US3637198A - Furnace for heat treating of metallic workpieces - Google Patents
Furnace for heat treating of metallic workpieces Download PDFInfo
- Publication number
- US3637198A US3637198A US2084A US3637198DA US3637198A US 3637198 A US3637198 A US 3637198A US 2084 A US2084 A US 2084A US 3637198D A US3637198D A US 3637198DA US 3637198 A US3637198 A US 3637198A
- Authority
- US
- United States
- Prior art keywords
- outlet
- furnace
- workpiece
- guide members
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims description 27
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/02—Skids or tracks for heavy objects
- F27D3/022—Skids
- F27D3/024—Details of skids, e.g. riders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/14—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
- F27B9/20—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path
- F27B9/22—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path on rails, e.g. under the action of scrapers or pushers
Definitions
- Wall means defines a chamber having an inlet and an outlet and including a first chamber section and a second chamber [72] Inventor RudIger Knaak Neuss Germany section which are respectively nearer to the inlet and to the [73] Assignee: Koppers-Wistra-Ofenbau Deutschen mit outlet.
- Elongated tubular guide members extend through the beauer-Wet al.
- Cooling means sup- 21 A N 2,034 plies internal cooling for the tubular guide members. Rows of wear-resistant first workpiece engaging elements are arranged in the first chamber section supported on and projecting up- [52] US. Cl ..263/6 B wardly from the respective wall portions by a predetermined [51] 3'' Cl F271, 9/14 height.
- Rows of second workpiece engaging elements are pro- [58] Fleld of Search ..263/6, 6 B vided in the second member section Supported on h resPective wall portion and each comprises a holding portion strad- [56] References Cited dling the respective wall portion, a thermally insulating por tion supported on the holding portion and a heat-resistant por- UNITED STATES PATENTS tion supported on the associated thermally insulating portion 3,214,152 10/1965 Molz ..263/6 B and ha ing a workpiece-contac ing upper surface.
- the present invention relates generally to furnaces, and more particularly to furnaces for the heattreatment of metallic workpieces. Still more specifically the. present invention is concerned with so-called pusher furnaces wherein workpieces rest on supports which extend through the furnace chamber and are advanced on these supports through the chamber.
- German Auslegeschrift 1,094,778 teaches a support comprising a tubular member through which cooling fluid may be circulated, and on which so-called riders" or workpiece-engaging elements are mounted which extend over the entire length of the tubular member and on which the workpiece is supported for the purpose of preventing undercooling of portions of the workpiece by direct contact with the tubular member.
- temperatures of substantially 1,250 C This temperature also represents the approximate limit to which the currently available heat-resistant metal alloys have a sufficient resistance to heat so as to be usable as workpiece engaging elements.
- the workpiece engaging elements must have the workpiece temperature, i.e., approximately l,250 C.
- furnace temperatures may be only slightly higher than the workpiece temperature which is demanded, in order to obtain in the equalization region a good temperature equalization, the requirement for identity or substantial identity of temperature between the workpiece and the contacting surface of the workpiece engaging elements can be fulfilled only by a thermally well-insulated workpiece-engaging element.
- the latter may be so constructed that in the main heating zone of the furnace chamber the temperature can be raised to and substantially above l,300 C.
- the positions of the workpieces in' the main heating zone and the quantity of workpieces which are in the main heating zone at any given time it is possible for the surfaces of the workpieces to be heated to temperatures in excess of 1,250 C.
- a more particular object of the invention is to provide such an improved construction which is relatively simple and less expensive than what is known from the prior art.
- a furnace for heat treating'of metallic workpieces in a combination which briefly statedcomprises wall means defining a chamber having an inlet and an outlet and including a first chamber section extending from the inlet towards the outlet and a second chamber section extending from the first chamber section to the outlet.
- Elongated tubular guide members extend through the chamber from the inlet towards the outlet for supporting metallic workpieces which are advanced through the chamber from the inlet through the outlet, and each of these guide members has a longitudinally extending upwardly directed wall portion. Cooling means is provided for internally cooling the tubular guide members.
- Rows of wear-resistant first workpiece engagingelements are arranged in the first chamber section supported on and projecting upwardly from the respective wall portions by a predetermined height.
- Rows of second workpiece engaging elements are arranged in the second chamber section supported on the respective wall portions, and each of these second elements comprises a holding portion straddling the respective wall portion, a thermally insulating portion supported on the holding portion, and a heat-resistant portion supported on the associated thermally insulating portion and having a workpiece-contacting upper surface.
- the rows of wear-resistant first workpiece engaging elements are of less complicated and less expensive construction than the second elements, and the predetermined height by which they project upwardly from the respective wall portion is determined in dependence upon the temperatures in the first chamber section.
- the height is so selected that the cooling influence of the internally cooled tubular guide members upon the first workpiece engaging elements is just large enougheven at the highest temperatures and the most disadvantageous operating conditions envisioned for the furnace-- that the hottest point of the respective first element can reach but not exceed a temperature at which the strength and resistance of the material from which the respective first element is made is still sufficient for the operational require ments.
- the invention further suggests that the first chamber section-that is the main heating zone-be a high-temperature zone in which temperatures on the order of 1,350 C. can be routinely achieved.
- FIG. 1 is a somewhat diagrammatic vertical longitudinal section through a pusher furnace incorporating the present invention
- FIG. 2 is a section taken on the line II-II of FIG. 1;
- FIG. 3 is a section taken on the line III-III of FIG. I.
- FIG. 4 is a section taken on the line IVIV of FIG. 1.
- FIG. 1 identifies in FIG. 1 the pusher furnace in toto. Its walls surround and define an internal chamber extending from the inlet la to the outlet 1b of the furnace l.
- the first chamber section extends from the inlet la towards but short of the outlet lb, and the second chamber section extends from the first chamber section to the outlet lb.
- the approximate line of divisionwhich is evidently not sharply defined is indicated at A.
- tubular guide members 5 Extending through this chamber from the inlet la to the outlet lb in the illustrated embodiment are the tubular guide members 5. Only one of these is visible, but there will of course be at least two or more of them which are transversely spaced from one another, that is spaced in direction normal to the plane of the drawing (in FIG. 1).
- the workpieces to be treated which are not illustrated because their showing is not thought necessary for an understanding of the information, enter through the inlet la and are supported on the tubular guide members 5, being pushed along the tubular guide members in the direction of the arrow A until they reach and pass through the outlet lb.
- the tubular guide members 5 are hollow and are connected in known manner with a source of coolant (compare FIG. 1) which internally cools them. They are supported by the upright supports 7 and the transverse supports 9, which all may be tubular and which all may them selves be internally cooled.
- Reference numeral 3 diagrammatically identifies heating means-of any type conventional in such furnaceswhich are arranged above and below the guide members 5 so as to subject workpieces on the same to heating from above and below.
- the fact that double the number of heating means 3 is shown in the first chamber section than in the second chamber section indicates that in accordance with the present invention the first chamber section is intended to be a high-temperature zone.
- this is illustrated in this manner only for explanatory purposes, because evidently different relationships with respect to the number of heating means 3 could obtain, depending upon the particular type of heating means employed, and other factors.
- the upwardly directed wall portions of the respective tubular guide mem bers 5 each carry a row of wear-resistant first workpiece-engaging elements 19 which directly rest on the respective tubular guide member 5 (compare FIG. 3) and are prevented from lateral displacement by the presence of retaining ribs 21 located at opposite lateral sides and secured as by welding to the tubular guide members 5.
- a further interlock against lateral displacement may be provided, as shown in FIG. 3, by keying the elements 19 to the respective tubular guide member 5.
- the weight of the elements 19, that is the distance between the upper surface of the respective tubular guide member 5 and the upper free surface of the respective element 19 on which the workpieces to be treated will slide, is determined in accordance with the earlier discussed considerations, namely such that the cooling influence of the tubular guide member 5 upon the respective element 19 even under the highest temperatures and most disadvantageous operating conditions is just so large that the hottest point of the element 19 can assume only a temperature which the material of the element 19 is still of sufficient strength and resistance to fulfill its intended function.
- the tubular guide members 5 may be stepped where the transition between the elements 19 and 23 takes place, that is where they carry the elements 23 the tubular guide members 5 may have a larger cross-sectional dimension in vertical direction.
- the tubular guide members 5 are provided with rows of second workpiece-engaging elements, as shown in FIG. 2.
- These second elements each comprise a holding portion 15 straddling the respective tubular guide member 5 and being secured thereto, for instance with the bolts 17 illustrated in FIG. 2.
- the holding portions 15 in turn each support a thermally insulating portion 13, for instance of ceramic material, and this in turn supports a heat-resistant portion 11 on whose upper surface the workpieces slide.
- the portions 13 are pressure resistant, and because of the construction of the second element only forces acting normal to the elongation of the tubular guide members 5 in vertical direction, that is the weight of the workpieces, will be transmitted to the portions 15 and the tubular guide members 5, whereas other forces resulting from the pushing of the workpieces in the direction of the arrow A, will not be transmitted.
- the construction of the workpiece supports, that is the tubular guide members 5 and their associated workpiece-engaging elements, in accordance with the present invention is in contrast to the practice which heretofore has prevailed.
- the assumption has been that the workpieces continue to become warmer during their movement from the inlet to the outlet of the furnace chamber, and that therefore the thermal resistance of the material of the workpiece support becomes more critical in direction from the inlet to the outlet.
- the use of thermally insulating workpiece-engaging elements in the equalization zone or second chamber section is desirable and also possible.
- the thermally insulating effectiveness of the workpieceengaging elements in the main heating zone can be varied as needed by accommodating the height of the elements to the prevailing temperatures.
- wall means defining a chamber having an inlet and an outlet and including a first chamber section extending from said inlet towards said outlet and having an upstream and a downstream zone, and a second chamber section extending from said first chamber section to said outlet; elongated tubular guide members extending through said chamber from said inlet towards said outlet for supporting metallic workpieces which are advanced through said chamber from said inlet through said outlet, each of said guide :members having a longitudinally extending upwardly directed wall portion; cooling means for internally cooling said tubular guide members; wear-resistant workpiece-contacting guide rails supported on said upwardly directed wall portions in said upstream zone; rows of wear-resistant first workpiece-engaging elements in said downstream zone supported in heat-exchanging contact on and projecting upwardly from the respective wall portions by a predetermined height so selected that the cooling influence of said cooling means on said first workpiece-engaging elements under all operating circumstances is just sufficient to prevent heating of said first elements beyond the up er limit of their ablh
- said holding portion comprising two downwardly extending arms straddling the respective wall portion at opposite lateral sides of the respective guide member, and two upwardly extending arms extending laterally of said thermally insulating portion and said heatresistant portion.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Tunnel Furnaces (AREA)
Abstract
Wall means defines a chamber having an inlet and an outlet and including a first chamber section and a second chamber section which are respectively nearer to the inlet and to the outlet. Elongated tubular guide members extend through the chamber from the inlet towards the outlet for supporting metallic workpieces which are advanced from the former to the latter, each of these guide members having a longitudinally extending upwardly directed wall portion. Cooling means supplies internal cooling for the tubular guide members. Rows of wear-resistant first workpiece engaging elements are arranged in the first chamber section supported on and projecting upwardly from the respective wall portions by a predetermined height. Rows of second workpiece engaging elements are provided in the second member section supported on the respective wall portion and each comprises a holding portion straddling the respective wall portion, a thermally insulating portion supported on the holding portion and a heat-resistant portion supported on the associated thermally insulating portion and having a workpiece-contacting upper surface.
Description
- United States Patent Knaak Jan. 25, 1972 FURNACE FOR HEAT TREATING OF [57] ABSTRACT METALLIC WORKPIECES Wall means defines a chamber having an inlet and an outlet and including a first chamber section and a second chamber [72] Inventor RudIger Knaak Neuss Germany section which are respectively nearer to the inlet and to the [73] Assignee: Koppers-Wistra-Ofenbau Gesellschaft mit outlet. Elongated tubular guide members extend through the beschrankter Haftung, D ldorf-Be m, chamber from the inlet towards the outlet for supporting Germany metallic workpieces which are advanced from the former to the latter, each of these guide members having a longitudinally [22] 1970 extending upwardly directed wall portion. Cooling means sup- 21 A N 2,034 plies internal cooling for the tubular guide members. Rows of wear-resistant first workpiece engaging elements are arranged in the first chamber section supported on and projecting up- [52] US. Cl ..263/6 B wardly from the respective wall portions by a predetermined [51] 3'' Cl F271, 9/14 height. Rows of second workpiece engaging elements are pro- [58] Fleld of Search ..263/6, 6 B vided in the second member section Supported on h resPective wall portion and each comprises a holding portion strad- [56] References Cited dling the respective wall portion, a thermally insulating por tion supported on the holding portion and a heat-resistant por- UNITED STATES PATENTS tion supported on the associated thermally insulating portion 3,214,152 10/1965 Molz ..263/6 B and ha ing a workpiece-contac ing upper surface. 3,345,050 10/1967 Guthrie ..263/6 B 3,245,672 4/1966 Loeck et al ..263/6 B x 7 Claim f F'gms Primary Examiner-Charles .l t Myhre AttorneyMichael S. Striker "A SOURCE OF 1 COOL-ANT i 1b [/2 E n l P A rW-wffl-w' 4; 7|-- I I l I" I l lll/ll FURNACE FOR HEAT TREATING OF METALLIC WORKPIECES BACKGROUND OF THE INVENTION The present invention relates generally to furnaces, and more particularly to furnaces for the heattreatment of metallic workpieces. Still more specifically the. present invention is concerned with so-called pusher furnaces wherein workpieces rest on supports which extend through the furnace chamber and are advanced on these supports through the chamber.
It is known that in pusher furnaces contact between the metallic workpieces to be treated and the supports on which they rest and along which they are pushed fromthe inlet to the outlet of the furnace, results in the formation of so-called dark strips in the workpieces, that is striplikeundercooled zones in the region of the workpiece surface which contacts the support. It must be kept in mind in this connection that the supports are cooled, usually by circulating cooling fluid through the tubularly configurated supports. The existence of the inadequately heated zones or dark strips in the workpieces is highly undesirable because it adversely influences the material characteristics, particularly the behavior of the material of the workpiece during subsequent rolling. Therefore, it is necessary to attempt to eliminate these undercooled zones and for this purpose it is conventional to provide an equalizing zone or equalizing chamber in which heat is directed against theside of the workpiece where the undercooled zones are present. However, this is not entirely satisfactory for two reasons, namely because on the one hand it is not possible to completely eliminate the undercooled zones in this manner and on the other hand because the necessary heating of only one side results in significant temperature gradients within thBiWOl'kpiece between opposite sides, that is between the side having the undercooled zones and the opposite side. This latter fact, also, is disadvantageous with referenceto the subsequent behavior of the workpiece during rolling, especially if the workpiece is relatively thick, i.e., if it has a thickness of 200300 mm. or more.
Attempts have of course already been made to overcome this problem. Thus, German Auslegeschrift 1,094,778 teaches a support comprising a tubular member through which cooling fluid may be circulated, and on which so-called riders" or workpiece-engaging elements are mounted which extend over the entire length of the tubular member and on which the workpiece is supported for the purpose of preventing undercooling of portions of the workpiece by direct contact with the tubular member.
A further approach is taught in German Auslegeschrift l, 193,528, Here, an internally cooled tubular support is provided which carries over its entire length, highly thermally insulating elements, with the latter in turn carrying the actual heat-resistant workpiece-engaging elements. This construction has been found to be highly advantageous in that it eliminates almost completely the formation of undercooled zones in the workpieces and makes it possible to omit the heretofore conventional equalizing zoneor chamber.
However, this construction cannot .be used under all circumstances. One detrimental consideration is concerned with costs. The various different types of guide members, as the supports for the workpieces will hereafter be designated in toto, are of differing complexity and accordingly the cost of their construction varies widely. The more effective the particular guide member is in preventing the development of undercooled zones in the workpiece, the more complex must be its construction and the more it isnecessary to use expensive highly heat-resistant material; from this it follows that such constructions are significantly more expensive than others.
It is therefore the current industry practice to equip pusher furnaces with differently constructed guide members, depending upon the requirements made of the evenness to which the material of the workpieces must be heated.
temperatures of substantially 1,250 C. This temperature also represents the approximate limit to which the currently available heat-resistant metal alloys have a sufficient resistance to heat so as to be usable as workpiece engaging elements. Now it is well known that in the downstream region of the furnace, that is in the region through which the workpieces pass last before they leave the outlet, it is desired to obtain as even as possible a temperature throughout the respective workpiece. ln fact,.the upper and under sides of the workpiece should be hotter than the center of the workpiece. by only approximately l0-20 C. when the workpiece leaves the outlet of the furnace. In order to obtain such equal temperatures also at the area of contact of the workpiece with the guide members, the workpiece engaging elements must have the workpiece temperature, i.e., approximately l,250 C. at their interface with the respective workpieces in the region just upstream of the furnace outlet, that is the region where the temperature equalization is to be achieved. Because the furnace temperatures may be only slightly higher than the workpiece temperature which is demanded, in order to obtain in the equalization region a good temperature equalization, the requirement for identity or substantial identity of temperature between the workpiece and the contacting surface of the workpiece engaging elements can be fulfilled only by a thermally well-insulated workpiece-engaging element.
However, in the actual heating main heating zone where the workpieces undergo their actual heat zone, that is in the main conditions are different from those in the equalization zone. In order to obtain high-operational capacities of the furnace, the latter may be so constructed that in the main heating zone of the furnace chamber the temperature can be raised to and substantially above l,300 C. Depending upon the temperature to which the chamber is heated in the mainheating zone, the position of the workpieces in' the main heating zone and the quantity of workpieces which are in the main heating zone at any given time, it is possible for the surfaces of the workpieces to be heated to temperatures in excess of 1,250 C. This is not necessarily impermissible, but if continued movement of the workpieces through the furnace is interrupted for any reason whatsoever, for instance as a result of a breakdown or other difficulties in a rolling mill which receives workpieces from the outlet of the furnace, the workpieces are in danger of being heated in the main heating zone to such an extenteven if the burners are throttled, because of the heat retention and radiation of the furnace wallsof being heated at their surfaces to such a temperature that they are close to the softening and melting point of steel, that is the material of which the workpieces would normally consist.
It will be appreciated that in the main heating zone it is neither possible to achieve a significant temperature equalization in the workpieces, nor that this is particularly important or desirable because the following equalization zone provides for. this. Also, at furnace temperatures in excess of l,300 C. the heat resistance of a highly thermally insulating workpiece engaging element is overtaxed.
SUMMARY OF THE INVENTION It is, accordingly, an object of the present invention to overcome the outlined disadvantages and to provide an improved construction.
A more particular object of the invention is to provide such an improved construction which is relatively simple and less expensive than what is known from the prior art.
ln pursuance of the above objects, and others which will become apparent hereafter, one feature of the invention resides,-in a furnace for heat treating'of metallic workpieces, in a combination which briefly statedcomprises wall means defining a chamber having an inlet and an outlet and including a first chamber section extending from the inlet towards the outlet and a second chamber section extending from the first chamber section to the outlet. Elongated tubular guide members extend through the chamber from the inlet towards the outlet for supporting metallic workpieces which are advanced through the chamber from the inlet through the outlet, and each of these guide members has a longitudinally extending upwardly directed wall portion. Cooling means is provided for internally cooling the tubular guide members.
Rows of wear-resistant first workpiece engagingelements are arranged in the first chamber section supported on and projecting upwardly from the respective wall portions by a predetermined height. Rows of second workpiece engaging elements are arranged in the second chamber section supported on the respective wall portions, and each of these second elements comprises a holding portion straddling the respective wall portion, a thermally insulating portion supported on the holding portion, and a heat-resistant portion supported on the associated thermally insulating portion and having a workpiece-contacting upper surface.
Thus, the rows of wear-resistant first workpiece engaging elements are of less complicated and less expensive construction than the second elements, and the predetermined height by which they project upwardly from the respective wall portion is determined in dependence upon the temperatures in the first chamber section. The height is so selected that the cooling influence of the internally cooled tubular guide members upon the first workpiece engaging elements is just large enougheven at the highest temperatures and the most disadvantageous operating conditions envisioned for the furnace-- that the hottest point of the respective first element can reach but not exceed a temperature at which the strength and resistance of the material from which the respective first element is made is still sufficient for the operational require ments.
This being the case the invention further suggests that the first chamber section-that is the main heating zone-be a high-temperature zone in which temperatures on the order of 1,350 C. can be routinely achieved.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a somewhat diagrammatic vertical longitudinal section through a pusher furnace incorporating the present invention;
FIG. 2 is a section taken on the line II-II of FIG. 1; and
FIG. 3 is a section taken on the line III-III of FIG. I; and
FIG. 4 is a section taken on the line IVIV of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT Reference numeral 1 identifies in FIG. 1 the pusher furnace in toto. Its walls surround and define an internal chamber extending from the inlet la to the outlet 1b of the furnace l. The first chamber section extends from the inlet la towards but short of the outlet lb, and the second chamber section extends from the first chamber section to the outlet lb. The approximate line of divisionwhich is evidently not sharply defined is indicated at A.
Extending through this chamber from the inlet la to the outlet lb in the illustrated embodiment are the tubular guide members 5. Only one of these is visible, but there will of course be at least two or more of them which are transversely spaced from one another, that is spaced in direction normal to the plane of the drawing (in FIG. 1). The workpieces to be treated, which are not illustrated because their showing is not thought necessary for an understanding of the information, enter through the inlet la and are supported on the tubular guide members 5, being pushed along the tubular guide members in the direction of the arrow A until they reach and pass through the outlet lb. The tubular guide members 5 are hollow and are connected in known manner with a source of coolant (compare FIG. 1) which internally cools them. They are supported by the upright supports 7 and the transverse supports 9, which all may be tubular and which all may them selves be internally cooled.
Reference numeral 3 diagrammatically identifies heating means-of any type conventional in such furnaceswhich are arranged above and below the guide members 5 so as to subject workpieces on the same to heating from above and below. The fact that double the number of heating means 3 is shown in the first chamber section than in the second chamber section indicates that in accordance with the present invention the first chamber section is intended to be a high-temperature zone. Of course, this is illustrated in this manner only for explanatory purposes, because evidently different relationships with respect to the number of heating means 3 could obtain, depending upon the particular type of heating means employed, and other factors.
In the region just downstream of the inlet la the upwardly directed wall portions of the tubular guide members 5 carry wear-resistant workpiece-contacting guide rails 23 which rest directly on the tubular guide members 5 and are suitably' secured thereto, for instance by welding as shown in FIG. 4.
Downstream of this region, that is in the actual high-temperature zone of the first chamber section, the upwardly directed wall portions of the respective tubular guide mem bers 5 each carry a row of wear-resistant first workpiece-engaging elements 19 which directly rest on the respective tubular guide member 5 (compare FIG. 3) and are prevented from lateral displacement by the presence of retaining ribs 21 located at opposite lateral sides and secured as by welding to the tubular guide members 5. A further interlock against lateral displacement may be provided, as shown in FIG. 3, by keying the elements 19 to the respective tubular guide member 5. The weight of the elements 19, that is the distance between the upper surface of the respective tubular guide member 5 and the upper free surface of the respective element 19 on which the workpieces to be treated will slide, is determined in accordance with the earlier discussed considerations, namely such that the cooling influence of the tubular guide member 5 upon the respective element 19 even under the highest temperatures and most disadvantageous operating conditions is just so large that the hottest point of the element 19 can assume only a temperature which the material of the element 19 is still of sufficient strength and resistance to fulfill its intended function. Because the other contact surfaces of the elements 19 and 23 should be located in a common plane, and because the height of the elements 23 is obviously considerably less than that of the elements l9both to conserve material and because the considerations with respect to the elements 19 do not obtain with respect to the elements 23 which are not subjected to such high temperatures-the tubular guide members 5 may be stepped where the transition between the elements 19 and 23 takes place, that is where they carry the elements 23 the tubular guide members 5 may have a larger cross-sectional dimension in vertical direction.
In the second chamber section, that is downstream of the line A, the tubular guide members 5 are provided with rows of second workpiece-engaging elements, as shown in FIG. 2. These second elements each comprise a holding portion 15 straddling the respective tubular guide member 5 and being secured thereto, for instance with the bolts 17 illustrated in FIG. 2. The holding portions 15 in turn each support a thermally insulating portion 13, for instance of ceramic material, and this in turn supports a heat-resistant portion 11 on whose upper surface the workpieces slide. The portions 13 are pressure resistant, and because of the construction of the second element only forces acting normal to the elongation of the tubular guide members 5 in vertical direction, that is the weight of the workpieces, will be transmitted to the portions 15 and the tubular guide members 5, whereas other forces resulting from the pushing of the workpieces in the direction of the arrow A, will not be transmitted.
The construction of the workpiece supports, that is the tubular guide members 5 and their associated workpiece-engaging elements, in accordance with the present invention is in contrast to the practice which heretofore has prevailed. Heretofore the assumption has been that the workpieces continue to become warmer during their movement from the inlet to the outlet of the furnace chamber, and that therefore the thermal resistance of the material of the workpiece support becomes more critical in direction from the inlet to the outlet. However, as has been shown above the contrary is the case and the use of thermally insulating workpiece-engaging elements in the equalization zone or second chamber section is desirable and also possible. By contrast, the thermally insulating effectiveness of the workpieceengaging elements in the main heating zone can be varied as needed by accommodating the height of the elements to the prevailing temperatures.
By utilizing the present construction, that is by utilizing highly thermally insulating workpiece-engaging elements in the second chamber section or equalization zone, it becomes possible contrary to previous practice to continue heating of the workpieces from both above and below in this equalization zone, also. This eliminates the heretofore common stationary hearth which was used in the equalization zone, and consequently avoids the high expenses for maintaining and the difficulties in operating such a hearth.
it is emphasized that in contrast to what has been shown in the drawing it is possible to have the elements 19 extend all the way to the inlet la, that is to eliminate the elements 23. However, the construction illustrated by way of example, and utilizing the entirely conventional elements 23, still further reduces the expense involved in construction of the workpiece supports.
it will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of constructions differing from the types described above.
While the invention has been illustrated and described as embodied in a furnace for heat treating of metallic workpieces, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence ofthe following claims.
What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.
1. In a furnace for heat treating of metallic workpieces, in combination, wall means defining a chamber having an inlet and an outlet and including a first chamber section extending from said inlet towards said outlet and having an upstream and a downstream zone, and a second chamber section extending from said first chamber section to said outlet; elongated tubular guide members extending through said chamber from said inlet towards said outlet for supporting metallic workpieces which are advanced through said chamber from said inlet through said outlet, each of said guide :members having a longitudinally extending upwardly directed wall portion; cooling means for internally cooling said tubular guide members; wear-resistant workpiece-contacting guide rails supported on said upwardly directed wall portions in said upstream zone; rows of wear-resistant first workpiece-engaging elements in said downstream zone supported in heat-exchanging contact on and projecting upwardly from the respective wall portions by a predetermined height so selected that the cooling influence of said cooling means on said first workpiece-engaging elements under all operating circumstances is just sufficient to prevent heating of said first elements beyond the up er limit of their ablhty to support said workpieces; and rows 0 second workpiece-engaging elements in said second chamber section supported on the respective wall portions, each of said second elements comprising a holding portion straddling the respective wall portion, a thermally insulating portion supported on said holding portion, and a heat-resistant portion supported on the associated thermally insulating portion and having a workpiece-contacting upper surface.
2. In a furnace as defined in claim 1, wherein said insulating portion is supported on said holding portion in such a manner that the former transmits to the latter only stresses acting normal to the elongation of said guide members.
3. in a furnace as defined in claim 2, said holding portion comprising two downwardly extending arms straddling the respective wall portion at opposite lateral sides of the respective guide member, and two upwardly extending arms extending laterally of said thermally insulating portion and said heatresistant portion.
4. In a furnace as defined in claim 1; further comprising heating means for heating said first chamber section to temperatures in excess of 1 ,350 C.
5. In a furnace as defined in claim 1, wherein said guide members extend from said inlet to said outlet.
6. In a furnace as defined in claim 5; and further comprising heating means above and below said guide members for heating workpieces advancing thereon from above and from below from said inlet to said outlet.
7. in a furnace as defined in claim 1;:further said guide rails being welded to the respective wall portions in said first chamber section intermediate said first. elements and said in let.
Claims (7)
1. In a furnace for heat treating of metallic workpieces, in combination, wall means defining a chamber having an inlet and an outlet and including a first chamber section extending from said inlet towards said outlet and having an upstream and a downstream zone, and a second chamber section extending from said first chamber section to said outlet; elongated tubular guide members extending through said chamber from said inlet towards said outlet for supporting metallic workpieces which are advanced through said chamber from said inlet through said outlet, each of said guide members having a longitudinally extending upwardly directed wall portion; cooling means for internally cooling said tubular guide members; wear-resistant workpiece-contacting guide rails supported on said upwardly directed wall portions in said upstream zone; rows of wear-resistant first workpiece-engaging elements in said downstream zone supported in heat-exchanging contact on and projecting upwardly from the respective wall portions by a predetermined height so selected that the cooling influence of said cooling means on said first workpiece-engaging elements under all operating circumstances is just sufficient to prevent heating of said first elements beyond the upper limit of their ability to support said workpieces; and rows of second workpiece-engaging elements in said second chamber section supported on the respective wall portions, each of said second elements comprising a holding portion straddling the respective wall portion, a thermally insulating portion supported on said holding portion, and a heat-resistant portion supported on the associated thermally insulating portion and having a workpiececontacting upper surface.
2. In a furnace as defined in claim 1, wherein said insulating portion is supported on said holding portion in such a manner that the former transmits to the latter only stresses acting normal to the elongation of said guide members.
3. In a furnace as defined in claim 2, said holding portion comprising two downwardly extending arms straddling the respective wall portion at opposite lateral sides of the respective guide member, and two upwardly extending arms extending laterally of said thermally insulating portion and said heat-resistant portion.
4. In a furnace as defined in claim 1; further comprising heating means for heating said first chamber section to temperatures in excess of 1,350* C.
5. In a furnace as defined in claim 1, wherein said guide members extend from said inlet to said outlet.
6. In a furnace as defined in claim 5; and further comprising heating means above and below said guide members for heating workpieces advancing thereon from above and from below from said inlet to said outlet.
7. In a furnace as defined in claim 1; further said guide rails being welded to the respective wall portions in said first chamber section intermediate said first elements and said inlet.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US208470A | 1970-01-12 | 1970-01-12 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3637198A true US3637198A (en) | 1972-01-25 |
Family
ID=21699189
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US2084A Expired - Lifetime US3637198A (en) | 1970-01-12 | 1970-01-12 | Furnace for heat treating of metallic workpieces |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3637198A (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3756489A (en) * | 1971-08-09 | 1973-09-04 | Chausson Usines Sa | Furnace for the brazing in continue of parts made of aluminium mainly of heat exchangers moved in a continue motion |
| US3804584A (en) * | 1972-09-23 | 1974-04-16 | Koppers Wistra Ofenbau Gmbh | Pusher furnace |
| US3806309A (en) * | 1971-12-22 | 1974-04-23 | British Iron Steel Research | Temperature measurement |
| US3860221A (en) * | 1973-05-02 | 1975-01-14 | Midland Ross Corp | Direct fired furnace |
| US4035142A (en) * | 1974-12-17 | 1977-07-12 | "Ofu" Ofenbau-Union Gmbh | Continuous heating furnace for elongated metal ingots |
| US4056351A (en) * | 1975-02-07 | 1977-11-01 | Koppers-Wistra-Ofenbau Gmbh | Workpiece-engaging element for furnaces |
| US4080152A (en) * | 1975-01-11 | 1978-03-21 | Fried Krupp Huttenwerke Ag | Bracing tube for pusher type or rocker bar furnaces |
| EP0017830A1 (en) * | 1979-03-30 | 1980-10-29 | Nippon Steel Corporation | Slab heating furnace |
| US4391587A (en) * | 1980-03-27 | 1983-07-05 | Nippon Steel Corporation | Slab heating furnace |
| US4689009A (en) * | 1984-11-24 | 1987-08-25 | Ruhrgas Aktiengesellschaft | Skid system for carrying a furnace charge |
| US4747775A (en) * | 1986-06-10 | 1988-05-31 | Kawasaki Steel Corporation | Skid beam for heating furnaces of walking beam type |
| US4884967A (en) * | 1988-09-26 | 1989-12-05 | Combustion Concepts, Inc. | Steel reheating furnace |
| US4936771A (en) * | 1987-08-26 | 1990-06-26 | Sidwell Clarence W | Skid mark erasure system |
| US5007824A (en) * | 1987-08-26 | 1991-04-16 | Sidwell Clarence W | Skid mark erasure system |
| US20150168067A1 (en) * | 2013-12-12 | 2015-06-18 | Rudiger Eichler | Method for heating a metal material in an industrial furnace |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3214152A (en) * | 1962-10-04 | 1965-10-26 | Wistra Ofenbau G M B H | Pusher-type furnace |
| US3245672A (en) * | 1961-05-23 | 1966-04-12 | Huettenwerk Oberhausen Ag | Furnace for the heat-treatment of billets, blooms and the like |
| US3345050A (en) * | 1965-08-25 | 1967-10-03 | Loftus Engineering Corp | Furnace skid rails |
-
1970
- 1970-01-12 US US2084A patent/US3637198A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3245672A (en) * | 1961-05-23 | 1966-04-12 | Huettenwerk Oberhausen Ag | Furnace for the heat-treatment of billets, blooms and the like |
| US3214152A (en) * | 1962-10-04 | 1965-10-26 | Wistra Ofenbau G M B H | Pusher-type furnace |
| US3345050A (en) * | 1965-08-25 | 1967-10-03 | Loftus Engineering Corp | Furnace skid rails |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3756489A (en) * | 1971-08-09 | 1973-09-04 | Chausson Usines Sa | Furnace for the brazing in continue of parts made of aluminium mainly of heat exchangers moved in a continue motion |
| US3806309A (en) * | 1971-12-22 | 1974-04-23 | British Iron Steel Research | Temperature measurement |
| US3804584A (en) * | 1972-09-23 | 1974-04-16 | Koppers Wistra Ofenbau Gmbh | Pusher furnace |
| US3860221A (en) * | 1973-05-02 | 1975-01-14 | Midland Ross Corp | Direct fired furnace |
| US4035142A (en) * | 1974-12-17 | 1977-07-12 | "Ofu" Ofenbau-Union Gmbh | Continuous heating furnace for elongated metal ingots |
| US4080152A (en) * | 1975-01-11 | 1978-03-21 | Fried Krupp Huttenwerke Ag | Bracing tube for pusher type or rocker bar furnaces |
| US4056351A (en) * | 1975-02-07 | 1977-11-01 | Koppers-Wistra-Ofenbau Gmbh | Workpiece-engaging element for furnaces |
| EP0017830A1 (en) * | 1979-03-30 | 1980-10-29 | Nippon Steel Corporation | Slab heating furnace |
| US4391587A (en) * | 1980-03-27 | 1983-07-05 | Nippon Steel Corporation | Slab heating furnace |
| US4689009A (en) * | 1984-11-24 | 1987-08-25 | Ruhrgas Aktiengesellschaft | Skid system for carrying a furnace charge |
| US4747775A (en) * | 1986-06-10 | 1988-05-31 | Kawasaki Steel Corporation | Skid beam for heating furnaces of walking beam type |
| US4936771A (en) * | 1987-08-26 | 1990-06-26 | Sidwell Clarence W | Skid mark erasure system |
| US5007824A (en) * | 1987-08-26 | 1991-04-16 | Sidwell Clarence W | Skid mark erasure system |
| US4884967A (en) * | 1988-09-26 | 1989-12-05 | Combustion Concepts, Inc. | Steel reheating furnace |
| US20150168067A1 (en) * | 2013-12-12 | 2015-06-18 | Rudiger Eichler | Method for heating a metal material in an industrial furnace |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3637198A (en) | Furnace for heat treating of metallic workpieces | |
| GB1493145A (en) | Twin-belt continuous casting methods and apparatus | |
| US4923396A (en) | Method and apparatus for heating a strip of metallic material in a continuous annealing furnace | |
| US3226101A (en) | Insulated furnace members | |
| US4056351A (en) | Workpiece-engaging element for furnaces | |
| US2436452A (en) | Water-cooled furnace supporting member | |
| US3588059A (en) | Guide rail assembly for pusher-type furnace | |
| US3367641A (en) | Pusher type furnace | |
| US4648837A (en) | Walking beam furnace | |
| US3860387A (en) | Roller for supporting a workpiece in a furnace or the like | |
| US4056350A (en) | Support rail arrangement | |
| US3879167A (en) | Non-warping heat shield | |
| US3552729A (en) | Slideway construction | |
| US4035141A (en) | Support rail for furnaces | |
| US3804584A (en) | Pusher furnace | |
| US1691369A (en) | Furnace | |
| US2638333A (en) | Continuous furnace | |
| US3179395A (en) | Slab heating furnaces | |
| US3296039A (en) | Method of preventing the formation of black stripes in the heat-treatment of metal bodies | |
| US4470808A (en) | Pushing furnace for heating steel | |
| JP3782756B2 (en) | Heating method for continuous vacuum carburizing furnace | |
| US3245672A (en) | Furnace for the heat-treatment of billets, blooms and the like | |
| US3599912A (en) | Center hung radiant tube supports | |
| JPS6411684B2 (en) | ||
| US2900479A (en) | Furnace construction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RUHRGAS AG, D-4300 ESSEN, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WISTRA GMBH THERMOPROZESSTECHNIK;REEL/FRAME:004368/0463 |