroleum coke, inert material and a binder | |
| IE902595A1 (en) | A process for the manufacture of fuel briquettes | |
| US4419186A (en) | Process for making strong metallurgical coke | |
| NO147223B (en) | PROCEDURE FOR CONTROLLED REMOVAL OF HEATING MATERIALS | |
| US3546076A (en) | Method of producing metallurgical coke | |
| US3770418A (en) | Method of melting iron with lumps of carbon coke | |
| US3619148A (en) | Metallurgical coke | |
| US2869990A (en) | Process of producing carbides | |
| US3642465A (en) | Process for the production of highly prereduced oxide pellets | |
| US2780536A (en) | Flue-dust sinter and method of manufacture | |
| US2897057A (en) | Process of winning elemental phosphorus | |
| US3190746A (en) | Process for use of raw petroleum coke in blast furnaces | |
| US6159603A (en) | Method for the use of material containing carbon in the electrolytic production of aluminium | |
| US2794728A (en) | Process of making a flowable solid ore-carbon mass | |
| US2077651A (en) | Treatment of zinciferous materials | |
| US3144413A (en) | Calcium carbide manufacture | |
| DK172102B1 (en) | Process for the production of expanded, burnt clay and the use of steel roll mud |