[go: up one dir, main page]

US3615299A - Hydrogen production by reaction of carbon with steam or steam and oxygen - Google Patents

Hydrogen production by reaction of carbon with steam or steam and oxygen Download PDF

Info

Publication number
US3615299A
US3615299A US830469A US3615299DA US3615299A US 3615299 A US3615299 A US 3615299A US 830469 A US830469 A US 830469A US 3615299D A US3615299D A US 3615299DA US 3615299 A US3615299 A US 3615299A
Authority
US
United States
Prior art keywords
steam
hydrogen
reaction zone
rich gas
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US830469A
Inventor
Paul E Fischer
Melvin M Holm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3615299A publication Critical patent/US3615299A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0933Coal fines for producing water gas

Definitions

  • ABSTRACT Process for producing a hydrogen-rich gas mix- 54] HYDROGEN PRODUCTION BY REACTION OF ture which is lean in C0 and CH4 relative to CO2 by:
  • the present invention relates to the production of a hydrogen-rich gas; more particularly, the present invention relates to the production of an H,-C0,gas mixture in a process wherein steam is reacted with carbonaceous matter.
  • the two leading processes that is the two processes which are most frequently used to generate hydrogen, are steamhydrocarbon reforming and partial oxidation of hydrocarbons.
  • hydrocarbon feed is pretreated to remove sulfur compounds which are poisons to the reforming catalyst.
  • the desulfurized feed is mixed with steam and then is passed through tubes containing a nickel catalyst. While passing through the catalyst-filled tubes most of the hydrocarbons react with steam to form hydrogen and carbon oxides.
  • the tubes containing the catalyst are located in a reforming furnace, which furnace heats the reactants in the tubes to temperatures of l,200-l,700 F.
  • Pressures maintained in the reforming furnace tubes range from atmospheric to 450 p.s.i.g. if a secondary reforming furnace or reactor is employed, pressures used for reforming may be as high as 450 p.s.i.g. to 700 p.s.i.g.
  • a hydrocarbon is reacted with oxygen to yield hydrogen anti Cq ln sufficient TABLE l.-HYDR oxygen for complete combustion is used.
  • the reaction may be carried out with gaseous hydrocarbons or liquid or solid hydrocarbons, for example, with methane, the reaction is:
  • Suitable operating conditions include temperatures from 2,000 F. up to about 3,200 F. and pressures up to about 1,200 p.s.i.g., but generally pressures between I00 and 600 p.s i.g. are used.
  • Various specific partial oxidation processes are commercially available, such as the Shell Gasification Process, Fauser-Montecatini Process, and the Texaco Partial Oxidation Process. 7
  • U.S. Pat No. 1,505,065 also states that the production of carbon dioxide at a given temperature, pursuant to the reaction CO+l-l O li t-CO is favored by the presence of an excess of steam above the amount of steam which actually reacts with the carbonaceous matter.
  • the amount of steam used according to the process disclosed in U.S. Pat. No. l,505,065 is about 3 to pounds per pound of carbon gasified.
  • the upper OGEN PRODUCTION PROCESSES Steam- Lurgi heavy Steam
  • a process for producing a hydrogen-rich gas mixture which is lean in CO I and CH, relative to CO, by:
  • the present invention is based partly on the finding that it is necessary to feed sufficient steam to the carbon-steam reaction zone so that the hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least about 60 volume percent steam, and preferably about 75 volume percent steam, in order to obtain a hydrogen-rich gas which contains only relatively small amounts of CH, and C relative to C0,.
  • sufficient steam is fed to the carbon-steam reaction zone, so that the ratio of CO, to CH and the ratio of CO, to C0 are both at least about 2.5 in the hydrogen-rich gas mixture withdrawn from the reaction zone.
  • sufficient steam is fed to the reaction zone so that the ratio of CO, to CH, and the ratio of CO, to C0 are both at least about 4.0 in the hydrogen-rich gas withdrawn from the reaction zone.
  • steam is the only oxidant which is reacted with the subdivided carbonaceous matter in the reaction zone. It is preferred to heat the steam to a high temperature, as for example l,500 to l,800 F., and then introduce the steam to the reaction zone for endothermic reaction with the subdivided carbonaceous matter to produce the hydrogen-rich gas mixture.
  • the steam is preferably heated to a sufficient temperature and/or a sufficient amount of steam is used so that after some cooling has occurred due to the endothermic reaction, the hydrogen-rich gas mixture is withdrawn from the reaction zone at a temperature between 800 and l,250 F., preferably l,l00to l,200F.
  • the reaction-zone is comprised of a fluidized bed of subdivided carbonaceous particles.
  • the 6 bed preferably is fluidized by hot, upwardly flowing steam.
  • the carbonaceous matter is subdivided to a Tyler mesh size of 8 to 42, or smaller.
  • coke is introduced 7 via line 1 to Pu df' l l fl.”
  • BRAXQQQEESEFEEd was used instead of coke, such as coal or other solid carbonaceous matter.
  • carbonaceous matter is meant any substance containing carbon, either in the amorphous or cystalline carbon state and/or as hydrocarbon compounds.
  • Petroleum coke is a particularly preferred feed.
  • the pulverizing zone grinds the solid coke to small particles, preferably 8 to 42 Tyler mesh size; and more preferably l00 to 200 mesh size. The smaller mesh sizes have been found by experimental work to result in a considerably faster reaction rate when steam is contacted with the particles at elevated temperature.
  • the finely divided coke particles which have been impregnated with K,C0, are withdrawn from zone 4 via line 13 in an aqueous slurry form. Water is separated from the slurry 5 in water-removal zone 14. The water which is removed is recysteam introduced to reaction zone 16 via line 17.
  • Oxygen can be added to reaction zone 16 via line 30. Steam is added via line 17.
  • the hydrogen-rich stream which is produced in reaction zone 16 is withdrawn in line 18 from the reaction, together with a large amount of unreacted steam in accordance with the process of the present invention.
  • steam generation zone 19 operates essentially in accordance with well- 'known procedures normally used for a boiler plant. Water is added to steam generation zone 19 via line 20 and vaporized to form steam at a temperature of about l,500 to l,800 F. T sh t tsem s it dr w.inl nallm According to a preferred embodiment of the present invention, heating fuel for the steam generation zone is provided, in part, by using a portion of the coke withdrawn via line 22 from pulverizing zone 2. In some instances it is economically preferable to omit pulverizing the coke'which is used as a fuel for steam generation zone 19. However, in the preferred embodiment illustrated by FIG.
  • Metals such as vanadium and nickel are removed in the oxide form from zone 26 via line 28.
  • the stream of recovered metals may be subjected to further processing to obtain satisfactory separation of valuable metals, or metal compounds, from less valuable ash constituents.
  • hydrogen is advantageously produced in the process of the present invention from heavy carbonaceous matter such as coal, coke or petroleum residue, the overall process of the present invention affords and attractive process to recover metals from various carbonaceous materials. Metals are recovered both from coke fed to the steam generation zone from the pulverizing zone and from unreacted material withdrawn via line 23 from reaction zone 16.
  • example numbers for a preferred embodiment of the present invention include the following: the coke fed to reaction zone 16 preferably contains about 0.2 pounds of the catalytic agent I( CO per 0.8 pounds of coke. It is preferred to carry out the reaction using a large volume of coke so that large quantities of hydrogen-rich gas can be generated at relatively low temperatures.
  • two reactors each 20 feet in diameter by 64 feet long, are required in this preferred embodiment wherein 100 million s.c.f.d. of 20 hydrogen are produced.
  • the reactors are operated at an internal pressure of approximately 250 p.s.i.g.
  • Heat required per pound of carbon reacted, in accordance with the endothermic steam-carbon reaction employed in the process of the present invention, is about 3,600 b.t.u.s per pound of carbon reacted.
  • To furnish the required heat about 740,000 pounds per hour of steam are added to the reactor vessels at a temperature of about 1,680 F.
  • the temperature and the amount of steam are selected so that there will be at least 60 volume percent steam in the hydrogen-rich gas withdrawn from the reactors and so that the temperature at which the hydrogen-rich gas is withdrawn is between 800 and l,200 F. In this particular instance there is about 67 volume percent steam in the hydrogen-rich gas withdrawn from reaction zone 16, and the temperature of the hydrogen-rich gas which is withdrawn is about 1,200 F.
  • FIG. 2 the volume percent carbon dioxide and the volume percent hydrogen, respectively, are plotted as the ordinate vs. volume percent steam in the total hydrogen produced as the abscissa.
  • the data for FIG. 2 was obtained by reacting 8 to 42 Tyler mesh pulverized coke with steam at various steam rates through the coke bed.
  • the coke contained a small percentage of hydrocarbons which also reacted with the steam to yield hydrogen and carbon dioxide.
  • the initial charge in the reactor was about grams material, consisting of 33.3 grams coke which had been impregnated with about 6.7 grams of K,CO
  • the reaction was carried out at a pressure of about 75 to 90 p.s.i.g. Temperature was maintained at approximately 1000 to 1,200 F. for each of the various runs at different steam rates. The scatter in the data at the various temperature levels and water rates was very small for about any given volume percent steam in total hydrogen product.
  • Curve A illustrates the percent hydrogen in the hydrogenrich gas withdrawn from the reaction zone as a function of the volume percent steam in the total hydrogen product withdrawn from the reactor.
  • curve B represents the volume percent CO in the hydrogen product withdrawn from the reactor vs. the volume percent steam in the total hydrogen product withdrawn from the reactor.
  • the percent hydrogen in the hydrogen product, on a waterfree basis is about 64
  • the percent CO on the same basis is about 26.5.
  • the percent hydrogen plus CO in the hydrogen product, on a steam-free basis is about 90.5.
  • the remaining 9.5 volume percent of the hydrogen product on a steam-free basis is primarily carbon monoxide and methane.
  • the 9.5 percent is comprised of about 60 volume percent CH
  • the volume percent hydrogen in the product gas is about 54.5 and the CO content is about 25.5.
  • the hydrogen content in the hydrogen product is about 68 volume percent, and the CO content is about 27 volume percent.
  • a process for producing a hydrogen-rich gas mixture which is lean in CH, and CO relative to CO and having a ratio of CO to CH in the hydrogen-rich gas mixture of at least 2.5 and a ratio of CO, to C0 of at least 2.5 which comprises:
  • a process for producing a hydrogen-rich gas mixture which is lean in CH, and CO relative to CO and having a ratio of CO to CH in the hydrogen-rich gas mixture of at least 2.5 and a ratio ofCO to C0 of at least 2.5 which comprises:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Process for producing a hydrogen-rich gas mixture which is lean in CO and CH4 RELATIVE to CO2 by: A. CONTACTING SUBDIVIDED CARBONACEOUS MATTER WITH STEAM AND OXYGEN IN A REACTION ZONE AT TEMPERATURES BETWEEN ABOUT 800* AND 1,350* F. to form H2 and CO2, b. feeding sufficient steam to the reaction zone so that the hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least 60 volume percent steam, and C. WITHDRAWING THE HYDROGEN-RICH GAS MIXTURE FROM THE REACTION ZONE AT A TEMPERATURE BETWEEN 800* AND 1,250* F. The ratio of CO2 to CO and CO2 to CH4 in the hydrogen-rich gas withdrawn from the reaction zone is maintained above 2.5. According to a preferred embodiment only steam is used as an oxidizing source in the reaction zone.

Description

United States Patent [72] Inventors Paul E. Fischer 1,926,587 9/1933 Hansgirg Lafayette; 3,004,839 10/1961 Tornquist Melvin M. Holm, Alameda, both of Calif. primary Examiner joseph Scovmnek [21] App]. No. 830,469
Anorneys--A. L. Snow, F. E. Johnston, C. .l. Tonkm and T. G. [22] Filed June 4, 1969 De Jon he 45 Patented 0a. 26, 1971 g [73] Assignee Chevron Research Company San Francisco, Calif.
ABSTRACT: Process for producing a hydrogen-rich gas mix- 54] HYDROGEN PRODUCTION BY REACTION OF ture which is lean in C0 and CH4 relative to CO2 by:
CARBON WITH STEAM 0R STEAM AND OXYGEN a. contacting subdivided carbonaceous matter with steam 8 Claims 2 Drawing Figs and oxygen in a reaction zone at temperatures between about 800 and 1,350 F. to form 1-1 and CO U-S- feedin uffi ient steam to the reaction one so that the 23/19 v! 23/183 23/212 48/202, 48/206 hydrogen-rich gas mixture which is withdrawn from the reac- [51] ll?- tion zone ontain at least volume ercent ugar and [50] Field of Search 48/204, i hd i the hydrogen-rich gas mixture from the rea 19.135237333012312 A1212 8 tion zone at a temperature between 800 and 1,250 F The ratio of CO, to CO and CO, to (3H in the hydrogen- [56] Reierences Cited rich gas withdrawn from the reaction zone is maintained UNrrED STATES PATENTS above 2.5. According to a preferred embodiment only steam is 1,505,065 8/1924 West et a1. 48/204 used as an oxidizing source in the reaction zone.
COKE
2 KzCOa \PULVERIZING MAKEUP ZONE 5 J RECOVERED KzCOa I2 I! a KzCOaCOKE KzCOa WATER CONTACTOR SOLUTION MAKEUP 1.7 a la I0 WAT E R R E MOVA L 70' H2+COz+STEAM R E ACT ION 0 ZON a 2 22 3O FLUE GASES STEAM 24 20 m STEAM WATER i GE N ERATION 2 ON E 27 RECOVERED KZCOJ AND KgCQ; r M ETALS RECOVERY RECOVERED 25 M ETAL-S PATENTEDBET 26 I8?! 3,6152 99 SHEET 1 BF 2 COKE \ PULVERIZING ZONE KzCOa-CoKE cg CONTACTOR SOLUTION MAIKEUP WATER REMOVAL REACTION ZONE .20 r.9 STEAM WATER GENERATIONk ZONE 27 2 RECOVERED S Y 2 a AND KaCOa METALS RECOVERY RECOVERED 25 METALS flNVENTORS PAUL E. F/SCHEI? MELVIN M. HOLM BY 4 l1 L- MTQRNEYs PATENTEDUU 2 6 I97! VOL. 7o (:02 OR Ha IN PRODUCT GAS (H2O FREE BASIS) 3,615,299 SHEET NF 2 CURVE A HYDROGEN CURVE B CARBON DIOXIDE VOL.
I l 1 I l PAUL E. F/SCHER MELVIN M. HOLM d4. QLQML aaii;
AfToRNEYs HYDROGEN PRODUCTION BY ERIEACTIION 01F CAlftihON Wlllllll STEAM OR STEAM AND OXYGEN BACKGROUND OF THE lNVENTl ON l Field of the Invention The present invention relates to the production of a hydrogen-rich gas; more particularly, the present invention relates to the production of an H,-C0,gas mixture in a process wherein steam is reacted with carbonaceous matter. Our application Ser. No. 830,468, titled Hydrogen Production by Reaction of Carbon with Steam an Oxygen" filed on June 4, i969, relates to a hydrogen production process somewhat similar to the process of the present patent application, and the disclosure of the aforesaid patent application is hereby incorporated by reference to the present patent application.
DESCRIPTION OF THE PRIOR ART Various methods have been suggested for the production of hydrogen-rich gas mixtures. Among these methods are steamhydrocarbon reforming, partial oxidation of hydrocarbons, Lurgi heavy hydrocarbons gasification, the traditional steam, red-hot coke reaction, and modified methods of reacting carbonaceous matter with steam and oxygen, such as described in U.S. Pat. No. 1,505,065.
The two leading processes, that is the two processes which are most frequently used to generate hydrogen, are steamhydrocarbon reforming and partial oxidation of hydrocarbons.
In typical steam reforming processes, hydrocarbon feed is pretreated to remove sulfur compounds which are poisons to the reforming catalyst. The desulfurized feed is mixed with steam and then is passed through tubes containing a nickel catalyst. While passing through the catalyst-filled tubes most of the hydrocarbons react with steam to form hydrogen and carbon oxides. The tubes containing the catalyst are located in a reforming furnace, which furnace heats the reactants in the tubes to temperatures of l,200-l,700 F. Pressures maintained in the reforming furnace tubes range from atmospheric to 450 p.s.i.g. if a secondary reforming furnace or reactor is employed, pressures used for reforming may be as high as 450 p.s.i.g. to 700 p.s.i.g. in secondary reformer reactors, part of the hydrocarbons in the effluent from the primary reformer is burned with oxygen. Because of the added expense, secondary reformers are generally not used in hydrogen manufacture but are used where it is desirable to obtain a mixture of H and N as in ammonia manufacture. The basic reactions in the steam reforming process are:
n 2n+2 2 (I f-[ ,,+2nH 0 e.g., methane-steam:
Cl-i ,,+H O :2 cO+3l-l and CH .,+2l-l,0 :2 C0 +4H Because the hydrogen product is used in high-pressure processes, it is advantageous to operate at high pressure to avoid high compression requirements. However, high pressures are adverse to the equilibrium; and higher temperatures must be employed. Consistent with hydrogen purity requirements of about 95 to 97 volume percent mm the final li product, and consistent with present metallurgical limitations, generally single stage reforming is limited commercially to about 1,550 F. and 300 p.s.i.g.
in typical partial oxidation processes, a hydrocarbon is reacted with oxygen to yield hydrogen anti Cq ln sufficient TABLE l.-HYDR oxygen for complete combustion is used. The reaction may be carried out with gaseous hydrocarbons or liquid or solid hydrocarbons, for example, with methane, the reaction is:
Cl-l,+l/20 a? 2H,+CO With heavier hydrocarbons, the reaction may be represented as follows: C H,,,+2.8O +2.lll O Z-Z 6.3'CO+0.7 C0,+8.i H
Both catalytic and noncatalytic partial oxidation processes are in use. Suitable operating conditions include temperatures from 2,000 F. up to about 3,200 F. and pressures up to about 1,200 p.s.i.g., but generally pressures between I00 and 600 p.s i.g. are used. Various specific partial oxidation processes are commercially available, such as the Shell Gasification Process, Fauser-Montecatini Process, and the Texaco Partial Oxidation Process. 7
There is substantial CO in the hydrogen-rich gas generated by either reforming or partial oxidation. To convert the CO to H and CO one or more CO shift conversion stages are typically employed. The C0 shift conversion reaction is:
COi-H o a hi -i- CO This reaction is typically effected by passing the CO and H 0 over a catalyst such as iron oxide activated with chromium.
Typical analyses for hydrogen-rich gas mixtures produced by steam reforming, partial oxidation and the other hydrogen production processes previously referred to are given in table I, page 5.
in all processes represented in table i it can be seen that considerable CO is produced relative to C0,. it can be seen from table I that none of the processes has a ratio of CO, to CO greater than 2 in the raw hydrogen-rich gas mixture produced. The CO which is present in the raw hydrogen-rich gas typically is shift converted to obtain additional H, and C0 as mentioned previously in the discussion of the steam reforming partial oxidation processes. CO, is more easily removed from hydrogen than is CO. Also, it can be readily seen from the reactions C+2H O CO +2l-l C+Hg0 C0+l-l that more hydrogen is produced when carbon is oxidized fully to obtain CO rather than partially to obtain C0. Similarly, more hydrogen is produced when hydrocarbons are oxidized completely to form CO, and H, rather than partially to form CO and H As indicated by table l,U.S. Pat. No. l,505,065 relates to a process wherein steam and oxygen are reacted in a reaction apparatus with carbonaceous matter to obtain a hydrogen-rich gas mixture. It is stated in that patent that a low temperature favors the production of carbon dioxide, but yet that the temperature must be sufficiently high to enable the reaction to proceed at the desired rate. The hydrogen-rich gas mixture which is obtained according to the processes disclosed in U.S. Pat. No. 1,505,065 has a CO, to CO ratio of 1.5.
U.S. Pat No. 1,505,065 also states that the production of carbon dioxide at a given temperature, pursuant to the reaction CO+l-l O li t-CO is favored by the presence of an excess of steam above the amount of steam which actually reacts with the carbonaceous matter. The amount of steam used according to the process disclosed in U.S. Pat. No. l,505,065 is about 3 to pounds per pound of carbon gasified. On a nitrogen-free basis, the upper OGEN PRODUCTION PROCESSES Steam- Lurgi heavy Steam,
hydrocarbon Partinl hydrocarbon red-hot USP reforming oxidation gasitication coke 1,505,065
B3, volume percent 74. 2 44. 5 30. 4 50 47 00, volume percent. 11. 5 49 16.4 49 12 00,, volume percent 11. 7 5. 3 32. 3 l 18 N volume percent. 0. 3 0. 4 0.4 23 CH4, volume percent 2. 2 0. 6 11. 3 Volume ratio, 00,100. 1 0. 1 0. 02 1. 5 Volume ratio, Cog/CH4 5.3 9 2. 9 oxidant Steam 0) Steam Hydrogen gas withdrawal temperature, F 1, 625 2, b 1, 800 2;, 730-3, 270 1, 1 -1, 382
1 Steam plus 0 Steam plus air.
3 limit (5 pounds per pound of carbon gasifiedYoftheamo unt of steam used according to the disclosure of U.S. Pat. No. 1,505,065 would result in about 42 volume percent steam in the hydrogen-rich gas which is produced. Using 23 volume percent nitrogen as the nitrogen content of the hydrogen-rich 5 gas produced according to the process of U.S. Pat. No. 1,505,065, the percent steam in the hydrogen-rich gas produced is about 33 volume percent.
U.S. Pat. No. l,505,065 does not disclose the use of excess steam to minimize the methane content of the hydrogen-rich l gas mixture which is produced.
SUMMARY OF THE INVENTION According to the present invention, a process is provided for producing a hydrogen-rich gas mixture which is lean in CO I and CH, relative to CO, by:
a. contacting subdivided carbonaceous matter with steam and oxygen in a reaction zone at temperatures between about 800 and l,350 F. to form H,and C0,,
b. feeding sufficient steam to the reaction zone so that the 2 hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least 60 volume percent steam, and
c. withdrawing the hydrogen-rich gas mixture from the reaction zone at a temperature between 800 and 1,250 F.
The present invention is based partly on the finding that it is necessary to feed sufficient steam to the carbon-steam reaction zone so that the hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least about 60 volume percent steam, and preferably about 75 volume percent steam, in order to obtain a hydrogen-rich gas which contains only relatively small amounts of CH, and C relative to C0,.
Thus, according to the present invention, sufficient steam is fed to the carbon-steam reaction zone, so that the ratio of CO, to CH and the ratio of CO, to C0 are both at least about 2.5 in the hydrogen-rich gas mixture withdrawn from the reaction zone. Preferably, sufficient steam is fed to the reaction zone so that the ratio of CO, to CH, and the ratio of CO, to C0 are both at least about 4.0 in the hydrogen-rich gas withdrawn from the reaction zone.
According to the preferred embodiment of the present invention, steam is the only oxidant which is reacted with the subdivided carbonaceous matter in the reaction zone. It is preferred to heat the steam to a high temperature, as for example l,500 to l,800 F., and then introduce the steam to the reaction zone for endothermic reaction with the subdivided carbonaceous matter to produce the hydrogen-rich gas mixture. The steam is preferably heated to a sufficient temperature and/or a sufficient amount of steam is used so that after some cooling has occurred due to the endothermic reaction, the hydrogen-rich gas mixture is withdrawn from the reaction zone at a temperature between 800 and l,250 F., preferably l,l00to l,200F.
It has been found that the reaction rate is much faster for finely v e!.qarlzqnsssqvgmattst .thaafilasae ssly 4 vided carbonaceous matter. According to a preferred embodiment of the present invention, the reaction-zone is comprised of a fluidized bed of subdivided carbonaceous particles. The 6 bed preferably is fluidized by hot, upwardly flowing steam. Preferably, the carbonaceous matter is subdivided to a Tyler mesh size of 8 to 42, or smaller.
BRIEF DESCRIPTION OF THE DRAWINGS DETAILED DESCRIPTION Referring now in more detail to FIG. 1, coke is introduced 7 via line 1 to Pu df' l l fl."BRAXQQQEESEFEEd was used instead of coke, such as coal or other solid carbonaceous matter. By carbonaceous matter is meant any substance containing carbon, either in the amorphous or cystalline carbon state and/or as hydrocarbon compounds. Petroleum coke is a particularly preferred feed. The pulverizing zone grinds the solid coke to small particles, preferably 8 to 42 Tyler mesh size; and more preferably l00 to 200 mesh size. The smaller mesh sizes have been found by experimental work to result in a considerably faster reaction rate when steam is contacted with the particles at elevated temperature.
For an example case, about 1,300 tons per day of coke are fed to pulverizing zone 2 and about 820 tons per day of coke are passed to K,CO,-coke contacting zone 4. In zone 4 the finely subdivided carbonaceous matter is impregnated with K,CO added in aqueous solution form to zone 4 via line 12. The aqueous solution of I(,CO, is made up in zone 8. Makeup K,CO, via line 5 and recovered K,CO, via line 6 are combined and introduced to zone 8 via line 7. Recycle water via line 10 and water makeup via line 9 are combined and added to zone 8 via line 11.
The finely divided coke particles which have been impregnated with K,C0, are withdrawn from zone 4 via line 13 in an aqueous slurry form. Water is separated from the slurry 5 in water-removal zone 14. The water which is removed is recysteam introduced to reaction zone 16 via line 17.
cled via line 10 to be used again in forming the aqueous solution of K,CO,,The finely divided coke particles impregnated with K,CO,are withdrawn via line 15 from water-removal zone 14 substantially free of excess water. The coke particles are fed to reaction zone 16, wherein they are reacted with The K,CO, which was previously impregnated into the fine coke particles has a catalytic effect on the reaction I. Other alkaline carbonates also have been determined to have a catalytic effect on the above reaction. Alkaline carbonates .are frequently present in coal, and coke, and other carbonaceous matter in appreciable concentrations such as 2 to 5 0 :weight percent. Thus, in many instances the process of the present invention can be carried out catalytically, but yet without adding any makeup catalysts.
Oxygen can be added to reaction zone 16 via line 30. Steam is added via line 17.
The hydrogen-rich stream which is produced in reaction zone 16 is withdrawn in line 18 from the reaction, together with a large amount of unreacted steam in accordance with the process of the present invention.
The steam which is fed to reaction zone 16 in large quantities is generated in steam generation zone 19. Steam generation zone 19 operates essentially in accordance with well- 'known procedures normally used for a boiler plant. Water is added to steam generation zone 19 via line 20 and vaporized to form steam at a temperature of about l,500 to l,800 F. T sh t tsem s it dr w.inl nallm According to a preferred embodiment of the present invention, heating fuel for the steam generation zone is provided, in part, by using a portion of the coke withdrawn via line 22 from pulverizing zone 2. In some instances it is economically preferable to omit pulverizing the coke'which is used as a fuel for steam generation zone 19. However, in the preferred embodiment illustrated by FIG. 1, 48 tons per day of pulverized coke are fed to steam generation zone 19 via lines 3, 22 and 21. This 480 tons per day of coke is augmented by l08tons per day of unreacted carbonaceous matter (together with metallic ,then be recycled to zone 8 via line 6.
Metals such as vanadium and nickel are removed in the oxide form from zone 26 via line 28. The stream of recovered metals may be subjected to further processing to obtain satisfactory separation of valuable metals, or metal compounds, from less valuable ash constituents. Because hydrogen is advantageously produced in the process of the present invention from heavy carbonaceous matter such as coal, coke or petroleum residue, the overall process of the present invention affords and attractive process to recover metals from various carbonaceous materials. Metals are recovered both from coke fed to the steam generation zone from the pulverizing zone and from unreacted material withdrawn via line 23 from reaction zone 16.
Referring once again to reaction zone 116, example numbers for a preferred embodiment of the present invention include the following: the coke fed to reaction zone 16 preferably contains about 0.2 pounds of the catalytic agent I( CO per 0.8 pounds of coke. It is preferred to carry out the reaction using a large volume of coke so that large quantities of hydrogen-rich gas can be generated at relatively low temperatures. Thus, on a basis of 820 tons per day of K CO -free coke, two reactors, each 20 feet in diameter by 64 feet long, are required in this preferred embodiment wherein 100 million s.c.f.d. of 20 hydrogen are produced. The reactors are operated at an internal pressure of approximately 250 p.s.i.g. Heat required per pound of carbon reacted, in accordance with the endothermic steam-carbon reaction employed in the process of the present invention, is about 3,600 b.t.u.s per pound of carbon reacted. To furnish the required heat, about 740,000 pounds per hour of steam are added to the reactor vessels at a temperature of about 1,680 F. The temperature and the amount of steam are selected so that there will be at least 60 volume percent steam in the hydrogen-rich gas withdrawn from the reactors and so that the temperature at which the hydrogen-rich gas is withdrawn is between 800 and l,200 F. In this particular instance there is about 67 volume percent steam in the hydrogen-rich gas withdrawn from reaction zone 16, and the temperature of the hydrogen-rich gas which is withdrawn is about 1,200 F.
Referring now in more detail to FIG. 2, the volume percent carbon dioxide and the volume percent hydrogen, respectively, are plotted as the ordinate vs. volume percent steam in the total hydrogen produced as the abscissa. The data for FIG. 2 was obtained by reacting 8 to 42 Tyler mesh pulverized coke with steam at various steam rates through the coke bed. The coke contained a small percentage of hydrocarbons which also reacted with the steam to yield hydrogen and carbon dioxide. The initial charge in the reactor was about grams material, consisting of 33.3 grams coke which had been impregnated with about 6.7 grams of K,CO
The reaction was carried out at a pressure of about 75 to 90 p.s.i.g. Temperature was maintained at approximately 1000 to 1,200 F. for each of the various runs at different steam rates. The scatter in the data at the various temperature levels and water rates was very small for about any given volume percent steam in total hydrogen product.
Curve A illustrates the percent hydrogen in the hydrogenrich gas withdrawn from the reaction zone as a function of the volume percent steam in the total hydrogen product withdrawn from the reactor. Similarly, curve B represents the volume percent CO in the hydrogen product withdrawn from the reactor vs. the volume percent steam in the total hydrogen product withdrawn from the reactor.
As can be seen from the curves, when the volume percent steam in the total hydrogen product from the reactor is about 60, the percent hydrogen in the hydrogen product, on a waterfree basis, is about 64, and the percent CO on the same basis is about 26.5. Thus, the percent hydrogen plus CO in the hydrogen product, on a steam-free basis, is about 90.5. The remaining 9.5 volume percent of the hydrogen product on a steam-free basis is primarily carbon monoxide and methane. Typically, the 9.5 percent is comprised of about 60 volume percent CH Thus it can be seen that by using a sufficient amount of steam so that the hydrogen withdrawn from the reaction zone will contain at least about 60 volume percent steam, reasonably low carbon monoxide and CH contents in the product hydrogen gas mixture are obtained. Using a lesser l l l 1 amount of steam so that the product hydrogen gas contains, for example, only about 30 volume percent steam, the volume percent hydrogen in the product gas, as can be seen from FIG. 2, is about 54.5 and the CO content is about 25.5. Thus, there is a considerable amount of unconverted carbon monoxide, as well as methane, remaining in the product hydrogen gas when only about 30 volume percent steam is present in the product hydrogen gas. Moving in the other direction on curves A and B, with about 75 volume percent steam in the hydrogen product from the reactor, it is seen that the hydrogen content in the hydrogen product, on a water-free basis, is about 68 volume percent, and the CO content is about 27 volume percent. Thus, using sufficient steam so that the volume percent steam in the total hydrogen product from the reactor is about 75 percent, a hydrogen gas is obtained which is comprised of about percent hydrogen and CO and only about 5 percent carbon monoxide and methane.
Although various specific embodiments of the invention have been described and shown, it is to be understood they are meant to be illustrative only and not limiting. Certain features may be changed without departing from the spirit or essence of the invention. It is apparent that the present invention has broad application to the production of hydrogen-carbon dioxide gas mixtures. Accordingly, the invention is not to be construed as limited to the specific embodiments illustrated but only as defined in the appended claims.
We claim:
1. A process for producing a hydrogen-rich gas mixture which is lean in CH, and CO relative to CO and having a ratio of CO to CH in the hydrogen-rich gas mixture of at least 2.5 and a ratio of CO, to C0 of at least 2.5 which comprises:
a. contacting subdivided carbonaceous matter with steam and oxygen in a reaction zone maintained at temperatures between about 800 and 1,350" F. to form a hydrogenrich gas mixture comprising H and C0,.
b. feeding sufficient steam to the reaction zone so that the hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least 60 volume percent steam, and
c. withdrawing the hydrogen-rich gas mixture from the reaction zone at a temperature between 800 and l,250 F.
2. A process in accordance with claim 1 wherein the hydrogen-rich gas mixture is withdrawn from the reaction zone at a temperature between 800 and 1,100" F.
3. A process in accordance with claim 1 wherein sufficient steam is fed to the reaction zone so that the hydrogen-rich gas mixture which is withdrawn contains: at least 75 volume percent steam.
4. A process in accordance with Claim 1 wherein the amount of steam fed to the reaction zone is sufficient so that the ratio of CO to CH, and the ratio of CO to CO in the hydrogen-rich gas mixture withdrawn from the reaction zone are each at least about 4.0.
5. A process in accordance with claim 4 wherein the hydrogen-rich gas mixture is withdrawn from the reaction zone at temperatures of between 800 and 1 F.
6. A process in accordance with claim 1 wherein the contacting of the subdivided carbonaceous matter with steam and oxygen in the reaction zone is carried out in the presence of potassium carbonate catalyst added to the reaction zone.
7. A process for producing a hydrogen-rich gas mixture which is lean in CH, and CO relative to CO and having a ratio of CO to CH in the hydrogen-rich gas mixture of at least 2.5 and a ratio ofCO to C0 of at least 2.5 which comprises:
a. contacting subdivided carbonaceous matter with steam as the only oxidant in a reaction zone maintained at temperatures between about 800 and 1,350 F. to form a hydrogen-rich gas mixture comprised ofI-l and CO b. feeding sufficient steam to the reaction zone so that the hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least 60 volume percent steam, and
c. withdrawing the hydrogen-rich gas mixture from the reaction zone at a temperature between 800 and 1,250" P.
8. A process in accordance with claim 7 wherein the hydrogen-rich gas mixture withdrawn from the reaction zone amount of steam fed to the reaction zone is sufiicient so that are each at least about the ratio of CO; to CH and the ratio of CO to C0 in the a

Claims (7)

  1. 2. A process in accordance with claim 1 wherein the hydrogen-rich gas mixture is withdrawn from the reaction zone at a temperature between 800* and 1,100* F.
  2. 3. A process in accordance with claim 1 wherein sufficient steam is fed to the reaction zone so that the hydrogen-rich gas mixture which is withdrawn contains at least 75 volume percent steam.
  3. 4. A process in accordance with Claim 1 wherein the amount of steam fed to the reaction zone is sufficient so that the ratio of CO2 to CH4 and the ratio of CO2 to CO in the hydrogen-rich gas mixture withdrawn from the reaction zone are each at least about 4.0.
  4. 5. A process in accordance with claim 4 wherein the hydrogen-rich gas mixture is withdrawn from the reaction zone at temperatures of between 800* and 1100* F.
  5. 6. A process in accordance with claim 1 wherein the contacting of the subdivided carbonaceous matter with steam and oxygen in the reaction zone is carried out in the presence of potassium carbonate catalyst added to the reaction zone.
  6. 7. A process for producing a hydrogen-rich gas mixture which is lean in CH4 and CO relative to CO2 and having a ratio of CO2 to CH4 in the hydrogen-rich gas mixture of at least 2.5 and a ratio of CO2 to CO of at least 2.5 which comprises: a. contacting subdivided carbonaceous matter with steam as the only oxidant in a reaction zone maintained at temperatures between about 800* and 1,350* F. to form a hydrogen-rich gas mixture comprised of H2 and CO2. b. feeding sufficient steam to the reaction zone so that the hydrogen-rich gas mixture which is withdrawn from the reaction zone contains at least 60 volume percent steam, and c. withdrawing the hydrogen-rich gas mixture from the reaction zone at a temperature between 800* and 1,250* F.
  7. 8. A process in accordance with claim 7 wherein the amount of steam fed to the reaction zone is sufficient so that the ratio of CO2 to CH4 and the ratio of CO2 to CO in the hydrogen-rich gas mixture withdrawn from the reaction zone are each at least about 4.0.
US830469A 1969-06-04 1969-06-04 Hydrogen production by reaction of carbon with steam or steam and oxygen Expired - Lifetime US3615299A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83046969A 1969-06-04 1969-06-04

Publications (1)

Publication Number Publication Date
US3615299A true US3615299A (en) 1971-10-26

Family

ID=25257065

Family Applications (1)

Application Number Title Priority Date Filing Date
US830469A Expired - Lifetime US3615299A (en) 1969-06-04 1969-06-04 Hydrogen production by reaction of carbon with steam or steam and oxygen

Country Status (1)

Country Link
US (1) US3615299A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998607A (en) * 1975-05-12 1976-12-21 Exxon Research And Engineering Company Alkali metal catalyst recovery process
US4057512A (en) * 1975-09-29 1977-11-08 Exxon Research & Engineering Co. Alkali metal catalyst recovery system
US4243639A (en) * 1979-05-10 1981-01-06 Tosco Corporation Method for recovering vanadium from petroleum coke
EP0030841A3 (en) * 1979-12-14 1981-07-01 Exxon Research And Engineering Company Integrated coal drying and steam gasification process
EP0024792A3 (en) * 1979-09-04 1981-07-15 Tosco Corporation A method for producing a methane-lean synthesis gas from petroleum coke
EP0046829A1 (en) * 1980-09-02 1982-03-10 Exxon Research And Engineering Company Recovery of alkali metal constituents from coal conversion residues
EP0062115A1 (en) * 1981-04-02 1982-10-13 Exxon Research And Engineering Company A fluidised bed catalytic coal gasification process
US4432773A (en) * 1981-09-14 1984-02-21 Euker Jr Charles A Fluidized bed catalytic coal gasification process
US4455153A (en) * 1978-05-05 1984-06-19 Jakahi Douglas Y Apparatus for storing solar energy in synthetic fuels
US5895508A (en) * 1996-08-09 1999-04-20 The United States Of America As Represented By The United States Department Of Energy Down-flow moving-bed gasifier with catalyst recycle
US20030172590A1 (en) * 1999-10-01 2003-09-18 Alakananda Bhattacharyya Preparing synthesis gas using hydrotalcite-derived nickel catalysts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1505065A (en) * 1922-10-05 1924-08-12 West John Henry Process for the production of hydrogen or gases rich in hydrogen
US1926587A (en) * 1930-05-29 1933-09-12 American Magnesium Metals Corp Process for the production of hydrogen
US3004839A (en) * 1955-10-20 1961-10-17 Northern Illinois Gas Co Gasification of carbonaceous solid fuels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1505065A (en) * 1922-10-05 1924-08-12 West John Henry Process for the production of hydrogen or gases rich in hydrogen
US1926587A (en) * 1930-05-29 1933-09-12 American Magnesium Metals Corp Process for the production of hydrogen
US3004839A (en) * 1955-10-20 1961-10-17 Northern Illinois Gas Co Gasification of carbonaceous solid fuels

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998607A (en) * 1975-05-12 1976-12-21 Exxon Research And Engineering Company Alkali metal catalyst recovery process
US4057512A (en) * 1975-09-29 1977-11-08 Exxon Research & Engineering Co. Alkali metal catalyst recovery system
US4455153A (en) * 1978-05-05 1984-06-19 Jakahi Douglas Y Apparatus for storing solar energy in synthetic fuels
US4243639A (en) * 1979-05-10 1981-01-06 Tosco Corporation Method for recovering vanadium from petroleum coke
EP0024792A3 (en) * 1979-09-04 1981-07-15 Tosco Corporation A method for producing a methane-lean synthesis gas from petroleum coke
EP0030841A3 (en) * 1979-12-14 1981-07-01 Exxon Research And Engineering Company Integrated coal drying and steam gasification process
EP0046829A1 (en) * 1980-09-02 1982-03-10 Exxon Research And Engineering Company Recovery of alkali metal constituents from coal conversion residues
EP0062115A1 (en) * 1981-04-02 1982-10-13 Exxon Research And Engineering Company A fluidised bed catalytic coal gasification process
US4432773A (en) * 1981-09-14 1984-02-21 Euker Jr Charles A Fluidized bed catalytic coal gasification process
US5895508A (en) * 1996-08-09 1999-04-20 The United States Of America As Represented By The United States Department Of Energy Down-flow moving-bed gasifier with catalyst recycle
US20030172590A1 (en) * 1999-10-01 2003-09-18 Alakananda Bhattacharyya Preparing synthesis gas using hydrotalcite-derived nickel catalysts
US6953488B2 (en) * 1999-10-01 2005-10-11 Bp Corporation North America Inc. Preparing synthesis gas using hydrotalcite-derived nickel catalysts

Similar Documents

Publication Publication Date Title
US3615300A (en) Hydrogen production by reaction of carbon with steam and oxygen
US3847567A (en) Catalytic coal hydrogasification process
CA1079972A (en) Process for production of synthesis gas
US4265868A (en) Production of carbon monoxide by the gasification of carbonaceous materials
US4372755A (en) Production of a fuel gas with a stabilized metal carbide catalyst
US4999030A (en) Process for producing a methane-containing fuel gas
US3779725A (en) Coal gassification
US3919114A (en) Synthesis gas process
US2593257A (en) Blast furnace operation
GB1467995A (en) Process for the production of methane rich gas utilising a combined shift and methanation reaction
US3786138A (en) Hydrogen generation
US3759677A (en) Catalytic synthesis gas manufacture
GB1448562A (en) Process for the production of methane containing gases
US4021366A (en) Production of hydrogen-rich gas
US4762528A (en) Fluid fuel from coal and method of making same
US3615299A (en) Hydrogen production by reaction of carbon with steam or steam and oxygen
GB1149799A (en) Method of producing reducing gas
JPS62241991A (en) Production of high-calorie gas by low-temperature catalytic steam gasification of coal
GB2180849A (en) Producing clean gas containing hydrogen and carbon monoxide
US3222147A (en) Process for the preparation of mixtures of hydrogen, carbon monoxide and methane
US2821471A (en) Process for reduction of iron ore
EP0126961A2 (en) Gasification process for ammonia production
JPH0229111B2 (en)
US4325731A (en) Process of producing reducing gas from solid fuels
EP0120590A1 (en) Production of pipeline gas from sulfur containing raw or synthesis gas