[go: up one dir, main page]

US3624133A - Liquid esters of naphthalene dicarboxylic acids - Google Patents

Liquid esters of naphthalene dicarboxylic acids Download PDF

Info

Publication number
US3624133A
US3624133A US544419A US3624133DA US3624133A US 3624133 A US3624133 A US 3624133A US 544419 A US544419 A US 544419A US 3624133D A US3624133D A US 3624133DA US 3624133 A US3624133 A US 3624133A
Authority
US
United States
Prior art keywords
naphthalene dicarboxylic
alcohol
dicarboxylic acid
ester
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US544419A
Inventor
Robert H Reitsema
Nylen L Allphin Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NYLEN L ALLPHIN JR
ROBERT H REITSEMA
Original Assignee
NYLEN L ALLPHIN JR
ROBERT H REITSEMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NYLEN L ALLPHIN JR, ROBERT H REITSEMA filed Critical NYLEN L ALLPHIN JR
Application granted granted Critical
Publication of US3624133A publication Critical patent/US3624133A/en
Assigned to MARATHON OIL COMPANY, AN OH CORP reassignment MARATHON OIL COMPANY, AN OH CORP ASSIGNS THE ENTIRE INTEREST Assignors: MARATHON PETROLEUM COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids

Definitions

  • This invention relates to new liquid esters of naphthalene dicarboxylic acids and more particularly to specific nonnal and branch chain diesters of 2,3-; 1,6-; 2,7-; etc., isomers of dicarboxynaphthalenes and mixtures of such acids.
  • esters of naphthalene dicarboxylic acids are known. Elsevier's Encyclopedia of Organic Chemistry, Vol. l2B, I953, pp. 4681-4733, describes the properties of various dimethyl and diethyl esters of the naphthalene dicarboxylic acids. The dibutyl and diphenyl esters of naphthalic acid are also described.
  • esters are liquids, including the esters of 1,6-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol having four to eight carbon atoms; the esters of 2,3-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and the esters of a naphthalene dicarboxylic acid and a branched alkane alcohol having at least two, and preferably from two to about eight, carbon atoms in the branch when the branch is closer to the hydroxyl-substituted carbon atom than the gamma position.
  • the properties of liquidity makes the compounds of the present invention useful for purposes for which nonliquid closely related naphthalene esters are not suited.
  • the compounds of the present invention may be mixed with solid reagents, e.g. Grignard reagents, hydrazene and other compounds to form reaction mixtures without the presence of solvents thus simplifying recovery of the resulting products.
  • liquid mixtures containing the naphthalene esters of the present invention, together with solid or liquid chain-forming reagents, e.g. polyamines especially diamines or triamines, can be formulated to provide adhesive compositions which can be readily spread and which polymerize without the need for solvent evaporation.
  • solid or liquid chain-forming reagents e.g. polyamines especially diamines or triamines
  • polyamines especially diamines or triamines
  • liquid naphthalene esters of the present invention are useful as plasticizers for plastics, e.g. vinyl chloride.
  • plastics e.g. vinyl chloride.
  • the liquidity of the newly discovered naphthalene esters of the present invention permits them to be mixed into vinyl chloride and other polymeric formulations more readily than solid compounds.
  • Typical plasticized compositions are vinyl chlorides containing from 5 to about 45 percent by weight of the naphthalene esters of the present invention. Such formulations exhibit good low-temperature flexibility.
  • naphthalenes of the present invention are suited by virtue of unexpected property of liquidity
  • this same property enables their use in a number of primarily physical applications.
  • their viscosities and densities suit them for use in specialized applications such as ore flotation, and manometer fluids
  • their viscosities and thermal conductivites permit their use as heat transfer media even at room temperatures
  • their liquidity, together with their coeflicient of thermal expansion permit their use in the filling of expansible bellows, e.g. as used in thermally actuated electrical switches and valves.
  • the esters of this invention are prepared by reacting the dicarboxynaphthalene, or its monomeric anhydride, with the alcohol in the presence of an acid catalyst.
  • the reaction is carried out so that water is removed as it is formed during the reaction.
  • the reaction is carried out at from about 75 to about l50 C. and in the presence of an excess of alcohol.
  • the reaction is carried out at temperatures of from about to about C. in the presence of a 4:! mole ratio of alcohol to naphthalene dicarboxylic acid.
  • Solvents useful in carrying out the reaction include reaction-inert solvents such as the high boiling ethers. ketones, etc.
  • naphthalene it is preferable to dissolve the naphthalene in an excess of alcohol and to provide an azeotroping agent such as benzene or toluene to remove the water of reaction.
  • an azeotroping agent such as benzene or toluene
  • acid catalyst Normally, only from about 0.01 to about 0.1 equivalent of acid catalyst is required to catalyze the esterification. However, more can be used if desired. While quite a number of acids are operative for the purpose of esterification, including sulfuric acid, boron trifluoride, zinc chloride, pyrophosphoric acid, etc., sulfuric acid is the preferred catalyst.
  • naphthalenedicarboxylatc Di-n-pentyl- I 6- naphthalenedicarboxylate Di-n-pentyl-2. 3- naphthalenedicar oxylate Di-n-bulyll 6- naphthalenedicarboxylale Di-n-oetyl-l. 6- naphthalenedicarboxylate Di-isopentyl-Z. 3- naphthalenedicarhoxylatc
  • the viscosity index was calculated from ASTM Standard viscosity temperature charts and tables Dz34 1-43.
  • the 2-ethylhexanol esters of the various dicarboxylic acids are unique in that on being cooled they apparently do not crystallize but form glasslike materials. The rigid noncrystalline structure of these esters relaxes on warming.
  • EXAMPLE Vll Preparation of Diesters of Mixed Acids Derived From a Petroleum Fraction
  • An aromatic composition of catalytic cycle oil was recovered by selective extraction, as by gamma-butyrolactone, from a catalytic cycle oil having a boiling range to include mostly dimethylnaphthalenes.
  • the dimethylnaphthalenes were oxidized to produce mixed acids, which acid mixture consists essentially of mixed dicarboxynaphthalenes.
  • About 400 grams of the mixed acids were reacted with about 700 grams of 2-ethyl-l-hexanol alcohol in about 500 ml. of toluene with 20 grams of concentrated sulfuric acid.
  • EXAMPLE Vlll Melting Points of Naphthalene Dicarboxylic Acids The following table indicates the small number of liquid esters as compared to the large number of solid esters of naphthalene dicarboxylic acids.
  • An ester conveniently liquid at room temperature from the group consisting of a. esters of l,6-naphthalene dicarboxylic acid and a saturated straight chain aliphatic hydrocarbon alcohol having four to eight carbon atoms; b. esters of 2,3-naphthalene dicarboxylic acid and a saturated aliphatic aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and
  • An ester conveniently liquid at room temperature of 1,6- naphthalene dicarboxylic acid and a straight chain alkane alcohol having four to eight carbon atoms.
  • An ester conveniently liquid at room temperature of 2,3- naphthalene dicarboxylic acid and a straight chain alkane alcohol having five to eight carbon atoms.
  • An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and npentyl alcohol.
  • An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-hexyl alcohol.
  • An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-heptyl alcohol.
  • An ester conveniently liquid at room temperature 2,3-naphthalene dicarboxylic acid and n-octyl alcohol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention comprises esters selected from the group consisting of esters of 1,6-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol having four to eight carbon atoms; esters of 2,3-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and esters of a naphthalene dicarboxylic acid and a branch chain alkane alcohol having at least two carbon atoms in the branch when the branch is closer to the hydroxyl-substituted carbon atom than the gamma position.

Description

United States Patent [72] Inventors Robert ll. Reitsema 406 Orchard Lane, Findlay, Ohio 45840; Nylen L. Allphin, Jr., 2657 Wright Ave., Pinole, Calif. 94564 [2|] Appl. No. 544,419
[22] Filed Apr. 22, 1966 [45] Patented Nov. 30, i971 Continuation-impart oi application Ser. No. 292,495, July 2, 1963, now abandoned Continuation-impart of application Ser. No. 144,527, Oct. 12, 1961, now abandoned. This application Apr. 22, 1966, Ser. No. 544,419
[54] LIQUID ESTERS OF NAPllTHALENE [56] References Cited UNITED STATES PATENTS 3,239,363 3/l966 Burdge l06/3 l6 3,042,708 7/1962 Mills et al. 260/469 3,042,709 7/1962 Convery 260/475 OTHER REFERENCES Radt, Elsevier s Encyclopedia of Organic Chemistry. Vol. 125, Elsevier Publishing Co., NY. (1954) p. 4704 QD25 1 E6.
Radt, Elseviers' 5 Encyclopedia of Organic Chemistry Vol. 128, Elsevier Publishing Co., New York, 1954, pp. 4695, 4704, 4725, 4728, 4730 CD25 IE6 Primary Examiner- Lorraine A. Weinberger Assistant Examiner-E. Jane Skelly Attorneys-Joseph C. Herring and Richard C. Willson. Jr.
LIQUID ESTERS OF NAPHTHALENE DICARBOXYLIC ACIDS This application is a continuation-in-part of application Ser. No. 292,495 filed July 2, 1963, which is itself a continuationin-part of application Ser. No. 144,527, filed Oct. 12, 1961, now abandoned.
This invention relates to new liquid esters of naphthalene dicarboxylic acids and more particularly to specific nonnal and branch chain diesters of 2,3-; 1,6-; 2,7-; etc., isomers of dicarboxynaphthalenes and mixtures of such acids.
Various esters of naphthalene dicarboxylic acids are known. Elsevier's Encyclopedia of Organic Chemistry, Vol. l2B, I953, pp. 4681-4733, describes the properties of various dimethyl and diethyl esters of the naphthalene dicarboxylic acids. The dibutyl and diphenyl esters of naphthalic acid are also described.
Though the art teaches the diesters to be solids, we have surprisingly discovered that our new esters are liquids, including the esters of 1,6-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol having four to eight carbon atoms; the esters of 2,3-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and the esters of a naphthalene dicarboxylic acid and a branched alkane alcohol having at least two, and preferably from two to about eight, carbon atoms in the branch when the branch is closer to the hydroxyl-substituted carbon atom than the gamma position.
That the compounds of the present invention are liquids at or very near room temperature, is especially unexpected in view of the fact that while the literature mentions many of the closely related naphthalene esters, to the best of our knowledge, no mention is made in the literature of any of these closely related compounds being liquid. (See for example Elsevier, supra and US. Pat. No. 3,042,708 to Mills and Jezl and US. Pat. No. 3,042,709 to Convery.)
The property of liquidity makes the compounds of the present invention useful for purposes for which nonliquid closely related naphthalene esters are not suited. For example, the compounds of the present invention may be mixed with solid reagents, e.g. Grignard reagents, hydrazene and other compounds to form reaction mixtures without the presence of solvents thus simplifying recovery of the resulting products.
Also, liquid mixtures containing the naphthalene esters of the present invention, together with solid or liquid chain-forming reagents, e.g. polyamines especially diamines or triamines, can be formulated to provide adhesive compositions which can be readily spread and which polymerize without the need for solvent evaporation. The absence of solvents from such formulations avoids the problems of weakening of plastic surfaces which are to be joined, and of pockmarking and pinholing which are frequently caused by the escape of solvents during the hardening process.
Especially important, the liquid naphthalene esters of the present invention are useful as plasticizers for plastics, e.g. vinyl chloride. The liquidity of the newly discovered naphthalene esters of the present invention permits them to be mixed into vinyl chloride and other polymeric formulations more readily than solid compounds. Typical plasticized compositions are vinyl chlorides containing from 5 to about 45 percent by weight of the naphthalene esters of the present invention. Such formulations exhibit good low-temperature flexibility.
In addition to the above discussed chemical utilities to which the naphthalenes of the present invention are suited by virtue of unexpected property of liquidity, this same property enables their use in a number of primarily physical applications. For example their viscosities and densities suit them for use in specialized applications such as ore flotation, and manometer fluids; their viscosities and thermal conductivites permit their use as heat transfer media even at room temperatures; their liquidity, together with their coeflicient of thermal expansion permit their use in the filling of expansible bellows, e.g. as used in thermally actuated electrical switches and valves.
All of these physical and chemical utilities are surprising and unexpected in view of the absence from the literature of any mention of liquid naphthalene esters of the general configuration of the new compound of the present invention.
The esters of this invention are prepared by reacting the dicarboxynaphthalene, or its monomeric anhydride, with the alcohol in the presence of an acid catalyst. The reaction is carried out so that water is removed as it is formed during the reaction. The reaction is carried out at from about 75 to about l50 C. and in the presence of an excess of alcohol. Preferably, the reaction is carried out at temperatures of from about to about C. in the presence of a 4:! mole ratio of alcohol to naphthalene dicarboxylic acid. Solvents useful in carrying out the reaction include reaction-inert solvents such as the high boiling ethers. ketones, etc. It is preferable to dissolve the naphthalene in an excess of alcohol and to provide an azeotroping agent such as benzene or toluene to remove the water of reaction. Normally, only from about 0.01 to about 0.1 equivalent of acid catalyst is required to catalyze the esterification. However, more can be used if desired. While quite a number of acids are operative for the purpose of esterification, including sulfuric acid, boron trifluoride, zinc chloride, pyrophosphoric acid, etc., sulfuric acid is the preferred catalyst.
The following examples more fully illustrate the invention.
EXAMPLE 1 Preparation of the Diisopentyl Ester of 2,3-Dicarboxynaphthalene About 70 grams of a substantially purified 2,3-anhydride of 2,3-dicarboxynaphthalene was heated with stirring in about 200 grams of isopentyl alcohol and about 1 gram of concentrated sulfuric acid. When the temperature reached about 125 all of the anhydride had gone into the solution. The reaction was carried on in a distillation flask equipped for continuous refluxing and removal of water as it is formed. The reaction was continued until about 5 ml. of water had been removed. About 60 ml. of the alcohol was also removed with the 5 ml. of water. The reaction mixture was cooled, diluted with about 500 ml. of benzene, shaken once with about 200 ml. of 5 percent sodium bicarbonate solution, separated, and then shaken twice with about 300 ml. of water. The recovered organic phase was then dried over sodium sulfate and all of the benzene and most of the excess alcohol was removed by evaporation on a hot plate with the aid of an air jet. The remainder of the alcohol was distilled away at about atmospheric pressure, and the distillation was completed under about 25 mm. of mercury vacuum at a temperature of about 200 C. The residue was then vacuum distilled and the recovered forerun boiled at l20-l 87 at 0.1 mm. The product fraction boiled at 180 at 0.075 mm. About 1 15 grams of product was recovered as a clear, water-white viscous liquid, having an index of refraction of n,, =l.539l. The pot residue was discolored but not tarry and it weighed about 4.1 grams. The purified product amounted to 9L4 percent of theoretic yield based on anhydride.
EXAMPLE ll Preparation of Di-N-Octyl Ester Of 2.3-Dicarboxynaphthalene Following the procedure of example I, a mixture of about equal parts (200 grams each) of n-octanol and benzene were mixed with about 50 grams of 2,3-dicarboxynaphthalene and about 2 grams of concentrated sulfuric acid. The mixture was refluxed until the dissolution was complete and no appreciable amount of water was removed by azeotropic distillation. The reaction mixture was then cooled and washed with a 5 percent sodium bicarbonate solution followed by three washes with water. The organic phase was then dried over sodium sulfate and the benzene removed on a rotary evaporator. The octanol, which was unreacted, was removed by vacuum distillation at a temperature of about 60-63 C. at 0.5 mm. Toward the end of the distillation period, a solid sublimed and condensed in the condenser. This was subsequently identified as the 2,3-anhydride by a mixture melting point determination. The residue from this distillation was taken up in benzene, chilled, filtered, and the benzene removed by evaporation on a water bath. After the removal of a small amount of anhydride by vacuum filtration, the crude ester was purified by simple distillation to give a product boiling at 224-225 C. at 0.075 mm. with a refractive index of n,,"--"=l .5257. The yield of the dioctyl ester of 2,3-dicarboxynaphthalene was 5L5 percent based on the unrecovered acid.
EXAMPLE Ill Preparation of Di-N-Butyl Ester Of l,6-Dicarboxynaphthalene Following the procedure of example I, about 70 grams of l,6-dicarboxynaphthalene was reacted with about 500 ml. of n-butanol and about l grams of concentrated sulfuric acid. The mixture was refluxed until the dissolution was complete and water no longer distilled over. The mixture was worked up in the usual manner and the crude product was distilled under vacuum to provide a precut of about grams having a boiling point of l l8-l35 at 0.07 mm. and a refractive index of n,,"' l.4865, and about 65 grams of a light yellow product which had a boiling point of 172 C. at 0.07 mm., and a refractive index of n -1.5585. This amount of product represents a yield of about 62 percent. The infrared absorption spectra indicated the presence of an ester group.
EXAMPLE IV Preparation of Di-N-Octyl Ester Of l,6-Dicarboxynaphthalene By refluxing 50 grams of l,6-dicarboxynaphthalene with about 300 ml. of n-octanol in 300 ml. of benzene and with about 2 grams of concentrated sulfuric acid, the corresponding ester was made in accordance with the procedure of example l. The refluxing was continued until no further water was removed by azeotropic distillation. The solution was then evaporated with an air jet on a water bath to remove the benzene and the remaining octanol. The residue was then vacuum distilled to provide a yellow, viscous oil, having a boiling point of 237-240 C. at 0.075 mm. This product slowing solidified in the condenser and the final product appeared as a white paste with an apparent melting point quite near room temperature.
EXAMPLE V Kinematic Viscosity Compound 20: F.
Di-n-octyl-Z. 3-
naphthalenedicarboxylatc Di-n-pentyl- I 6- naphthalenedicarboxylate Di-n-pentyl-2. 3- naphthalenedicar oxylate Di-n-bulyll 6- naphthalenedicarboxylale Di-n-oetyl-l. 6- naphthalenedicarboxylate Di-isopentyl-Z. 3- naphthalenedicarhoxylatc The viscosity index was calculated from ASTM Standard viscosity temperature charts and tables Dz34 1-43. The formula for the viscosity index is L U V.I.- X100 7 EXAMPLE Vl Preparation of Di-2-ethyll-hexyl Ester of l,6-Dicarboxynaphthalene About 500 grams of 1,6-dicarboxynaphthalene and about 750 grams of 2-ethyl-l-hexanol, about 300 ml. of toluene and about 20 grams of concentrated sulfuric acid were stirred at reflux temperatures until the theoretical water of reaction was recovered. The water was removed as a water-toluene azeotrope. The reaction mixture was cooled, washed with sodium hydroxide and finally water. The remaining toluene and alcohol were distilled and the diester isolated. The ester was found to have a boiling point of 230 C. at 0.07 mm. and to have a refractive index of n -=1 .5338.
The 2-ethylhexanol esters of the various dicarboxylic acids are unique in that on being cooled they apparently do not crystallize but form glasslike materials. The rigid noncrystalline structure of these esters relaxes on warming.
EXAMPLE Vll Preparation of Diesters of Mixed Acids Derived From a Petroleum Fraction An aromatic composition of catalytic cycle oil was recovered by selective extraction, as by gamma-butyrolactone, from a catalytic cycle oil having a boiling range to include mostly dimethylnaphthalenes. The dimethylnaphthalenes were oxidized to produce mixed acids, which acid mixture consists essentially of mixed dicarboxynaphthalenes. About 400 grams of the mixed acids were reacted with about 700 grams of 2-ethyl-l-hexanol alcohol in about 500 ml. of toluene with 20 grams of concentrated sulfuric acid. The reaction was carried out under refluxing conditions to continuously remove the water which was formed in the reaction as an azeotrope. Following the reaction period the cooled mixture was washed with a 5 percent base solution and then with water to remove unreacted'acid. The resultant mixture was dried with anhydrous MgSO and distilled to remove unreacted alcohol and toluene. On vacuum distillation, a main cut was recovered which boiled at 200-230 C. and had a refractive index of n,,-" -'=l.5224. The forecut boiled at about l53-200 C. at 0.08 mm. The product or second cut consisted essentially of the diesters of the mixed acids.
EXAMPLE Vlll Melting Points of Naphthalene Dicarboxylic Acids The following table indicates the small number of liquid esters as compared to the large number of solid esters of naphthalene dicarboxylic acids.
Melting Points of Esters of 2, 6-Naphthalene Dicarboxylic 55 Acid Corrected Ester Melting Point, C.
Dimethyl |89.5-l 90.0 Diethyl l26.5-l27.0 Di-n-propyl 83.5-85.0 Di-n-butyl 79.5-80.0 Di-n-pentyl 76.0-77.0 Di-n-hexyl 88.5-89.0 Di-n-heptyl SID-82.0 Di-n-octyl sop-a .0 Di-n-nonyl 68.5-69.5 Di-n-decyl 80.5-8 1.0 Di-n-undecyl 74.0-74.5 Di-n-dodecyl 52.0-53.0 Di-n-tetradecyl 87.0-88.0 Di-n-pentadecyl 82.0-83.0 Di-n-hexadecyl 79.5-80.0 Di-isopropyl l l8.0-l 19.0 Di-isobutyl 85.0-86.0 Di-isopentyl 62.0-63.0 Di-cyclooctyl 97.5-98.5 Di-cycloheptyl l 29.5-1 30.0 5 Di-cyclopentyl l37.5-l38.5
Di-cycluhexyl l54.5-l55.0 Dc-phcnylethyl I 340-] 34.5 Di-2, fi'dimethyl-theptyl 17.5-18.5 Di-Z-ethoxyclhyl 69.0-70.0
Corrected Ester Melting Point, C.
Melting Points of Eaters of l. b-Naphthalenedicurboxylic This application is a continuation in part of our copending US. application Ser. No. 144,527 filed Oct. 12, 1961.
Now having described our invention, what we claim is: 1. An ester conveniently liquid at room temperature from the group consisting of a. esters of l,6-naphthalene dicarboxylic acid and a saturated straight chain aliphatic hydrocarbon alcohol having four to eight carbon atoms; b. esters of 2,3-naphthalene dicarboxylic acid and a saturated aliphatic aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and
c. esters of a naphthalene dicarboxylic acid and a branch chain alkane alcohol having two to eight carbon atoms in the branch wherein the branch is closer to the hydroxylsubstituted carbon atom than the gamma position.
2. An ester conveniently liquid at room temperature of 1,6- naphthalene dicarboxylic acid and a straight chain alkane alcohol having four to eight carbon atoms.
3. An ester conveniently liquid at room temperature of 2,3- naphthalene dicarboxylic acid and a straight chain alkane alcohol having five to eight carbon atoms.
4. The diester of 2.6-dimethyl-4-heptyl alcohol and 2,6- naphthalene dicarboxylic acid.
5. The diester of n-butyl alcohol and l,6-naphthalene dicarboxylic acid.
6. The diester of n-pentyl alcohol and 1,6-naphthalene dicarboxylic acid.
7. The diester of n-hexyl alcohol and 1,6-naphthalene dicarboxylic acid.
8. The diester of n-heptyl alcohol and l,6-naphthalene dicarboxylic acid.
9. The diester of n-octyl alcohol and LG-naphthalene dicarboxylic acid.
10. The diester of isopentyl alcohol and 1,6-naphthalene dicarboxylic acid.
11. The diester of Lnaphthalene dicarboxylic acid and 2- ethyll -hexanol alcohol.
12. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and npentyl alcohol.
13. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-hexyl alcohol.
14. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-heptyl alcohol.
15. An ester conveniently liquid at room temperature 2,3-naphthalene dicarboxylic acid and n-octyl alcohol.
16. An ester conveniently liquid at room temperature 2,3-naphthalene dicarboxylic acid iand isopentyl alcohol.
UMTED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. Dated NOV. 30, 1971 R. H. Reitserna N. L. Allphin, Jr.
Inventor(s) It is certified that error a ppears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
C01. 6, line 1: Delete "and" and insert a Col. 6, lines 2-5 Delete in their entirety.
C01. 5, line 2 "De-phenylethyl" should read -Di -pheny1ethy1-- Signed and sealed this 16th da'y of May 1972.
(SEAL) Attest:
EDWARD M.FLEI'CHER, JR. ROBERT GOTTSCHALK Attesting Officer- Comissioner of Patents

Claims (15)

  1. 2. An ester conveniently liquid at room temperature of 1,6-naphthalene dicarboxylic acid and a straight chain alkane alcohol having four to eight carbon atoms.
  2. 3. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and a straight chain alkane alcohol having five to eight carbon atoms.
  3. 4. The diester of 2,6-dimethyl-4-heptyl alcohol and 2,6-naphthalene dicarboxylic acid.
  4. 5. The diester of n-butyl alcohol and 1,6-naphthalene dicarboxylic acid.
  5. 6. The diester of n-pentyl alcohol and 1,6-naphthalene dicarboxylic acid.
  6. 7. The diester of n-hexyl alcohol and 1,6-naphthalene dicarboxylic acid.
  7. 8. The diester of n-heptyl alcohol and 1,6-naphthalene dicarboxylic acid.
  8. 9. The diester of n-octyl alcohol and 1,6-naphthalene dicarboxylic acid.
  9. 10. The diester of isopentyl alcohol and 1,6-naphthalene dicarboxylic acid.
  10. 11. The diester of 1,6naphthalene dicarboxylic acid and 2,ethyl-1-hexanol alcohol.
  11. 12. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-pentyl alcohol.
  12. 13. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-hexyl alcohol.
  13. 14. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-heptyl alcohol.
  14. 15. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-octyl alcohol.
  15. 16. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and isopentyl alcohol.
US544419A 1966-04-22 1966-04-22 Liquid esters of naphthalene dicarboxylic acids Expired - Lifetime US3624133A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54441966A 1966-04-22 1966-04-22

Publications (1)

Publication Number Publication Date
US3624133A true US3624133A (en) 1971-11-30

Family

ID=24172091

Family Applications (1)

Application Number Title Priority Date Filing Date
US544419A Expired - Lifetime US3624133A (en) 1966-04-22 1966-04-22 Liquid esters of naphthalene dicarboxylic acids

Country Status (2)

Country Link
US (1) US3624133A (en)
DE (1) DE1618680A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758548A (en) * 1966-04-22 1973-09-11 Marathon Oil Co Liquid esters of naphthalene dicarboxylic acids
WO1989010345A1 (en) * 1988-04-18 1989-11-02 The Lubrizol Corporation Thermal oxidatively stable synthetic fluid composition
US5164122A (en) * 1988-04-18 1992-11-17 The Lubrizol Corporation Thermal oxidatively stable synthetic fluid composition
US10570084B2 (en) 2016-11-03 2020-02-25 Exxonmobil Research And Engineering Company General purpose plasticizers based on naphthalic acid diesters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042709A (en) * 1960-04-28 1962-07-03 Sun Oil Co Esterification of naphthalene dicarboxylic acids
US3042708A (en) * 1959-12-11 1962-07-03 Sun Oil Co Separation of esters of naphthalene
US3239363A (en) * 1962-10-05 1966-03-08 Marathon Oil Co Esters of isomeric dicarboxynaphthalenes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042708A (en) * 1959-12-11 1962-07-03 Sun Oil Co Separation of esters of naphthalene
US3042709A (en) * 1960-04-28 1962-07-03 Sun Oil Co Esterification of naphthalene dicarboxylic acids
US3239363A (en) * 1962-10-05 1966-03-08 Marathon Oil Co Esters of isomeric dicarboxynaphthalenes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Radt, Elsevier s Encyclopedia of Organic Chemistry, Vol. 12B, Elsevier Publishing Co., N.Y. (1954) p. 4704 QD251E6. *
Radt, Elseviers s Encyclopedia of Organic Chemistry Vol. 12B, Elsevier Publishing Co., New York, 1954, pp. 4695, 4704, 4725, 4728, 4730 QD251E6 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758548A (en) * 1966-04-22 1973-09-11 Marathon Oil Co Liquid esters of naphthalene dicarboxylic acids
WO1989010345A1 (en) * 1988-04-18 1989-11-02 The Lubrizol Corporation Thermal oxidatively stable synthetic fluid composition
US5164122A (en) * 1988-04-18 1992-11-17 The Lubrizol Corporation Thermal oxidatively stable synthetic fluid composition
US10570084B2 (en) 2016-11-03 2020-02-25 Exxonmobil Research And Engineering Company General purpose plasticizers based on naphthalic acid diesters

Also Published As

Publication number Publication date
DE1618680A1 (en) 1972-03-02

Similar Documents

Publication Publication Date Title
US2731481A (en) Dimeric fatty acids
US3624133A (en) Liquid esters of naphthalene dicarboxylic acids
US3135785A (en) Di(pentaerythritol trimonocarboxylate) alkylene dicarboxylate
US3413336A (en) Process for the preparation of aryl esters of aromatic dicarboxylic acids
US2576268A (en) Cellulose ester plasticized with a 1-4 butandiol diester
US2956978A (en) Polyalkylene glycol dibenzoates, process of making same and resinous compositions plasticized therewith
US2700656A (en) Plasticized polyvinyl chloride compositions
US3758548A (en) Liquid esters of naphthalene dicarboxylic acids
US2197709A (en) Acyl styrenes
US2766266A (en) Substituted 1, 5-pentanediol esters
US3054821A (en) Phosphonic acid esters and preparation thereof
US2780609A (en) Plasticized vinyl chloride polymer
US3471549A (en) Process for the preparation of pure aryl esters of di- and polycarboxylic acids
US3879445A (en) Monohaloalkenyl benzoates and trihaloalkyl benzoates
US3078301A (en) Esters of n-carboalkoxy-e-aminocaproic acid
US3239363A (en) Esters of isomeric dicarboxynaphthalenes
US2233513A (en) Esters of aroyl benzoic acids
US3086985A (en) Preparation of diallylic phthalates
US2608578A (en) Di (alkyl glycolyl) esters of oxy-di(polymethylene)-dicarboxylic acids
US2779769A (en) Poly-halogen-containing dicarboxylic acids and anhydrides
US3673247A (en) Hydroxybenzensulfonyl halide production
US2874138A (en) Lower fatty acid esters of n, n, n', n' tetrakis (2-hydroxypropyl) ethylene diamine and vinyl chloride compositions containing same
US2996528A (en) Trivalent antimony salts of organic acids and their pentavalent derivatives and methods of preparing same
US1909092A (en) Organic solvents and plasticizer
US3389164A (en) Process for the preparation of aryl esters of carbocyclic carboxylic acids

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARATHON OIL COMPANY, AN OH CORP

Free format text: ASSIGNS THE ENTIRE INTEREST IN ALL PATENTS AS OF JULY 10,1982 EXCEPT PATENT NOS. 3,783,944 AND 4,260,291. ASSIGNOR ASSIGNS A FIFTY PERCENT INTEREST IN SAID TWO PATENTS AS OF JULY 10,1982;ASSIGNOR:MARATHON PETROLEUM COMPANY;REEL/FRAME:004172/0421

Effective date: 19830420