US3624133A - Liquid esters of naphthalene dicarboxylic acids - Google Patents
Liquid esters of naphthalene dicarboxylic acids Download PDFInfo
- Publication number
- US3624133A US3624133A US544419A US3624133DA US3624133A US 3624133 A US3624133 A US 3624133A US 544419 A US544419 A US 544419A US 3624133D A US3624133D A US 3624133DA US 3624133 A US3624133 A US 3624133A
- Authority
- US
- United States
- Prior art keywords
- naphthalene dicarboxylic
- alcohol
- dicarboxylic acid
- ester
- esters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000002148 esters Chemical class 0.000 title claims abstract description 39
- 239000007788 liquid Substances 0.000 title claims description 27
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical class C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 title abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- KHARCSTZAGNHOT-UHFFFAOYSA-N naphthalene-2,3-dicarboxylic acid Chemical compound C1=CC=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 KHARCSTZAGNHOT-UHFFFAOYSA-N 0.000 claims abstract description 19
- VAWFFNJAPKXVPH-UHFFFAOYSA-N naphthalene-1,6-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC2=CC(C(=O)O)=CC=C21 VAWFFNJAPKXVPH-UHFFFAOYSA-N 0.000 claims abstract description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 13
- 150000001335 aliphatic alkanes Chemical class 0.000 claims abstract description 7
- -1 hydroxyl-substituted carbon atom Chemical group 0.000 claims abstract description 7
- 150000005690 diesters Chemical class 0.000 claims description 21
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 16
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 claims description 10
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 claims description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 8
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 6
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 claims description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 abstract description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Chemical class 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 150000002790 naphthalenes Chemical class 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000009835 boiling Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000010992 reflux Methods 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical class C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 150000000369 2-ethylhexanols Chemical class 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 238000003853 Pinholing Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- CMQCNTNASCDNGR-UHFFFAOYSA-N toluene;hydrate Chemical compound O.CC1=CC=CC=C1 CMQCNTNASCDNGR-UHFFFAOYSA-N 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/12—Esters; Ether-esters of cyclic polycarboxylic acids
Definitions
- This invention relates to new liquid esters of naphthalene dicarboxylic acids and more particularly to specific nonnal and branch chain diesters of 2,3-; 1,6-; 2,7-; etc., isomers of dicarboxynaphthalenes and mixtures of such acids.
- esters of naphthalene dicarboxylic acids are known. Elsevier's Encyclopedia of Organic Chemistry, Vol. l2B, I953, pp. 4681-4733, describes the properties of various dimethyl and diethyl esters of the naphthalene dicarboxylic acids. The dibutyl and diphenyl esters of naphthalic acid are also described.
- esters are liquids, including the esters of 1,6-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol having four to eight carbon atoms; the esters of 2,3-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and the esters of a naphthalene dicarboxylic acid and a branched alkane alcohol having at least two, and preferably from two to about eight, carbon atoms in the branch when the branch is closer to the hydroxyl-substituted carbon atom than the gamma position.
- the properties of liquidity makes the compounds of the present invention useful for purposes for which nonliquid closely related naphthalene esters are not suited.
- the compounds of the present invention may be mixed with solid reagents, e.g. Grignard reagents, hydrazene and other compounds to form reaction mixtures without the presence of solvents thus simplifying recovery of the resulting products.
- liquid mixtures containing the naphthalene esters of the present invention, together with solid or liquid chain-forming reagents, e.g. polyamines especially diamines or triamines, can be formulated to provide adhesive compositions which can be readily spread and which polymerize without the need for solvent evaporation.
- solid or liquid chain-forming reagents e.g. polyamines especially diamines or triamines
- polyamines especially diamines or triamines
- liquid naphthalene esters of the present invention are useful as plasticizers for plastics, e.g. vinyl chloride.
- plastics e.g. vinyl chloride.
- the liquidity of the newly discovered naphthalene esters of the present invention permits them to be mixed into vinyl chloride and other polymeric formulations more readily than solid compounds.
- Typical plasticized compositions are vinyl chlorides containing from 5 to about 45 percent by weight of the naphthalene esters of the present invention. Such formulations exhibit good low-temperature flexibility.
- naphthalenes of the present invention are suited by virtue of unexpected property of liquidity
- this same property enables their use in a number of primarily physical applications.
- their viscosities and densities suit them for use in specialized applications such as ore flotation, and manometer fluids
- their viscosities and thermal conductivites permit their use as heat transfer media even at room temperatures
- their liquidity, together with their coeflicient of thermal expansion permit their use in the filling of expansible bellows, e.g. as used in thermally actuated electrical switches and valves.
- the esters of this invention are prepared by reacting the dicarboxynaphthalene, or its monomeric anhydride, with the alcohol in the presence of an acid catalyst.
- the reaction is carried out so that water is removed as it is formed during the reaction.
- the reaction is carried out at from about 75 to about l50 C. and in the presence of an excess of alcohol.
- the reaction is carried out at temperatures of from about to about C. in the presence of a 4:! mole ratio of alcohol to naphthalene dicarboxylic acid.
- Solvents useful in carrying out the reaction include reaction-inert solvents such as the high boiling ethers. ketones, etc.
- naphthalene it is preferable to dissolve the naphthalene in an excess of alcohol and to provide an azeotroping agent such as benzene or toluene to remove the water of reaction.
- an azeotroping agent such as benzene or toluene
- acid catalyst Normally, only from about 0.01 to about 0.1 equivalent of acid catalyst is required to catalyze the esterification. However, more can be used if desired. While quite a number of acids are operative for the purpose of esterification, including sulfuric acid, boron trifluoride, zinc chloride, pyrophosphoric acid, etc., sulfuric acid is the preferred catalyst.
- naphthalenedicarboxylatc Di-n-pentyl- I 6- naphthalenedicarboxylate Di-n-pentyl-2. 3- naphthalenedicar oxylate Di-n-bulyll 6- naphthalenedicarboxylale Di-n-oetyl-l. 6- naphthalenedicarboxylate Di-isopentyl-Z. 3- naphthalenedicarhoxylatc
- the viscosity index was calculated from ASTM Standard viscosity temperature charts and tables Dz34 1-43.
- the 2-ethylhexanol esters of the various dicarboxylic acids are unique in that on being cooled they apparently do not crystallize but form glasslike materials. The rigid noncrystalline structure of these esters relaxes on warming.
- EXAMPLE Vll Preparation of Diesters of Mixed Acids Derived From a Petroleum Fraction
- An aromatic composition of catalytic cycle oil was recovered by selective extraction, as by gamma-butyrolactone, from a catalytic cycle oil having a boiling range to include mostly dimethylnaphthalenes.
- the dimethylnaphthalenes were oxidized to produce mixed acids, which acid mixture consists essentially of mixed dicarboxynaphthalenes.
- About 400 grams of the mixed acids were reacted with about 700 grams of 2-ethyl-l-hexanol alcohol in about 500 ml. of toluene with 20 grams of concentrated sulfuric acid.
- EXAMPLE Vlll Melting Points of Naphthalene Dicarboxylic Acids The following table indicates the small number of liquid esters as compared to the large number of solid esters of naphthalene dicarboxylic acids.
- An ester conveniently liquid at room temperature from the group consisting of a. esters of l,6-naphthalene dicarboxylic acid and a saturated straight chain aliphatic hydrocarbon alcohol having four to eight carbon atoms; b. esters of 2,3-naphthalene dicarboxylic acid and a saturated aliphatic aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and
- An ester conveniently liquid at room temperature of 1,6- naphthalene dicarboxylic acid and a straight chain alkane alcohol having four to eight carbon atoms.
- An ester conveniently liquid at room temperature of 2,3- naphthalene dicarboxylic acid and a straight chain alkane alcohol having five to eight carbon atoms.
- An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and npentyl alcohol.
- An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-hexyl alcohol.
- An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-heptyl alcohol.
- An ester conveniently liquid at room temperature 2,3-naphthalene dicarboxylic acid and n-octyl alcohol.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention comprises esters selected from the group consisting of esters of 1,6-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol having four to eight carbon atoms; esters of 2,3-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and esters of a naphthalene dicarboxylic acid and a branch chain alkane alcohol having at least two carbon atoms in the branch when the branch is closer to the hydroxyl-substituted carbon atom than the gamma position.
Description
United States Patent [72] Inventors Robert ll. Reitsema 406 Orchard Lane, Findlay, Ohio 45840; Nylen L. Allphin, Jr., 2657 Wright Ave., Pinole, Calif. 94564 [2|] Appl. No. 544,419
[22] Filed Apr. 22, 1966 [45] Patented Nov. 30, i971 Continuation-impart oi application Ser. No. 292,495, July 2, 1963, now abandoned Continuation-impart of application Ser. No. 144,527, Oct. 12, 1961, now abandoned. This application Apr. 22, 1966, Ser. No. 544,419
[54] LIQUID ESTERS OF NAPllTHALENE [56] References Cited UNITED STATES PATENTS 3,239,363 3/l966 Burdge l06/3 l6 3,042,708 7/1962 Mills et al. 260/469 3,042,709 7/1962 Convery 260/475 OTHER REFERENCES Radt, Elsevier s Encyclopedia of Organic Chemistry. Vol. 125, Elsevier Publishing Co., NY. (1954) p. 4704 QD25 1 E6.
Radt, Elseviers' 5 Encyclopedia of Organic Chemistry Vol. 128, Elsevier Publishing Co., New York, 1954, pp. 4695, 4704, 4725, 4728, 4730 CD25 IE6 Primary Examiner- Lorraine A. Weinberger Assistant Examiner-E. Jane Skelly Attorneys-Joseph C. Herring and Richard C. Willson. Jr.
LIQUID ESTERS OF NAPHTHALENE DICARBOXYLIC ACIDS This application is a continuation-in-part of application Ser. No. 292,495 filed July 2, 1963, which is itself a continuationin-part of application Ser. No. 144,527, filed Oct. 12, 1961, now abandoned.
This invention relates to new liquid esters of naphthalene dicarboxylic acids and more particularly to specific nonnal and branch chain diesters of 2,3-; 1,6-; 2,7-; etc., isomers of dicarboxynaphthalenes and mixtures of such acids.
Various esters of naphthalene dicarboxylic acids are known. Elsevier's Encyclopedia of Organic Chemistry, Vol. l2B, I953, pp. 4681-4733, describes the properties of various dimethyl and diethyl esters of the naphthalene dicarboxylic acids. The dibutyl and diphenyl esters of naphthalic acid are also described.
Though the art teaches the diesters to be solids, we have surprisingly discovered that our new esters are liquids, including the esters of 1,6-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol having four to eight carbon atoms; the esters of 2,3-naphthalene dicarboxylic acid and an aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and the esters of a naphthalene dicarboxylic acid and a branched alkane alcohol having at least two, and preferably from two to about eight, carbon atoms in the branch when the branch is closer to the hydroxyl-substituted carbon atom than the gamma position.
That the compounds of the present invention are liquids at or very near room temperature, is especially unexpected in view of the fact that while the literature mentions many of the closely related naphthalene esters, to the best of our knowledge, no mention is made in the literature of any of these closely related compounds being liquid. (See for example Elsevier, supra and US. Pat. No. 3,042,708 to Mills and Jezl and US. Pat. No. 3,042,709 to Convery.)
The property of liquidity makes the compounds of the present invention useful for purposes for which nonliquid closely related naphthalene esters are not suited. For example, the compounds of the present invention may be mixed with solid reagents, e.g. Grignard reagents, hydrazene and other compounds to form reaction mixtures without the presence of solvents thus simplifying recovery of the resulting products.
Also, liquid mixtures containing the naphthalene esters of the present invention, together with solid or liquid chain-forming reagents, e.g. polyamines especially diamines or triamines, can be formulated to provide adhesive compositions which can be readily spread and which polymerize without the need for solvent evaporation. The absence of solvents from such formulations avoids the problems of weakening of plastic surfaces which are to be joined, and of pockmarking and pinholing which are frequently caused by the escape of solvents during the hardening process.
Especially important, the liquid naphthalene esters of the present invention are useful as plasticizers for plastics, e.g. vinyl chloride. The liquidity of the newly discovered naphthalene esters of the present invention permits them to be mixed into vinyl chloride and other polymeric formulations more readily than solid compounds. Typical plasticized compositions are vinyl chlorides containing from 5 to about 45 percent by weight of the naphthalene esters of the present invention. Such formulations exhibit good low-temperature flexibility.
In addition to the above discussed chemical utilities to which the naphthalenes of the present invention are suited by virtue of unexpected property of liquidity, this same property enables their use in a number of primarily physical applications. For example their viscosities and densities suit them for use in specialized applications such as ore flotation, and manometer fluids; their viscosities and thermal conductivites permit their use as heat transfer media even at room temperatures; their liquidity, together with their coeflicient of thermal expansion permit their use in the filling of expansible bellows, e.g. as used in thermally actuated electrical switches and valves.
All of these physical and chemical utilities are surprising and unexpected in view of the absence from the literature of any mention of liquid naphthalene esters of the general configuration of the new compound of the present invention.
The esters of this invention are prepared by reacting the dicarboxynaphthalene, or its monomeric anhydride, with the alcohol in the presence of an acid catalyst. The reaction is carried out so that water is removed as it is formed during the reaction. The reaction is carried out at from about 75 to about l50 C. and in the presence of an excess of alcohol. Preferably, the reaction is carried out at temperatures of from about to about C. in the presence of a 4:! mole ratio of alcohol to naphthalene dicarboxylic acid. Solvents useful in carrying out the reaction include reaction-inert solvents such as the high boiling ethers. ketones, etc. It is preferable to dissolve the naphthalene in an excess of alcohol and to provide an azeotroping agent such as benzene or toluene to remove the water of reaction. Normally, only from about 0.01 to about 0.1 equivalent of acid catalyst is required to catalyze the esterification. However, more can be used if desired. While quite a number of acids are operative for the purpose of esterification, including sulfuric acid, boron trifluoride, zinc chloride, pyrophosphoric acid, etc., sulfuric acid is the preferred catalyst.
The following examples more fully illustrate the invention.
EXAMPLE 1 Preparation of the Diisopentyl Ester of 2,3-Dicarboxynaphthalene About 70 grams of a substantially purified 2,3-anhydride of 2,3-dicarboxynaphthalene was heated with stirring in about 200 grams of isopentyl alcohol and about 1 gram of concentrated sulfuric acid. When the temperature reached about 125 all of the anhydride had gone into the solution. The reaction was carried on in a distillation flask equipped for continuous refluxing and removal of water as it is formed. The reaction was continued until about 5 ml. of water had been removed. About 60 ml. of the alcohol was also removed with the 5 ml. of water. The reaction mixture was cooled, diluted with about 500 ml. of benzene, shaken once with about 200 ml. of 5 percent sodium bicarbonate solution, separated, and then shaken twice with about 300 ml. of water. The recovered organic phase was then dried over sodium sulfate and all of the benzene and most of the excess alcohol was removed by evaporation on a hot plate with the aid of an air jet. The remainder of the alcohol was distilled away at about atmospheric pressure, and the distillation was completed under about 25 mm. of mercury vacuum at a temperature of about 200 C. The residue was then vacuum distilled and the recovered forerun boiled at l20-l 87 at 0.1 mm. The product fraction boiled at 180 at 0.075 mm. About 1 15 grams of product was recovered as a clear, water-white viscous liquid, having an index of refraction of n,, =l.539l. The pot residue was discolored but not tarry and it weighed about 4.1 grams. The purified product amounted to 9L4 percent of theoretic yield based on anhydride.
EXAMPLE ll Preparation of Di-N-Octyl Ester Of 2.3-Dicarboxynaphthalene Following the procedure of example I, a mixture of about equal parts (200 grams each) of n-octanol and benzene were mixed with about 50 grams of 2,3-dicarboxynaphthalene and about 2 grams of concentrated sulfuric acid. The mixture was refluxed until the dissolution was complete and no appreciable amount of water was removed by azeotropic distillation. The reaction mixture was then cooled and washed with a 5 percent sodium bicarbonate solution followed by three washes with water. The organic phase was then dried over sodium sulfate and the benzene removed on a rotary evaporator. The octanol, which was unreacted, was removed by vacuum distillation at a temperature of about 60-63 C. at 0.5 mm. Toward the end of the distillation period, a solid sublimed and condensed in the condenser. This was subsequently identified as the 2,3-anhydride by a mixture melting point determination. The residue from this distillation was taken up in benzene, chilled, filtered, and the benzene removed by evaporation on a water bath. After the removal of a small amount of anhydride by vacuum filtration, the crude ester was purified by simple distillation to give a product boiling at 224-225 C. at 0.075 mm. with a refractive index of n,,"--"=l .5257. The yield of the dioctyl ester of 2,3-dicarboxynaphthalene was 5L5 percent based on the unrecovered acid.
EXAMPLE Ill Preparation of Di-N-Butyl Ester Of l,6-Dicarboxynaphthalene Following the procedure of example I, about 70 grams of l,6-dicarboxynaphthalene was reacted with about 500 ml. of n-butanol and about l grams of concentrated sulfuric acid. The mixture was refluxed until the dissolution was complete and water no longer distilled over. The mixture was worked up in the usual manner and the crude product was distilled under vacuum to provide a precut of about grams having a boiling point of l l8-l35 at 0.07 mm. and a refractive index of n,,"' l.4865, and about 65 grams of a light yellow product which had a boiling point of 172 C. at 0.07 mm., and a refractive index of n -1.5585. This amount of product represents a yield of about 62 percent. The infrared absorption spectra indicated the presence of an ester group.
EXAMPLE IV Preparation of Di-N-Octyl Ester Of l,6-Dicarboxynaphthalene By refluxing 50 grams of l,6-dicarboxynaphthalene with about 300 ml. of n-octanol in 300 ml. of benzene and with about 2 grams of concentrated sulfuric acid, the corresponding ester was made in accordance with the procedure of example l. The refluxing was continued until no further water was removed by azeotropic distillation. The solution was then evaporated with an air jet on a water bath to remove the benzene and the remaining octanol. The residue was then vacuum distilled to provide a yellow, viscous oil, having a boiling point of 237-240 C. at 0.075 mm. This product slowing solidified in the condenser and the final product appeared as a white paste with an apparent melting point quite near room temperature.
EXAMPLE V Kinematic Viscosity Compound 20: F.
Di-n-octyl-Z. 3-
naphthalenedicarboxylatc Di-n-pentyl- I 6- naphthalenedicarboxylate Di-n-pentyl-2. 3- naphthalenedicar oxylate Di-n-bulyll 6- naphthalenedicarboxylale Di-n-oetyl-l. 6- naphthalenedicarboxylate Di-isopentyl-Z. 3- naphthalenedicarhoxylatc The viscosity index was calculated from ASTM Standard viscosity temperature charts and tables Dz34 1-43. The formula for the viscosity index is L U V.I.- X100 7 EXAMPLE Vl Preparation of Di-2-ethyll-hexyl Ester of l,6-Dicarboxynaphthalene About 500 grams of 1,6-dicarboxynaphthalene and about 750 grams of 2-ethyl-l-hexanol, about 300 ml. of toluene and about 20 grams of concentrated sulfuric acid were stirred at reflux temperatures until the theoretical water of reaction was recovered. The water was removed as a water-toluene azeotrope. The reaction mixture was cooled, washed with sodium hydroxide and finally water. The remaining toluene and alcohol were distilled and the diester isolated. The ester was found to have a boiling point of 230 C. at 0.07 mm. and to have a refractive index of n -=1 .5338.
The 2-ethylhexanol esters of the various dicarboxylic acids are unique in that on being cooled they apparently do not crystallize but form glasslike materials. The rigid noncrystalline structure of these esters relaxes on warming.
EXAMPLE Vll Preparation of Diesters of Mixed Acids Derived From a Petroleum Fraction An aromatic composition of catalytic cycle oil was recovered by selective extraction, as by gamma-butyrolactone, from a catalytic cycle oil having a boiling range to include mostly dimethylnaphthalenes. The dimethylnaphthalenes were oxidized to produce mixed acids, which acid mixture consists essentially of mixed dicarboxynaphthalenes. About 400 grams of the mixed acids were reacted with about 700 grams of 2-ethyl-l-hexanol alcohol in about 500 ml. of toluene with 20 grams of concentrated sulfuric acid. The reaction was carried out under refluxing conditions to continuously remove the water which was formed in the reaction as an azeotrope. Following the reaction period the cooled mixture was washed with a 5 percent base solution and then with water to remove unreacted'acid. The resultant mixture was dried with anhydrous MgSO and distilled to remove unreacted alcohol and toluene. On vacuum distillation, a main cut was recovered which boiled at 200-230 C. and had a refractive index of n,,-" -'=l.5224. The forecut boiled at about l53-200 C. at 0.08 mm. The product or second cut consisted essentially of the diesters of the mixed acids.
EXAMPLE Vlll Melting Points of Naphthalene Dicarboxylic Acids The following table indicates the small number of liquid esters as compared to the large number of solid esters of naphthalene dicarboxylic acids.
Melting Points of Esters of 2, 6-Naphthalene Dicarboxylic 55 Acid Corrected Ester Melting Point, C.
Dimethyl |89.5-l 90.0 Diethyl l26.5-l27.0 Di-n-propyl 83.5-85.0 Di-n-butyl 79.5-80.0 Di-n-pentyl 76.0-77.0 Di-n-hexyl 88.5-89.0 Di-n-heptyl SID-82.0 Di-n-octyl sop-a .0 Di-n-nonyl 68.5-69.5 Di-n-decyl 80.5-8 1.0 Di-n-undecyl 74.0-74.5 Di-n-dodecyl 52.0-53.0 Di-n-tetradecyl 87.0-88.0 Di-n-pentadecyl 82.0-83.0 Di-n-hexadecyl 79.5-80.0 Di-isopropyl l l8.0-l 19.0 Di-isobutyl 85.0-86.0 Di-isopentyl 62.0-63.0 Di-cyclooctyl 97.5-98.5 Di-cycloheptyl l 29.5-1 30.0 5 Di-cyclopentyl l37.5-l38.5
Di-cycluhexyl l54.5-l55.0 Dc-phcnylethyl I 340-] 34.5 Di-2, fi'dimethyl-theptyl 17.5-18.5 Di-Z-ethoxyclhyl 69.0-70.0
Corrected Ester Melting Point, C.
Melting Points of Eaters of l. b-Naphthalenedicurboxylic This application is a continuation in part of our copending US. application Ser. No. 144,527 filed Oct. 12, 1961.
Now having described our invention, what we claim is: 1. An ester conveniently liquid at room temperature from the group consisting of a. esters of l,6-naphthalene dicarboxylic acid and a saturated straight chain aliphatic hydrocarbon alcohol having four to eight carbon atoms; b. esters of 2,3-naphthalene dicarboxylic acid and a saturated aliphatic aliphatic hydrocarbon alcohol containing five to eight carbon atoms; and
c. esters of a naphthalene dicarboxylic acid and a branch chain alkane alcohol having two to eight carbon atoms in the branch wherein the branch is closer to the hydroxylsubstituted carbon atom than the gamma position.
2. An ester conveniently liquid at room temperature of 1,6- naphthalene dicarboxylic acid and a straight chain alkane alcohol having four to eight carbon atoms.
3. An ester conveniently liquid at room temperature of 2,3- naphthalene dicarboxylic acid and a straight chain alkane alcohol having five to eight carbon atoms.
4. The diester of 2.6-dimethyl-4-heptyl alcohol and 2,6- naphthalene dicarboxylic acid.
5. The diester of n-butyl alcohol and l,6-naphthalene dicarboxylic acid.
6. The diester of n-pentyl alcohol and 1,6-naphthalene dicarboxylic acid.
7. The diester of n-hexyl alcohol and 1,6-naphthalene dicarboxylic acid.
8. The diester of n-heptyl alcohol and l,6-naphthalene dicarboxylic acid.
9. The diester of n-octyl alcohol and LG-naphthalene dicarboxylic acid.
10. The diester of isopentyl alcohol and 1,6-naphthalene dicarboxylic acid.
11. The diester of Lnaphthalene dicarboxylic acid and 2- ethyll -hexanol alcohol.
12. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and npentyl alcohol.
13. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-hexyl alcohol.
14. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-heptyl alcohol.
15. An ester conveniently liquid at room temperature 2,3-naphthalene dicarboxylic acid and n-octyl alcohol.
16. An ester conveniently liquid at room temperature 2,3-naphthalene dicarboxylic acid iand isopentyl alcohol.
UMTED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. Dated NOV. 30, 1971 R. H. Reitserna N. L. Allphin, Jr.
Inventor(s) It is certified that error a ppears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
C01. 6, line 1: Delete "and" and insert a Col. 6, lines 2-5 Delete in their entirety.
C01. 5, line 2 "De-phenylethyl" should read -Di -pheny1ethy1-- Signed and sealed this 16th da'y of May 1972.
(SEAL) Attest:
EDWARD M.FLEI'CHER, JR. ROBERT GOTTSCHALK Attesting Officer- Comissioner of Patents
Claims (15)
- 2. An ester conveniently liquid at room temperature of 1,6-naphthalene dicarboxylic acid and a straight chain alkane alcohol having four to eight carbon atoms.
- 3. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and a straight chain alkane alcohol having five to eight carbon atoms.
- 4. The diester of 2,6-dimethyl-4-heptyl alcohol and 2,6-naphthalene dicarboxylic acid.
- 5. The diester of n-butyl alcohol and 1,6-naphthalene dicarboxylic acid.
- 6. The diester of n-pentyl alcohol and 1,6-naphthalene dicarboxylic acid.
- 7. The diester of n-hexyl alcohol and 1,6-naphthalene dicarboxylic acid.
- 8. The diester of n-heptyl alcohol and 1,6-naphthalene dicarboxylic acid.
- 9. The diester of n-octyl alcohol and 1,6-naphthalene dicarboxylic acid.
- 10. The diester of isopentyl alcohol and 1,6-naphthalene dicarboxylic acid.
- 11. The diester of 1,6naphthalene dicarboxylic acid and 2,ethyl-1-hexanol alcohol.
- 12. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-pentyl alcohol.
- 13. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-hexyl alcohol.
- 14. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-heptyl alcohol.
- 15. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and n-octyl alcohol.
- 16. An ester conveniently liquid at room temperature of 2,3-naphthalene dicarboxylic acid and isopentyl alcohol.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US54441966A | 1966-04-22 | 1966-04-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3624133A true US3624133A (en) | 1971-11-30 |
Family
ID=24172091
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US544419A Expired - Lifetime US3624133A (en) | 1966-04-22 | 1966-04-22 | Liquid esters of naphthalene dicarboxylic acids |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US3624133A (en) |
| DE (1) | DE1618680A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3758548A (en) * | 1966-04-22 | 1973-09-11 | Marathon Oil Co | Liquid esters of naphthalene dicarboxylic acids |
| WO1989010345A1 (en) * | 1988-04-18 | 1989-11-02 | The Lubrizol Corporation | Thermal oxidatively stable synthetic fluid composition |
| US5164122A (en) * | 1988-04-18 | 1992-11-17 | The Lubrizol Corporation | Thermal oxidatively stable synthetic fluid composition |
| US10570084B2 (en) | 2016-11-03 | 2020-02-25 | Exxonmobil Research And Engineering Company | General purpose plasticizers based on naphthalic acid diesters |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3042709A (en) * | 1960-04-28 | 1962-07-03 | Sun Oil Co | Esterification of naphthalene dicarboxylic acids |
| US3042708A (en) * | 1959-12-11 | 1962-07-03 | Sun Oil Co | Separation of esters of naphthalene |
| US3239363A (en) * | 1962-10-05 | 1966-03-08 | Marathon Oil Co | Esters of isomeric dicarboxynaphthalenes |
-
1966
- 1966-04-22 US US544419A patent/US3624133A/en not_active Expired - Lifetime
-
1967
- 1967-04-12 DE DE19671618680 patent/DE1618680A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3042708A (en) * | 1959-12-11 | 1962-07-03 | Sun Oil Co | Separation of esters of naphthalene |
| US3042709A (en) * | 1960-04-28 | 1962-07-03 | Sun Oil Co | Esterification of naphthalene dicarboxylic acids |
| US3239363A (en) * | 1962-10-05 | 1966-03-08 | Marathon Oil Co | Esters of isomeric dicarboxynaphthalenes |
Non-Patent Citations (2)
| Title |
|---|
| Radt, Elsevier s Encyclopedia of Organic Chemistry, Vol. 12B, Elsevier Publishing Co., N.Y. (1954) p. 4704 QD251E6. * |
| Radt, Elseviers s Encyclopedia of Organic Chemistry Vol. 12B, Elsevier Publishing Co., New York, 1954, pp. 4695, 4704, 4725, 4728, 4730 QD251E6 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3758548A (en) * | 1966-04-22 | 1973-09-11 | Marathon Oil Co | Liquid esters of naphthalene dicarboxylic acids |
| WO1989010345A1 (en) * | 1988-04-18 | 1989-11-02 | The Lubrizol Corporation | Thermal oxidatively stable synthetic fluid composition |
| US5164122A (en) * | 1988-04-18 | 1992-11-17 | The Lubrizol Corporation | Thermal oxidatively stable synthetic fluid composition |
| US10570084B2 (en) | 2016-11-03 | 2020-02-25 | Exxonmobil Research And Engineering Company | General purpose plasticizers based on naphthalic acid diesters |
Also Published As
| Publication number | Publication date |
|---|---|
| DE1618680A1 (en) | 1972-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2731481A (en) | Dimeric fatty acids | |
| US3624133A (en) | Liquid esters of naphthalene dicarboxylic acids | |
| US3135785A (en) | Di(pentaerythritol trimonocarboxylate) alkylene dicarboxylate | |
| US3413336A (en) | Process for the preparation of aryl esters of aromatic dicarboxylic acids | |
| US2576268A (en) | Cellulose ester plasticized with a 1-4 butandiol diester | |
| US2956978A (en) | Polyalkylene glycol dibenzoates, process of making same and resinous compositions plasticized therewith | |
| US2700656A (en) | Plasticized polyvinyl chloride compositions | |
| US3758548A (en) | Liquid esters of naphthalene dicarboxylic acids | |
| US2197709A (en) | Acyl styrenes | |
| US2766266A (en) | Substituted 1, 5-pentanediol esters | |
| US3054821A (en) | Phosphonic acid esters and preparation thereof | |
| US2780609A (en) | Plasticized vinyl chloride polymer | |
| US3471549A (en) | Process for the preparation of pure aryl esters of di- and polycarboxylic acids | |
| US3879445A (en) | Monohaloalkenyl benzoates and trihaloalkyl benzoates | |
| US3078301A (en) | Esters of n-carboalkoxy-e-aminocaproic acid | |
| US3239363A (en) | Esters of isomeric dicarboxynaphthalenes | |
| US2233513A (en) | Esters of aroyl benzoic acids | |
| US3086985A (en) | Preparation of diallylic phthalates | |
| US2608578A (en) | Di (alkyl glycolyl) esters of oxy-di(polymethylene)-dicarboxylic acids | |
| US2779769A (en) | Poly-halogen-containing dicarboxylic acids and anhydrides | |
| US3673247A (en) | Hydroxybenzensulfonyl halide production | |
| US2874138A (en) | Lower fatty acid esters of n, n, n', n' tetrakis (2-hydroxypropyl) ethylene diamine and vinyl chloride compositions containing same | |
| US2996528A (en) | Trivalent antimony salts of organic acids and their pentavalent derivatives and methods of preparing same | |
| US1909092A (en) | Organic solvents and plasticizer | |
| US3389164A (en) | Process for the preparation of aryl esters of carbocyclic carboxylic acids |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MARATHON OIL COMPANY, AN OH CORP Free format text: ASSIGNS THE ENTIRE INTEREST IN ALL PATENTS AS OF JULY 10,1982 EXCEPT PATENT NOS. 3,783,944 AND 4,260,291. ASSIGNOR ASSIGNS A FIFTY PERCENT INTEREST IN SAID TWO PATENTS AS OF JULY 10,1982;ASSIGNOR:MARATHON PETROLEUM COMPANY;REEL/FRAME:004172/0421 Effective date: 19830420 |