US3761369A - Process for the electrolytic reclamation of spent etching fluids - Google Patents
Process for the electrolytic reclamation of spent etching fluids Download PDFInfo
- Publication number
- US3761369A US3761369A US00190147A US3761369DA US3761369A US 3761369 A US3761369 A US 3761369A US 00190147 A US00190147 A US 00190147A US 3761369D A US3761369D A US 3761369DA US 3761369 A US3761369 A US 3761369A
- Authority
- US
- United States
- Prior art keywords
- spent
- cathode
- copper
- chamber
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005530 etching Methods 0.000 title abstract description 63
- 239000012530 fluid Substances 0.000 title abstract description 46
- 238000000034 method Methods 0.000 title abstract description 21
- 230000008569 process Effects 0.000 title description 8
- 239000010949 copper Substances 0.000 abstract description 57
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 56
- 229910052802 copper Inorganic materials 0.000 abstract description 56
- 150000001450 anions Chemical class 0.000 abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 9
- 239000003014 ion exchange membrane Substances 0.000 abstract description 8
- 239000007864 aqueous solution Substances 0.000 abstract description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 239000002699 waste material Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 23
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 22
- 229910001447 ferric ion Inorganic materials 0.000 description 21
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 18
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 17
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 14
- 239000011651 chromium Substances 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 230000008929 regeneration Effects 0.000 description 14
- 238000011069 regeneration method Methods 0.000 description 14
- 238000006722 reduction reaction Methods 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 229910001448 ferrous ion Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- KPVWDKBJLIDKEP-UHFFFAOYSA-L dihydroxy(dioxo)chromium;sulfuric acid Chemical compound OS(O)(=O)=O.O[Cr](O)(=O)=O KPVWDKBJLIDKEP-UHFFFAOYSA-L 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 8
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 7
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000003411 electrode reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000003011 anion exchange membrane Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229910000978 Pb alloy Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229960002089 ferrous chloride Drugs 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000036647 reaction Effects 0.000 description 2
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000784732 Lycaena phlaeas Species 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229940055042 chromic sulfate Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 229910000356 chromium(III) sulfate Inorganic materials 0.000 description 1
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 1
- 239000011696 chromium(III) sulphate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/46—Regeneration of etching compositions
Definitions
- This invention is directed to the method and apparatus for the electrolytic reclamation of spent copper etching fluids, and also to overcoming the problem of waste discharge stream pollution of aqueous solutions of iron and chromium metal, by passing the spent etchant, as the catholyte, into the cathode chamber of a two chamber electrolytic cell having an anion permselective ion exchange membrane separating said cathode chamber from the anode chamber.
- the chemically reduced spent etchant of a previous batch comprises the anolyte.
- a direct electric current is passed through the cell, copper is reduced and deposited on the cathode, and the chemically reduced spent etching fluid is oxidized in the anode chamber to comprise the reclaimed etching fluid for further use.
- This invention is also directed to the electrolytic cell and the system of carrying out the invention as noted above.
- This invention relates to a process and apparatus for regenerating chemical etching solution. Specifically this invention relates to the batch electrolytic recovery of metals from spent etching solutions containing the same and simultaneously the regeneration of the spent etchant to its approximate original composition for further use. More particularly, the invention relates to the improved recovery of the metal copper from both ferric chloride and chromic acid-sulfuric acid etching solutions used in the manufacture of copper clad printed circuit boards, and the reclamation of the spent etching solution for further use as an etchant.
- the starting material is usually a copper clad plastic. If the finished product is to be a single sided board (circuitry on one side) the starting material has a layer of copper on one side of the plastic. For a two sided board (circuitry on both sides) the starting material is a sandwich (laminate) comprising a layer of copper on each side of a plastic layer. A common material is thick total. The copper thickness is designated in ounces per square inch. The most common copper layers are one ounce and two ounce copper, that is, one ounce or two ounces of copper per square foot per side. One ounce per square foot is approximately 0.014" thick, two ounce copper approximately 0.028" thick.
- transitory metals are of that class having more than one valence so that said chemical reduction and oxidation reactions in an electrolytic cell are effected.
- the etchant dissolves all the copper except that which is protected by 'ice the resist. After etching, the resist is removed by an ap limbate solvent such as trichloroethylene for screened resist or methylene chloride for photo resist. The result is a plastic sheet with the desired circuitry of copper.
- Etching is usually performed in a batch process.
- the etcher is filled with the etchant and the process is operated until the etchant is spent.
- the etching machine is then emptied, refilled with new etchant and the process continued.
- a solution of ferric chloride is used ranging from 30 Baum (2.1 N FeCl to 42 Baum (3.4 N FeCl One gallon of 42 Baum ferric chloride will dissolve 8 to 10 ounces of copper according to the following reaction:
- This method removes only a small amount of the cupric ions present since the bulk of the catholyte never contacts the cathode and only the cupric ions which directly contact the cathode can be plated.
- cupric ions Since the spent etching fluid is introduced into the anode chamber, the cupric ions must migrate through the separator to the cathode chamber. Not only cupric ions but ferric and ferrous ions also migrate to the cathode chamber and ferric and ferrous ions are present in two to three times the concentration of cupric ions, more ferrous and ferric ions migrate to the cathode chamber than cupric ions. Thus, most of the cupric ions remain in the efiluent from the anode chamber.
- the anion selective membrane prevents passage of the ferric ions from the anode to cathode chamber and prevents migration of cupric ions from the cathode to the anode chamber.
- a further object of this invention is to meet the requirements of the pollution laws and overcome the objections and problems so critically raised at the present time to ordinary disposal by dumping into rivers, lakes, etc. corrosion of metallic drain pipes, etc.
- FIG. 1 is a schematic diagram of an electrolytic ferric chloride etching fluid regeneration cell with the chemical reactions taking place therein.
- FIG. 2 is a schematic diagram of an electrolytic chromic acid-sulfuric acid etching fluid regeneration cell with the chemical reactions taking place therein.
- FIG. 3 is a schematic diagram of the entire system in volved in the regeneration of the etching fluid showing the overall flow of the spent etchant and the regenerated etching solution through the system.
- a twochambered cell is used such as shown in FIG. 1.
- the cathode chamber (4) and the anode chamber (5) are separated by an anion permselective ion exchange membrane (2) and regeneration is effected batchwise.
- Spent 42 Baum ferric chloride (6) contains the following chemical species:
- FeCl (0.85 N to 1.7 N) FeCl (1.7 N to 2.5 N) CuCl (1.7 N to 2.5 N)
- Regeneration is performed in two phases.
- the spent etching fluid (6) is placed in the cathode chamber (4) and the chemically reduced spent fluid (7) obtained from the cathode chamber at the end of a previous batch run, is placed in the anode chamber (5) and a direct current is passed through the cell through electrodes (1) and (3), accompanied preferably but not necessarily with agitation.
- Substantially all the remaining ferric ions (Fe+ in the spent fluid (6 in the cathode chamber (4) are first reduced to ferrous ions (Fe+ Following reductions of ferric ions, cupric ions (Cu+ are only then reduced to copper and plated on the cathode (3).
- ferrous chloride FeCl solution in the cathode chamber (4) is the electrolyte of the anode chamber (5) in a subsequent batch operation.
- a direct current is passed through the cell and the following reaction occurs at the anode.
- the plated copper is physically removed from the cathode (3) and the regenerated ferric chloride in chamber (5) is ready for reuse as an etchant.
- the composition of the anode is preferably graphite and the cathode, titanium.
- the perm-selective anion exchange membrane (2) is one of the many well known in the art, as for example, those described in the Clarke, US Pat. Nos. 2,730,768 and 2,731,411 of J an. 17, 1956, and others manufactured by Ionics, Incorporated, of Watertown, Mass, and to be further noted hereinafter.
- a two chamber cell is used such as shown in FIG. 2, like numerals being used for like parts in FIG. 1.
- the cathode chamber (4) and the anode chamber (5) are separated by an anion selective ion exchange membrane (2) and regeneration is performed by a batch method.
- Spent chromic acid etching fluid contains the following species:
- H CrO (1.4 N to 1.9 N) H 80 (0.5 N to 1.3 N) Cr (SO (1.8 N to 2.3 N) CuSO (1.8 N to 2.3 N)
- Regeneration is performed in two phases.
- the spent etching fluid is placed in the cathode chamber (4)
- a chemically reduced spent etching fluid from the cathode chamber of a previously run batch is placed in the anode chamber (5), and a direct current is passed through the cell through electrodes (1) and (2).
- the remaining Cr+ is reduced to Cr+ Following reduction of Cr Cu+ is reduced to Q1; and plated on the cathode.
- hydrogen is then evolved at the cathode which is an indication that all the Cr+ and Cu+ have been reduced and that the catholyte contains only a solution of
- the above reactions occur in the sequence stated because of the electrochemical reduction potentials which are as follows.
- the resulting Cr (SO solution is transferred to the anode chamber (5), the cathode chamber is filled with spent etching fluid and a direct current is passed through the cell. The following reaction occurs at the anode.
- the plated copper is easily physically stripped from the cathode and the regenerated chromic acid is ready for reuse as an etchant.
- FIG. 3 is a schematic representation of the entire system and is self-explanatory. The important novel features here are:
- the means termed a transfer loop, whereby the chemically reduced spent etchant of the cathode chamber D may be pumped, when valve X is in its open position, into anode chamber E after the oxidized contents of the anode chamber E (regenerated etching fluid) has been removed by a pump (P) to the regenerated etching solution tank.
- a transfer loop whereby the chemically reduced spent etchant of the cathode chamber D may be pumped, when valve X is in its open position, into anode chamber E after the oxidized contents of the anode chamber E (regenerated etching fluid) has been removed by a pump (P) to the regenerated etching solution tank.
- Anion membrane Anode reaction:
- EXAMPLE I 220 ml. of spent chromic acid-sulfuric acid etching solution was placed in the cathode chamber of a two chamber cell.
- the composition of the spent etchant was 2.38 N H2CI'O4, N H2504, N CI'2(SO4)3 and 1.36 N CuSO 210 ml. of 3.40 N H was placed in the anode chamber of the cell.
- the sulfuric acid used as an anolyte solution does not represent chemically reduced spent etching fluid but was used as a starting solution in in order to prepare the first batch of chemically reduced spent etching solution which was then transferred to the anode chamber after all Cr+ had been reduced to CH and the Cu+ has been removed by plating to Q on the cathode. After all Cr+ and Cu+ was reduced, the sulfuric acid anolyte was discarded.
- the anode was composed of lead and the cathode was commercially pure titanium.
- the membrane separating the two chambers was an anion selective ion exchange membrane supplied by Ionics, Inc. and designated 111BZL183 (see Ionics, Inc. Bulletin No. AR111.0-C) which is essentially a polymer of vinyl compounds containing quaternary ammonium groups and tertiary amine groups.
- the membrane area and electrode areas were each 4 square inches.
- a direct current of 2.4 amps was passed for 450 minutes preferably with agitation in the cathode chamber, at which time hydrogen gas began to evolve from the cathode. The current flow was terminated and samples analyzed.
- the catholyte contained 208 ml. of solution having a composition of 2.80 N Cr (SO 0.01 N H 80 and 0.05 N CuSO This solution was then ready to be transferred to the anode chamber for oxidation of the to H CrO The sulfuric acid anolyte used as a starting solution was discarded. 9 grams of copper metal were recovered from the cathode. The original catholyte contained 9.5 grams of dissolved copper. Thus, 95% of the copper was recovered as copper metal. The current efficiency was calculated for the catholyte. 2.4 amps was passed for 450 minutes for a total of 1080 amp minutes or 0.67 Faraday.
- a total of 0.58 chemical equivalents of Cr+ and Cu+ was reduced in the cathode chamber at a current efliciency of 87%.
- the above catholyte was transferred to the anode chamber of the cell and the cathode chamber was filled with 220 ml. of spent etching fluid.
- the composition of the spent etchant was 2.38 N H CrO 2.24 N H SO 1.36 N Cr (SO and 1.36 N CuSO
- a direct current of 4.2 amps was passed for 405 minutes at which time hydrogen gas began to evolve from the cathode. The current flow was terminated and samples analyzed.
- the composition of the catholyte was 3.10 N Cr (SO 0.10 N H 50 and 0.04 N CuSO This solution was then ready to be subsequently transferred to the anode chamber for oxidation of the Cr (SO to H CrO).
- the composition of the anolyte was 3.20 N H CrO 3.95 N H SO 0.01 N Cr (SO and 0.12 N CuSO This solution was then ready for reuse as an etchant. 9.1 grams of copper metal were recovered from the cathode. The original catholyte contained 9.9 grams of dissolved copper. Thus 92% of the copper was recovered as copper metal.
- the current efliciency was calculated for both the anolyte and catholyte. 4.2 amps was passed for 405 minutes a total of 1700 amp minutes or 1.05 Faradays. A total of 0.63 chemical equivalents of Cr (SO was oxidized at the anode to H CrO at a current efficiency of 60%. A total of 0.60 equivalents of H CrO and CuSO were reduced at the cathode to Cr (SO and 92 respectively at a current efliciency of 57%.
- EXAMPLE 2 1600 ml. of a spent 42 B. ferric chloride etching fluid was put in the cathode chamber of a two compartment cell as described above.
- the composition of the spent etchant was 1.79 N FeCl 1.47 N FeCl and 1.79 N CuCl 1600 ml. of a previously reduced spent etchant, from which the copper had been substantially removed following the reduction of ferric ions to ferrous ions, was placed in the anode chamber of the cell.
- the composition of this solution was 3.30 N FeCl and 0.04 N CuCl No FeCl was present.
- the anode was composed of AGR-58 graphite supplied by National Carbon Company.
- the cathode was made of commercially pure titanium.
- the membrane separating the two chambers was an anion selective ion exchange membrane supplied by Ionics, Inc. and designated 111BZL183, noted above.
- the membrane area and electrode areas were each 48 square inches.
- a direct current of 96 amps was passed for 84 minutes at which time hydrogen gas began to evolve from the cathode. The current flow was terminated and samples analyzed.
- the composition of the anolyte was 2.96 N FeCl and 0.15 CuCl No FeCl was present. This solution was then ready for reuse as an etchant.
- the composition of the catholyte was 2.91 N FeCI 0.05 N FeCl and 0.05 N CuCl This solution was then ready to be subsequently transferred to the anode chamber for oxidation of the FeCl to FeCl 90 grams of copper was recovered from the cathode.
- the original catholyte contained 97 grams of dissolved copper. Thus, 93% of the copper was recovered as copper metal.
- the current efficiency was calculated for both catholyte and anolyte. 96 amps was passed for 84 minutes, a total of 8064 amp minutes or 5.00 Faradays (1608 amp minutes/Faraday).
- the method for the reclamation of spent copper etching fluid comprising: introducing said spent etching fluid into the cathode chamber of an electrolytic cell, said cell having a cathode chamber and an anode chamber defined by an anion permselective ion exchange membrane disposed therebetween and having a cathode and an anode in their respective chambers, introducing an electrolyte into said anode chamber, passing a direct electric current through said cell causing the chemical reduction in said cathode chamber of unspent etchant followed by the plating of copper metal from said spent copper etching fluid on said cathode, said anode electrolyte being the electrolytically chemically reduced fluid obtained from said cathode chamber of a previous run, separately removing the plated copper metal from said cathode and the oxidized fluid electrolyte from said anode chamber as the reclaimed spent etching fluid products.
- the etching fluid comprises an aqueous solution of a metal compound of the transistory group consisting of iron and chromium.
- etching fluid is an aqueous solution of ferric chloride.
- etching fluid is an aqueous solution of chromic acid and sulfuric acid.
- the unspent etching fluid comprises substantially a solution of ferric chloride and the spent etchant comprises a solution of ferrous, ferric, and cupric chlorides.
- the unspent etching fluid comprises substantially a sulfuric acid solution of chromic acid and the spent etchant comprises substantially a sulfuric acid solution of chromic acid, copper sulfate, and chromic sulfate.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Abstract
THIS INVENTION IS DIRECTED TO THE METHOD AND APPARATUS FOR THE ELECTROLYTIC RECLAMATION OF SPENT COPPER ETCHING FLUIDS, AND ALSO TO OVERCOMING THE PROBLEM OF WASTE DISCHARGE STREAM POLLUTION OF AQUEOUS SOLUTIONS OF IRON AND CHROMIUM METAL, BY PASSING THE SPENT ETCHANT, AS THE CATHOLYTE, INTO THE CATHODE CHAMBER OF A TWO CHAMBER ELECTROLYTIC CELL HAVING AN ANION PERMSELECTIVE ION EXCHANGE MEMBRANE SEPARATING SAID CATHODE CHAMBER FROM THE ANODE CHAMBER. THE CHEMICALLY REDUCED SPENT ETCHANT OF A PREVIOUS BATCH COMPRISES THE ANOLYTE. WHEN A DIRECT ELECTRIC CURRENT IS PASSED THROUGH THE CELL, COPPER IS REDUCED AND DEPOSITED ON THE CATHODE, AND THE CHEMICALLY REDUCED SPENT ETCHING FLUID IS OXIDIZED IN THE ANODE CHAMBER TO COMPRISE THE RECLAIMED ETCHING FLUID FOR FURTHER USE. THIS INVENTION IS ALSO DIRECTED TO THE ELECTROLYTIC CELL AND THE SYSTEM OF CARRYING OUT THE INVENTION AS NOTED ABOVE.
Description
Sept. 25, 1973. c. E. TIRRELL 3,751,359
' PROCESS FOR THE ELECTROLYTIC RECLAMATION OF SPENT ETCHING FLUIDS Filed Oct. 18, 1971 2 Sheets-Sheet 1 9 GRAPHITE ANODE (2) ANION EXCHANGE MEMBRANE TITANIUM CATHODE @cATHoDE CHAMBER @ANoBE CHAMBER CATHODE REACTIONS 2 FBOI 2 2FBCI2 b ZFeCl 2mm 201' 0u6| gg 20:"
MEMBRANE 4cr' 40F ANQDE 4Fe0l 4CI --4Fa0l OVERALL REACTIONS ZFBCIZ CuCl 2Fe6l Ql 7 FIG! (D LEAD 0R LEAD ALLOY ANODE ANION EXCHANGE MEMBRANE (z) TITANIUM GATHODE FIGZ GATHODE REACTIONS Cr (S0 c (so 2 +eH so Cr (SO 8H2O 330 3Cu$0 sQg-l- 35oz MEMBRANE esoZ 6303 ANODE REACTIONS 2Qr2 5 o+ 5oz-v-4H Cr0 '1-l2 H2504 INVENTOR CHARLES E. TIRRELL OVERALL REACTIONS BY, Z
f 804 3 92 H2??? 2 94., ATTORNEY Sept. 25, 1973 v c. E. TIRRELL 3,761,369
PROCESS FOR THE ELECTROLYTIC RECLAMATION 0F SPENT ETCHING FLUIDS Filed Oct. 18, 1971 2 Sheets-Sheet 2 O. O 3 5% m 5 E E 0': Z m
M LL (.i. a
l Z 12 MI; 2 l ll-o I i u: i lNVENTOR .1 CHARLES E.T|RRELL BY E ATTORNEY United States Patent O U.S. Cl. 204-151 7 Claims ABSTRACT OF THE DISCLOSURE This invention is directed to the method and apparatus for the electrolytic reclamation of spent copper etching fluids, and also to overcoming the problem of waste discharge stream pollution of aqueous solutions of iron and chromium metal, by passing the spent etchant, as the catholyte, into the cathode chamber of a two chamber electrolytic cell having an anion permselective ion exchange membrane separating said cathode chamber from the anode chamber. The chemically reduced spent etchant of a previous batch comprises the anolyte. When a direct electric current is passed through the cell, copper is reduced and deposited on the cathode, and the chemically reduced spent etching fluid is oxidized in the anode chamber to comprise the reclaimed etching fluid for further use. This invention is also directed to the electrolytic cell and the system of carrying out the invention as noted above.
This invention relates to a process and apparatus for regenerating chemical etching solution. Specifically this invention relates to the batch electrolytic recovery of metals from spent etching solutions containing the same and simultaneously the regeneration of the spent etchant to its approximate original composition for further use. More particularly, the invention relates to the improved recovery of the metal copper from both ferric chloride and chromic acid-sulfuric acid etching solutions used in the manufacture of copper clad printed circuit boards, and the reclamation of the spent etching solution for further use as an etchant.
In the manufacture of printed circuit boards, the starting material is usually a copper clad plastic. If the finished product is to be a single sided board (circuitry on one side) the starting material has a layer of copper on one side of the plastic. For a two sided board (circuitry on both sides) the starting material is a sandwich (laminate) comprising a layer of copper on each side of a plastic layer. A common material is thick total. The copper thickness is designated in ounces per square inch. The most common copper layers are one ounce and two ounce copper, that is, one ounce or two ounces of copper per square foot per side. One ounce per square foot is approximately 0.014" thick, two ounce copper approximately 0.028" thick. In the manufacture of such circuit boards, common practice is to silk screen the board image on the laminate or to apply a photo sensitive resist (such as Kodak Photo Resist) and apply the image photographically by direct contact with a photographic negative or positive. After the resist is applied, the laminate is subjected to an etchant such as ferric chloride, chromic acid-sulfuric acid, etc. Other etchants are known to effect the etching of copper, such as cupric chloride, ammonium persulfate, etc. However, the present invention is restricted to the use of ferric chloride and chromic acidsulfuric acid containing the transitory metals necessary for chemically reduction and oxidation as will be described in detail hereinafter. It will be understood that transitory metals are of that class having more than one valence so that said chemical reduction and oxidation reactions in an electrolytic cell are effected. The etchant dissolves all the copper except that which is protected by 'ice the resist. After etching, the resist is removed by an ap propriate solvent such as trichloroethylene for screened resist or methylene chloride for photo resist. The result is a plastic sheet with the desired circuitry of copper.
Etching is usually performed in a batch process. The etcher, is filled with the etchant and the process is operated until the etchant is spent. The etching machine is then emptied, refilled with new etchant and the process continued. In etching with the ferric chloride, a solution of ferric chloride is used ranging from 30 Baum (2.1 N FeCl to 42 Baum (3.4 N FeCl One gallon of 42 Baum ferric chloride will dissolve 8 to 10 ounces of copper according to the following reaction:
After 8 to 10 ounces of copper has been dissolved, only 55% to 70% of the ferric chloride has been consumed. However, the reaction rate is uneconomically slow and the etching fluid must be replaced.
In etching copper with chromic acid-sulfuric acid etching fluid, a solution of 12 %chromic acid (3.69 N H CrO and 19% sulfuric ocid (4.9 N H 50 has been employed. One gallon of this etchant will dissolve approximately 8 ounces of copper, according to the following reaction:
After 8 ounces of copper has been dissolved, the chromic acid has been 50%55% consumed. However, the etching reaction has become uneconomically slow and the etchant must be replaced.
Disposal of spent etchant is difficult and the usual pro cedure is to haul and dump it in an area where restrictions are minimal. With present day anti-pollution laws in effect, the spent baths cannot be emptied into sewage systems or surface Waters without violating such laws. Spent etching solutions of the character indicated herein, even when greatly diluted, are detrimental to marine growth and thier high content of dissolved metals interferes with bacterial action used in most sewage disposal plants. Accordingly, sewering spent etchants is prohibited in most sewage areas. Building deep dry wells for disposal is very limited and offers no lasting solution to the problem.
The prior art has recognized the problem resulting in the attempt to regenerate spent etching solutions as noted by the US. Pat. to Eisler No. 2,748,071. This patent disclosure is directed to a continuous steady-state process wherein the spent etching solution is electrolytically treated in a cell which has a porous partition separating the cathode and anode chambers, and wherein a continuously moving cathode carries deposited copper from the cell through squeeze rollers and scraper blades for removing the deposited copper metal therefrom.
In the form of the cell described in column 2, lines 31 to 45 of the above patent, the spent etchant is introduced into the cathode chamber and flows through a porous separator into the anode chamber. Only a small fraction of the copper is removed because of conditions existing in the cathode compartment. They are:
(1) The bulk of the remaining ferric ions are not reduced to ferrous ions and thus, any copper plated may be re-dissolved according to the reaction:
(2) As the moving cathode moves up through the catholyte in the cathode chamber, the ferric ions in contact with the cathode are reduced to ferrous ions and cupric ions then plate as copper in a very thin layer which is removed from the catholyte before it can be dissolved by ferric ions.
This method removes only a small amount of the cupric ions present since the bulk of the catholyte never contacts the cathode and only the cupric ions which directly contact the cathode can be plated.
(3) Ferric ions generated in the anode chamber will transfer through the porous separator to the cathode chamber where they re-dissolve plated copper and are thereby reduced to ferrous ions.
The net result of these conditions is that only a small amount of the copper is removed form the spent etching fluid since most of the current is expended in reducing ferric ions which back migrate from the anode to the cathode chamber.
In the form of the cell described in column 2, line 46 through column 3, line 6, in said patent, the spent etching fluid is introduced into the anode chamber. Although there is not necessarily a flow through the separator between the anode and cathode chambers, the existing conditions prevent the removal of most of the copper. These conditions are:
1) Since the spent etching fluid is introduced into the anode chamber, the cupric ions must migrate through the separator to the cathode chamber. Not only cupric ions but ferric and ferrous ions also migrate to the cathode chamber and ferric and ferrous ions are present in two to three times the concentration of cupric ions, more ferrous and ferric ions migrate to the cathode chamber than cupric ions. Thus, most of the cupric ions remain in the efiluent from the anode chamber.
(2) Most of the current passed from the cathode to the anode is used to reduce ferric ions migrated from the anode chamber and the bulk of the copper never reaches the cathode chamber where it can be plated and removed.
The advantages of the present inventions are:
(1) The anion selective membrane prevents passage of the ferric ions from the anode to cathode chamber and prevents migration of cupric ions from the cathode to the anode chamber.
(2) Since all the ferric ions in the cathode chamber are first reduced at the cathode to ferrous ions the copper then plated out cannot redissolve and essentially all the cupric ions can be removed from the spent etching solution.
(3) Since ferric and ferrous ions cannot migrate through the anion exchange membrane from the anode to the cathode chamber, essentially all the ferrous and ferric ions remain in the anode chamber until all ferrous ions have been oxidized to ferric ions and recovery of the etching fluid is virtually 100%.
It is an object of the present invention to provide a process and apparatus for batchwise regeneration of the et chant of a spent etching solution of the character noted hereinabove in a most efficient and economical manner.
It is a further object of the present invention to recover the copper as metallic copper to the extent of over 90% and regenerate the etching solution for further reuse.
A further object of this invention is to meet the requirements of the pollution laws and overcome the objections and problems so critically raised at the present time to ordinary disposal by dumping into rivers, lakes, etc. corrosion of metallic drain pipes, etc.
Many other objects, advantages and features of invention reside in the construction, arrangement and combination of parts involved in the invention and its practice as will be understood from the following description and accompanying drawing wherein:
FIG. 1 is a schematic diagram of an electrolytic ferric chloride etching fluid regeneration cell with the chemical reactions taking place therein.
FIG. 2 is a schematic diagram of an electrolytic chromic acid-sulfuric acid etching fluid regeneration cell with the chemical reactions taking place therein.
FIG. 3 is a schematic diagram of the entire system in volved in the regeneration of the etching fluid showing the overall flow of the spent etchant and the regenerated etching solution through the system.
Regeneration of both spent ferric chloride and spent chromic acid-sulfuric acid etching fluids are achieved in electrochemical cells shown in FIGS. 1 and 2.
In the regeneration of spent ferric chloride, a twochambered cell is used such as shown in FIG. 1. The cathode chamber (4) and the anode chamber (5) are separated by an anion permselective ion exchange membrane (2) and regeneration is effected batchwise.
Spent 42 Baum ferric chloride (6) contains the following chemical species:
FeCl (0.85 N to 1.7 N) FeCl (1.7 N to 2.5 N) CuCl (1.7 N to 2.5 N)
Regeneration is performed in two phases. In the first phase the spent etching fluid (6) is placed in the cathode chamber (4) and the chemically reduced spent fluid (7) obtained from the cathode chamber at the end of a previous batch run, is placed in the anode chamber (5) and a direct current is passed through the cell through electrodes (1) and (3), accompanied preferably but not necessarily with agitation. Substantially all the remaining ferric ions (Fe+ in the spent fluid (6 in the cathode chamber (4) are first reduced to ferrous ions (Fe+ Following reductions of ferric ions, cupric ions (Cu+ are only then reduced to copper and plated on the cathode (3). Following reduction of the cupric ions, hydrogen gas is only then evolved from the cathode (3) which is an indication that the ferric and cupric ions have been completely reduced and the catholyte in chamber (4) then contains only ferrous chloride (FeCl which will form the starting anolyte in the anode chamber (7) in a subsequent batch operation of the cell. The surplus chloride ions (Cl-) released in chamber (4) from the reduction of both FeCl and CuCl pass through the anion permselective membrane (2) into the anode chamber (5) where oxidation of the FeCl to FeCl takes place at the anode in accordance with the chemical reactions noted in FIG. 1. It is to be noted that the chemically reduced spent etchant in the cathode chamber (4) at the end of the run is transferred through line (10) through valve (9) by pump (8) into anode chamber (5) as the anolyte electrolyte of a subsequent batch operation. The regenerated etchant is removed from anode chamber (5) through outlet (11).
The reactions above occur in the sequence stated because of the electrochemical reduction potentials which are as follows, as shown in Langs Handbook of Chemistry, revised 10th edition, 1967McGraW-Hill Book Company.
Electrode reaction: E red (volts) Fe++++e Fe++ 0.77 Cu+++2e- Cu 0.34 2H++2e+H 0.00
Following reduction of ferric ions and removal of copper by plating on the cathode, the resulting ferrous chloride (FeCl solution in the cathode chamber (4) is the electrolyte of the anode chamber (5) in a subsequent batch operation. A direct current is passed through the cell and the following reaction occurs at the anode.
E ox (volts) 0.77
Electrode reaction:
Fe++- Fe++++e Electrode reaction: E ox (volts) 2Cl" Cl +2e 1.36
Thus, while a batch of spent etching fluid is being treated in the cathode chamber (4) to reduce ferric ions and remove copper, leaving only ferrous chloride, a previously treated batch transferred to the anode chamber (5) is being oxidized to ferric chloride.
The cell reactions for regeneration of 50% spent ferric chloride etching fluid are as follows:
Anode reactions:
Overall reactions:
The plated copper is physically removed from the cathode (3) and the regenerated ferric chloride in chamber (5) is ready for reuse as an etchant. In this cell the composition of the anode is preferably graphite and the cathode, titanium. The perm-selective anion exchange membrane (2) is one of the many well known in the art, as for example, those described in the Clarke, US Pat. Nos. 2,730,768 and 2,731,411 of J an. 17, 1956, and others manufactured by Ionics, Incorporated, of Watertown, Mass, and to be further noted hereinafter.
In the regeneration of spent chromic acid-sulfuric acid etching fluid, a two chamber cell is used such as shown in FIG. 2, like numerals being used for like parts in FIG. 1. The cathode chamber (4) and the anode chamber (5) are separated by an anion selective ion exchange membrane (2) and regeneration is performed by a batch method.
Spent chromic acid etching fluid contains the following species:
H CrO (1.4 N to 1.9 N) H 80 (0.5 N to 1.3 N) Cr (SO (1.8 N to 2.3 N) CuSO (1.8 N to 2.3 N)
Regeneration is performed in two phases. In the first phase, the spent etching fluid is placed in the cathode chamber (4) a chemically reduced spent etching fluid from the cathode chamber of a previously run batch is placed in the anode chamber (5), and a direct current is passed through the cell through electrodes (1) and (2). The remaining Cr+ is reduced to Cr+ Following reduction of Cr Cu+ is reduced to Q1; and plated on the cathode. Following the reduction of all the cupric ions, hydrogen is then evolved at the cathode which is an indication that all the Cr+ and Cu+ have been reduced and that the catholyte contains only a solution of The above reactions occur in the sequence stated because of the electrochemical reduction potentials which are as follows.
Electrode reaction: E red (volts) CrO +8H++3e Cr+ +4H O 1.33 Cu+ +2e Q1 .34 2H++2e- H 0.00
Following reduction of Cr+ and removal of copper by plating on the cathode (3), the resulting Cr (SO solution is transferred to the anode chamber (5), the cathode chamber is filled with spent etching fluid and a direct current is passed through the cell. The following reaction occurs at the anode.
Electrode reaction: E ox (volts) Cr +4H O CrO +8H +3e --l.33
Since the oxidation potential for evolution of oxygen is lower than the above potential for oxidation of Cr+ to Cr+ an anode material having a high oxygen overvoltage is preferable. Lead and lead alloys of tin, bismuth and antimony have proven to be satisfactory.
Thus, while a batch of spent etching fluid is being treated in the cathode chamber to reduce Cr and remove copper by plating it on the cathode, a batch previously so treated in the cathode chamber and which had been transferred to the anode chamber is being oxidized to chromic acid at the anode (1) in the anode chamber (5). The cell reactions for regeneration of 50% spent chromic acid-sulfuric acid etching fluid are as follows:
The plated copper is easily physically stripped from the cathode and the regenerated chromic acid is ready for reuse as an etchant.
FIG. 3 is a schematic representation of the entire system and is self-explanatory. The important novel features here are:
(1) The use of an anion permselective ion exchange membrane C to define the anode chamber E and cathode chamber D.
(2) The means, termed a transfer loop, whereby the chemically reduced spent etchant of the cathode chamber D may be pumped, when valve X is in its open position, into anode chamber E after the oxidized contents of the anode chamber E (regenerated etching fluid) has been removed by a pump (P) to the regenerated etching solution tank. It is to be noted that while the batch operation of the system may be by manual attendance, the operation could very well be maintained by well known automatic electronically controlled pumps, valves, etc.
The following examples will serve to further illustrate the invention:
Anion membrane: Anode reaction:
Overall reaction:
EXAMPLE I 220 ml. of spent chromic acid-sulfuric acid etching solution was placed in the cathode chamber of a two chamber cell. The composition of the spent etchant was 2.38 N H2CI'O4, N H2504, N CI'2(SO4)3 and 1.36 N CuSO 210 ml. of 3.40 N H was placed in the anode chamber of the cell. The sulfuric acid used as an anolyte solution does not represent chemically reduced spent etching fluid but was used as a starting solution in in order to prepare the first batch of chemically reduced spent etching solution which was then transferred to the anode chamber after all Cr+ had been reduced to CH and the Cu+ has been removed by plating to Q on the cathode. After all Cr+ and Cu+ was reduced, the sulfuric acid anolyte was discarded. The anode was composed of lead and the cathode was commercially pure titanium.
The membrane separating the two chambers was an anion selective ion exchange membrane supplied by Ionics, Inc. and designated 111BZL183 (see Ionics, Inc. Bulletin No. AR111.0-C) which is essentially a polymer of vinyl compounds containing quaternary ammonium groups and tertiary amine groups. The membrane area and electrode areas were each 4 square inches. A direct current of 2.4 amps was passed for 450 minutes preferably with agitation in the cathode chamber, at which time hydrogen gas began to evolve from the cathode. The current flow was terminated and samples analyzed.
The catholyte contained 208 ml. of solution having a composition of 2.80 N Cr (SO 0.01 N H 80 and 0.05 N CuSO This solution was then ready to be transferred to the anode chamber for oxidation of the to H CrO The sulfuric acid anolyte used as a starting solution was discarded. 9 grams of copper metal were recovered from the cathode. The original catholyte contained 9.5 grams of dissolved copper. Thus, 95% of the copper was recovered as copper metal. The current efficiency was calculated for the catholyte. 2.4 amps was passed for 450 minutes for a total of 1080 amp minutes or 0.67 Faraday. A total of 0.58 chemical equivalents of Cr+ and Cu+ was reduced in the cathode chamber at a current efliciency of 87%. The above catholyte was transferred to the anode chamber of the cell and the cathode chamber was filled with 220 ml. of spent etching fluid. The composition of the spent etchant was 2.38 N H CrO 2.24 N H SO 1.36 N Cr (SO and 1.36 N CuSO A direct current of 4.2 amps was passed for 405 minutes at which time hydrogen gas began to evolve from the cathode. The current flow was terminated and samples analyzed. The composition of the catholyte was 3.10 N Cr (SO 0.10 N H 50 and 0.04 N CuSO This solution was then ready to be subsequently transferred to the anode chamber for oxidation of the Cr (SO to H CrO The composition of the anolyte was 3.20 N H CrO 3.95 N H SO 0.01 N Cr (SO and 0.12 N CuSO This solution was then ready for reuse as an etchant. 9.1 grams of copper metal were recovered from the cathode. The original catholyte contained 9.9 grams of dissolved copper. Thus 92% of the copper was recovered as copper metal.
The current efliciency was calculated for both the anolyte and catholyte. 4.2 amps was passed for 405 minutes a total of 1700 amp minutes or 1.05 Faradays. A total of 0.63 chemical equivalents of Cr (SO was oxidized at the anode to H CrO at a current efficiency of 60%. A total of 0.60 equivalents of H CrO and CuSO were reduced at the cathode to Cr (SO and 92 respectively at a current efliciency of 57%.
EXAMPLE 2 1600 ml. of a spent 42 B. ferric chloride etching fluid was put in the cathode chamber of a two compartment cell as described above. The composition of the spent etchant was 1.79 N FeCl 1.47 N FeCl and 1.79 N CuCl 1600 ml. of a previously reduced spent etchant, from which the copper had been substantially removed following the reduction of ferric ions to ferrous ions, was placed in the anode chamber of the cell. The composition of this solution was 3.30 N FeCl and 0.04 N CuCl No FeCl was present. The anode was composed of AGR-58 graphite supplied by National Carbon Company. The cathode was made of commercially pure titanium.
The membrane separating the two chambers was an anion selective ion exchange membrane supplied by Ionics, Inc. and designated 111BZL183, noted above. The membrane area and electrode areas were each 48 square inches. A direct current of 96 amps was passed for 84 minutes at which time hydrogen gas began to evolve from the cathode. The current flow was terminated and samples analyzed.
The composition of the anolyte was 2.96 N FeCl and 0.15 CuCl No FeCl was present. This solution was then ready for reuse as an etchant.
The composition of the catholyte was 2.91 N FeCI 0.05 N FeCl and 0.05 N CuCl This solution was then ready to be subsequently transferred to the anode chamber for oxidation of the FeCl to FeCl 90 grams of copper was recovered from the cathode. The original catholyte contained 97 grams of dissolved copper. Thus, 93% of the copper was recovered as copper metal. The current efficiency was calculated for both catholyte and anolyte. 96 amps was passed for 84 minutes, a total of 8064 amp minutes or 5.00 Faradays (1608 amp minutes/Faraday). A total of 4.65 chemical equivalents of cupric and ferric ion were reduced in the cathode chamber at a current efliciency of 93%. A total of 4.74 chemical equivalents of ferric ion were oxidized at the anode at a current efficiency of 95 It will accordingly be apparent that in addition to the substantial economic advantages obtained by the extremely high recovery values and reuse of recovered etchant solutions, and a very important consideration of eliminating the pollution problem involved in discharging large quantities of metal containing spent etching plant sewage eflluents, are effectively overcome by the present invention.
I claim:
1. The method for the reclamation of spent copper etching fluid comprising: introducing said spent etching fluid into the cathode chamber of an electrolytic cell, said cell having a cathode chamber and an anode chamber defined by an anion permselective ion exchange membrane disposed therebetween and having a cathode and an anode in their respective chambers, introducing an electrolyte into said anode chamber, passing a direct electric current through said cell causing the chemical reduction in said cathode chamber of unspent etchant followed by the plating of copper metal from said spent copper etching fluid on said cathode, said anode electrolyte being the electrolytically chemically reduced fluid obtained from said cathode chamber of a previous run, separately removing the plated copper metal from said cathode and the oxidized fluid electrolyte from said anode chamber as the reclaimed spent etching fluid products.
2. The method of claim 1 wherein said method is carried out batchwise.
3. The method of claim 1 wherein the etching fluid comprises an aqueous solution of a metal compound of the transistory group consisting of iron and chromium.
4. The method of claim 1 wherein the etching fluid is an aqueous solution of ferric chloride.
5. The method of claim 1 wherein the etching fluid is an aqueous solution of chromic acid and sulfuric acid.
6. The method of claim 1 wherein the unspent etching fluid comprises substantially a solution of ferric chloride and the spent etchant comprises a solution of ferrous, ferric, and cupric chlorides.
7. The method of claim 1 wherein the unspent etching fluid comprises substantially a sulfuric acid solution of chromic acid and the spent etchant comprises substantially a sulfuric acid solution of chromic acid, copper sulfate, and chromic sulfate.
References Cited UNITED STATES PATENTS 2,748,071 5/1956 Eisler 204- X 2,865,823 12/1958 Harris et al. 204151 3,124,520 3/1964 Juda 20486 3,450,623 6/1969 100 et al. 20489 X 3,481,851 12/1969 Lancy 20489 X 3,595,765 7/1971 J00 20489 JOHN H. MACK, Primary Examiner A. C. PRESCOTT, Assistant Examiner U.S. Cl. X.R.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US19014771A | 1971-10-18 | 1971-10-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3761369A true US3761369A (en) | 1973-09-25 |
Family
ID=22700193
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00190147A Expired - Lifetime US3761369A (en) | 1971-10-18 | 1971-10-18 | Process for the electrolytic reclamation of spent etching fluids |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3761369A (en) |
Cited By (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3864227A (en) * | 1973-06-20 | 1975-02-04 | Amax Inc | Method for the electrolytic refining of copper |
| US3901776A (en) * | 1974-11-14 | 1975-08-26 | Cyprus Metallurg Process | Process for the recovery of copper from its sulfide ores |
| US3909381A (en) * | 1974-11-18 | 1975-09-30 | Raymond John L | Purification of chromium plating solutions by electrodialysis |
| US3926752A (en) * | 1973-04-09 | 1975-12-16 | John C Loretto | Direct recovery of metals from sulphide ores by leaching and electrolysis |
| US3933605A (en) * | 1973-11-12 | 1976-01-20 | United States Steel Corporation | Non-polluting pickling method |
| US3948738A (en) * | 1974-01-29 | 1976-04-06 | Kabushiki Kaisha Fuji Kuromu Sha | Process for the regeneration of exhausted chromium-plating solutions by two-stage diaphragm electrolysis |
| US3954594A (en) * | 1974-09-04 | 1976-05-04 | Rockwell International Corporation | Electrochemical cell for decreasing the cyanide and heavy metal content of an aqueous solution |
| US4013527A (en) * | 1974-08-05 | 1977-03-22 | Fuji Photo Film Co., Ltd. | Electrolytic oxidation of blix solution |
| US4049519A (en) * | 1976-10-06 | 1977-09-20 | Walter John Sloan | Carbonate reduction |
| US4051001A (en) * | 1974-08-26 | 1977-09-27 | Hitachi, Ltd. | Process for regenerating etching solution |
| US4107011A (en) * | 1975-03-17 | 1978-08-15 | Vladimir Ilich Kucherenko | Method of regeneration of spent etching solutions |
| US4118295A (en) * | 1976-04-20 | 1978-10-03 | Dart Industries Inc. | Regeneration of plastic etchants |
| US4126529A (en) * | 1977-08-05 | 1978-11-21 | Southern California Edison Company | Ferrous ion scrubbing of flue gas |
| US4128465A (en) * | 1978-02-13 | 1978-12-05 | Sybron Corporation | Electrodialysis of pickle liquor |
| US4149946A (en) * | 1978-03-21 | 1979-04-17 | Davis Walker Corporation | Recovery of spent pickle liquor and iron metal |
| EP0018592A1 (en) * | 1979-04-30 | 1980-11-12 | Siemens Aktiengesellschaft | Process for the regeneration of ammoniacal etching solutions for etching metallic copper |
| US4240884A (en) * | 1979-02-15 | 1980-12-23 | Oronzio De Nora Implanti Elettrochimici S.P.A. | Electrolytic production of alkali metal hypohalite |
| US4243501A (en) * | 1979-03-30 | 1981-01-06 | Michael Ladney, Jr. | Process and apparatus for the regeneration of chromic acid baths |
| US4287046A (en) * | 1978-08-11 | 1981-09-01 | Mitsubishi Jukogyo Kabushiki Kaisha | Process for treating electrolytic solution and apparatus therefor |
| US4306946A (en) * | 1980-08-18 | 1981-12-22 | General Electric Company | Process for acid recovery from waste water |
| US4318789A (en) * | 1979-08-20 | 1982-03-09 | Kennecott Corporation | Electrochemical removal of heavy metals such as chromium from dilute wastewater streams using flow through porous electrodes |
| US4324629A (en) * | 1979-06-19 | 1982-04-13 | Hitachi, Ltd. | Process for regenerating chemical copper plating solution |
| US4325792A (en) * | 1981-03-09 | 1982-04-20 | Vaughan Daniel J | Purification process |
| US4376019A (en) * | 1980-05-01 | 1983-03-08 | Imperial Chemical Industries Plc | Halogenation process |
| US4405420A (en) * | 1981-09-28 | 1983-09-20 | Chevron Research Company | Catalyzed electrochemical gasification of carbonaceous materials at anode and electrowinning of metals at cathode |
| US4412893A (en) * | 1980-03-17 | 1983-11-01 | National Research Development Corporation | Anode-assisted cation reduction |
| US4468305A (en) * | 1979-05-08 | 1984-08-28 | The Electricity Council | Method for the electrolytic regeneration of etchants for metals |
| US4482440A (en) * | 1983-10-06 | 1984-11-13 | Olin Corporation | Electrochemical cell and process for manufacturing temperature sensitive solutions |
| US4551213A (en) * | 1984-05-07 | 1985-11-05 | Duval Corporation | Recovery of gold |
| JPS61104092A (en) * | 1984-10-23 | 1986-05-22 | Sumitomo Special Metals Co Ltd | How to regenerate etching solution |
| US4592814A (en) * | 1983-05-23 | 1986-06-03 | Chevron Research Company | Electrochemical synthesis of humic acid and other partially oxidized carbonaceous materials |
| US4608137A (en) * | 1983-05-23 | 1986-08-26 | Chevron Research Company | Production of hydrogen at the cathode of an electrolytic cell |
| US4608136A (en) * | 1984-09-21 | 1986-08-26 | Chevron Research Company | Oxidation of carbonaceous material and electrodeposition of a metal at the cathode of an electrolytic cell |
| EP0396984A1 (en) * | 1989-05-12 | 1990-11-14 | International Business Machines Corporation | Regeneration of spent ferric chloride etchants |
| US4973380A (en) * | 1983-10-06 | 1990-11-27 | Olin Corporation | Process for etching copper base materials |
| US5045162A (en) * | 1989-12-12 | 1991-09-03 | Hoechst Aktiengesellschaft | Process for electrochemically regenerating chromosulfuric acid |
| US5074974A (en) * | 1990-06-08 | 1991-12-24 | Reilly Industries, Inc. | Electrochemical synthesis and simultaneous purification process |
| EP0539792A1 (en) * | 1991-10-28 | 1993-05-05 | Nittetsu Mining Co., Ltd. | Method for regenerating etchant |
| US5391266A (en) * | 1990-05-05 | 1995-02-21 | Hoechst Aktiengesellschaft | Method of regulating the throughput in the electrochemical regeneration of chromosulfuric acid |
| US5405507A (en) * | 1991-11-29 | 1995-04-11 | Eltech Systems Corporation | Electrolytic treatment of an electrolytic solution |
| US5496449A (en) * | 1991-04-02 | 1996-03-05 | Unitika, Ltd. | Method of treating salt bath liquid |
| US6063252A (en) * | 1997-08-08 | 2000-05-16 | Raymond; John L. | Method and apparatus for enriching the chromium in a chromium plating bath |
| WO2000026440A3 (en) * | 1998-11-03 | 2002-10-03 | Eilenburger Elektrolyse & Umwelttechnik Gmbh | Circular method for pickling copper and copper alloys |
| WO2011026253A1 (en) * | 2009-09-01 | 2011-03-10 | Mauricio Amigo Jimenez | Electrolytic cell for electrodialysis processes |
| US20140305800A1 (en) * | 2013-04-16 | 2014-10-16 | Palo Alto Research Center Incorporated | Sea water desalination system |
| US9673472B2 (en) | 2015-06-15 | 2017-06-06 | Palo Alto Research Center Incorporated | Redox desalination system for clean water production and energy storage |
| US9670077B2 (en) | 2013-04-16 | 2017-06-06 | Palo Alto Research Center Incorporated | Redox desalination system for clean water production and energy storage |
| CN113493915A (en) * | 2020-04-01 | 2021-10-12 | 健鼎(湖北)电子有限公司 | Regeneration method and system of acidic etching waste liquid |
-
1971
- 1971-10-18 US US00190147A patent/US3761369A/en not_active Expired - Lifetime
Cited By (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3926752A (en) * | 1973-04-09 | 1975-12-16 | John C Loretto | Direct recovery of metals from sulphide ores by leaching and electrolysis |
| US3864227A (en) * | 1973-06-20 | 1975-02-04 | Amax Inc | Method for the electrolytic refining of copper |
| US3933605A (en) * | 1973-11-12 | 1976-01-20 | United States Steel Corporation | Non-polluting pickling method |
| US3948738A (en) * | 1974-01-29 | 1976-04-06 | Kabushiki Kaisha Fuji Kuromu Sha | Process for the regeneration of exhausted chromium-plating solutions by two-stage diaphragm electrolysis |
| US4013527A (en) * | 1974-08-05 | 1977-03-22 | Fuji Photo Film Co., Ltd. | Electrolytic oxidation of blix solution |
| US4051001A (en) * | 1974-08-26 | 1977-09-27 | Hitachi, Ltd. | Process for regenerating etching solution |
| US3954594A (en) * | 1974-09-04 | 1976-05-04 | Rockwell International Corporation | Electrochemical cell for decreasing the cyanide and heavy metal content of an aqueous solution |
| US3901776A (en) * | 1974-11-14 | 1975-08-26 | Cyprus Metallurg Process | Process for the recovery of copper from its sulfide ores |
| US3909381A (en) * | 1974-11-18 | 1975-09-30 | Raymond John L | Purification of chromium plating solutions by electrodialysis |
| US4107011A (en) * | 1975-03-17 | 1978-08-15 | Vladimir Ilich Kucherenko | Method of regeneration of spent etching solutions |
| US4118295A (en) * | 1976-04-20 | 1978-10-03 | Dart Industries Inc. | Regeneration of plastic etchants |
| US4049519A (en) * | 1976-10-06 | 1977-09-20 | Walter John Sloan | Carbonate reduction |
| US4126529A (en) * | 1977-08-05 | 1978-11-21 | Southern California Edison Company | Ferrous ion scrubbing of flue gas |
| US4128465A (en) * | 1978-02-13 | 1978-12-05 | Sybron Corporation | Electrodialysis of pickle liquor |
| US4149946A (en) * | 1978-03-21 | 1979-04-17 | Davis Walker Corporation | Recovery of spent pickle liquor and iron metal |
| US4302304A (en) * | 1978-08-11 | 1981-11-24 | Mitsubishi Jukogyo Kabushiki Kaisha | Process for treating electrolytic solution |
| US4287046A (en) * | 1978-08-11 | 1981-09-01 | Mitsubishi Jukogyo Kabushiki Kaisha | Process for treating electrolytic solution and apparatus therefor |
| US4240884A (en) * | 1979-02-15 | 1980-12-23 | Oronzio De Nora Implanti Elettrochimici S.P.A. | Electrolytic production of alkali metal hypohalite |
| US4243501A (en) * | 1979-03-30 | 1981-01-06 | Michael Ladney, Jr. | Process and apparatus for the regeneration of chromic acid baths |
| EP0018592A1 (en) * | 1979-04-30 | 1980-11-12 | Siemens Aktiengesellschaft | Process for the regeneration of ammoniacal etching solutions for etching metallic copper |
| US4468305A (en) * | 1979-05-08 | 1984-08-28 | The Electricity Council | Method for the electrolytic regeneration of etchants for metals |
| US4324629A (en) * | 1979-06-19 | 1982-04-13 | Hitachi, Ltd. | Process for regenerating chemical copper plating solution |
| US4318789A (en) * | 1979-08-20 | 1982-03-09 | Kennecott Corporation | Electrochemical removal of heavy metals such as chromium from dilute wastewater streams using flow through porous electrodes |
| US4412893A (en) * | 1980-03-17 | 1983-11-01 | National Research Development Corporation | Anode-assisted cation reduction |
| US4376019A (en) * | 1980-05-01 | 1983-03-08 | Imperial Chemical Industries Plc | Halogenation process |
| US4306946A (en) * | 1980-08-18 | 1981-12-22 | General Electric Company | Process for acid recovery from waste water |
| US4325792A (en) * | 1981-03-09 | 1982-04-20 | Vaughan Daniel J | Purification process |
| US4405420A (en) * | 1981-09-28 | 1983-09-20 | Chevron Research Company | Catalyzed electrochemical gasification of carbonaceous materials at anode and electrowinning of metals at cathode |
| US4592814A (en) * | 1983-05-23 | 1986-06-03 | Chevron Research Company | Electrochemical synthesis of humic acid and other partially oxidized carbonaceous materials |
| US4608137A (en) * | 1983-05-23 | 1986-08-26 | Chevron Research Company | Production of hydrogen at the cathode of an electrolytic cell |
| US4973380A (en) * | 1983-10-06 | 1990-11-27 | Olin Corporation | Process for etching copper base materials |
| US4482440A (en) * | 1983-10-06 | 1984-11-13 | Olin Corporation | Electrochemical cell and process for manufacturing temperature sensitive solutions |
| US4551213A (en) * | 1984-05-07 | 1985-11-05 | Duval Corporation | Recovery of gold |
| US4608136A (en) * | 1984-09-21 | 1986-08-26 | Chevron Research Company | Oxidation of carbonaceous material and electrodeposition of a metal at the cathode of an electrolytic cell |
| JPS61104092A (en) * | 1984-10-23 | 1986-05-22 | Sumitomo Special Metals Co Ltd | How to regenerate etching solution |
| EP0396984A1 (en) * | 1989-05-12 | 1990-11-14 | International Business Machines Corporation | Regeneration of spent ferric chloride etchants |
| US5035778A (en) * | 1989-05-12 | 1991-07-30 | International Business Machines Corporation | Regeneration of spent ferric chloride etchants |
| US5045162A (en) * | 1989-12-12 | 1991-09-03 | Hoechst Aktiengesellschaft | Process for electrochemically regenerating chromosulfuric acid |
| US5391266A (en) * | 1990-05-05 | 1995-02-21 | Hoechst Aktiengesellschaft | Method of regulating the throughput in the electrochemical regeneration of chromosulfuric acid |
| US5074974A (en) * | 1990-06-08 | 1991-12-24 | Reilly Industries, Inc. | Electrochemical synthesis and simultaneous purification process |
| US5496449A (en) * | 1991-04-02 | 1996-03-05 | Unitika, Ltd. | Method of treating salt bath liquid |
| AU655680B2 (en) * | 1991-10-28 | 1995-01-05 | Nittetsu Mining Co. Limited | Method for treating etchant |
| EP0539792A1 (en) * | 1991-10-28 | 1993-05-05 | Nittetsu Mining Co., Ltd. | Method for regenerating etchant |
| US5393387A (en) * | 1991-10-28 | 1995-02-28 | Nittetsu Mining Co., Ltd. | Method for treating etchant |
| US5405507A (en) * | 1991-11-29 | 1995-04-11 | Eltech Systems Corporation | Electrolytic treatment of an electrolytic solution |
| US5827411A (en) * | 1991-11-29 | 1998-10-27 | Eltech Systems Corporation | Apparatus for electrolytic treatment of an electrolytic solution |
| US6063252A (en) * | 1997-08-08 | 2000-05-16 | Raymond; John L. | Method and apparatus for enriching the chromium in a chromium plating bath |
| WO2000026440A3 (en) * | 1998-11-03 | 2002-10-03 | Eilenburger Elektrolyse & Umwelttechnik Gmbh | Circular method for pickling copper and copper alloys |
| WO2011026253A1 (en) * | 2009-09-01 | 2011-03-10 | Mauricio Amigo Jimenez | Electrolytic cell for electrodialysis processes |
| US20140305800A1 (en) * | 2013-04-16 | 2014-10-16 | Palo Alto Research Center Incorporated | Sea water desalination system |
| US9340436B2 (en) * | 2013-04-16 | 2016-05-17 | Palo Alto Research Center Incorporated | Sea water desalination system |
| US9670077B2 (en) | 2013-04-16 | 2017-06-06 | Palo Alto Research Center Incorporated | Redox desalination system for clean water production and energy storage |
| US9673472B2 (en) | 2015-06-15 | 2017-06-06 | Palo Alto Research Center Incorporated | Redox desalination system for clean water production and energy storage |
| CN113493915A (en) * | 2020-04-01 | 2021-10-12 | 健鼎(湖北)电子有限公司 | Regeneration method and system of acidic etching waste liquid |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3761369A (en) | Process for the electrolytic reclamation of spent etching fluids | |
| US3481851A (en) | Apparatus and procedure for reconditioning metal treating solutions | |
| US4468305A (en) | Method for the electrolytic regeneration of etchants for metals | |
| DE2537757C3 (en) | Method of reusing an etching solution | |
| US5478448A (en) | Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid | |
| US4490224A (en) | Process for reconditioning a used ammoniacal copper etching solution containing copper solute | |
| EP0075882B1 (en) | Process for regenerating cleaning fluid | |
| JPH09503956A (en) | Conversion of metal cation complexes and salts by electrodialysis. | |
| DE2850564A1 (en) | METHOD AND DEVICE FOR REGENERATING A CORROSIVE SOLUTION CONTAINING COPPER (II) CHLORIDE AND / OR IRON (III) CHLORIDE IN AN ELECTROLYSIS CELL | |
| US3788915A (en) | Regeneration of spent etchant | |
| US4318789A (en) | Electrochemical removal of heavy metals such as chromium from dilute wastewater streams using flow through porous electrodes | |
| CS218296B1 (en) | Method of continuous regeneration of the iron trichloride solution | |
| EP1633906B1 (en) | Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method | |
| US4256557A (en) | Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes | |
| CA2016031A1 (en) | Process for electroplating metals | |
| US4337129A (en) | Regeneration of waste metallurgical process liquor | |
| US4021319A (en) | Electrolytic process for recovery of silver from photographic fixer solution | |
| Bramer et al. | Electrolytic Regeneration of Spent Pickling Solutions | |
| Adaikkalam et al. | The electrochemical recycling of printed-wiring-board etchants | |
| Makovskaya et al. | Perspective method for regeneration of spent solutions from printed circuit boards etching | |
| Walsh | Electrochemical cell reactions in metal finishing | |
| US4276134A (en) | Method for removing chlorate from caustic solutions with electrolytic iron | |
| JPS62297476A (en) | Method and device for regenerating copper chloride etching waste solution | |
| Kammel | Metal recovery from dilute aqueous solutions by various electrochemical reactors | |
| WO1993006261A1 (en) | Electrowinning metals from solutions |