US3692839A - Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones - Google Patents
Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones Download PDFInfo
- Publication number
- US3692839A US3692839A US805365A US3692839DA US3692839A US 3692839 A US3692839 A US 3692839A US 805365 A US805365 A US 805365A US 3692839D A US3692839D A US 3692839DA US 3692839 A US3692839 A US 3692839A
- Authority
- US
- United States
- Prior art keywords
- reaction
- lower alkyl
- formula
- utilized
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 alkyl ketones Chemical class 0.000 title abstract description 16
- 150000001299 aldehydes Chemical class 0.000 title abstract description 6
- 239000007859 condensation product Substances 0.000 title abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000000460 chlorine Substances 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 31
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 150000002576 ketones Chemical class 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 230000002140 halogenating effect Effects 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000012429 reaction media Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 2
- WOYAANPLVVYYLO-UHFFFAOYSA-N 2,3-dichloro-2,5,6-trimethylcyclohexan-1-one Chemical compound CC1CC(Cl)C(C)(Cl)C(=O)C1C WOYAANPLVVYYLO-UHFFFAOYSA-N 0.000 description 2
- QAQCUBLNHBKTRM-UHFFFAOYSA-N 2,5,6-trimethylcyclohex-2-en-1-one Chemical compound CC1CC=C(C)C(=O)C1C QAQCUBLNHBKTRM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZKCJJGOOPOIZTE-UHFFFAOYSA-N 1-(4-hydroxyphenyl)pentan-1-one Chemical compound CCCCC(=O)C1=CC=C(O)C=C1 ZKCJJGOOPOIZTE-UHFFFAOYSA-N 0.000 description 1
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 1
- ZFFBIQMNKOJDJE-UHFFFAOYSA-N 2-bromo-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(Br)C(=O)C1=CC=CC=C1 ZFFBIQMNKOJDJE-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 238000006418 Brown reaction Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- SIAPCJWMELPYOE-UHFFFAOYSA-N lithium hydride Chemical compound [LiH] SIAPCJWMELPYOE-UHFFFAOYSA-N 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- CUQOHAYJWVTKDE-UHFFFAOYSA-N potassium;butan-1-olate Chemical compound [K+].CCCC[O-] CUQOHAYJWVTKDE-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- ODZPKZBBUMBTMG-UHFFFAOYSA-N sodium amide Chemical compound [NH2-].[Na+] ODZPKZBBUMBTMG-UHFFFAOYSA-N 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
- C07C49/603—Unsaturated compounds containing a keto groups being part of a ring of a six-membered ring, e.g. quinone methides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/06—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation
- C07C37/07—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation with simultaneous reduction of C=O group in that ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/63—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C45/72—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
- C07C45/74—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/385—Saturated compounds containing a keto group being part of a ring
- C07C49/457—Saturated compounds containing a keto group being part of a ring containing halogen
- C07C49/463—Saturated compounds containing a keto group being part of a ring containing halogen a keto group being part of a six-membered ring
Definitions
- 2,3,6-tri-lower alkyl phenols of the formula wherein R It, and R are lower alkyl are prepared through the reaction of an a,B-unsaturated aldehyde of the formula wherein R is lower alkyl with a ketone of the formula wherein R and R are lower alkyl.
- lower alkyl designates both straight and branched chain alkyl groups containing from one to seven carbon atoms such as methyl, ethyl, propyl and isopropyl.
- halogen as used throughout the specification includes all four halogens, i.e., chlorine, fluorine,
- the aldehyde of formula II is condensed with the ketone of formula III via reaction step (a) to produce the compound of formula IV above.
- This condensation reaction is carried out in the presence of a base. Any conventional organic or inorganic base can be utilized in this reaction.
- alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, etc.
- alkali metal-lower alkoxides such as sodium methoxide, sodium ethoxide, etc.
- alkali metal hydrides such as sodium hydride, lithium hydride, etc.
- alkali metal amides such as sodium amide, potassium amide, etc.
- organic amine bases such as pyridine, piperidine, etc.
- the ketone of formula HI above be present in excess of the stoichiometric amount required to react with the compound of formula H above.
- excess ketone of formula III above can be utilized as the reaction medium.
- any conventional inert organic solvent can be used as the reaction medium.
- toluene, benzene, xylene, dioxane, diethyl ether and tetrahydrofuran are preferred.
- temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, if desired, elevated or reduced temperatures, i.e., temperatures between 10 C. to C., depending upon the reflux temperature of the solvent medium, can be utilized.
- the compound of formula IV above is converted to the compound of formula V above via reaction step (b).
- This reaction is carried out by treating the compound of formula IV above with a halogenating agent.
- a halogenating agent can be utilized in carrying out the reaction of step (b).
- the conventional halogenating agents which can be utilized are included N-bromosuccinimide, alkali metal hypohalites or a halogen such as chlorine, bromine, or iodine.
- this reaction is carried out in an inert organic solvent. Any conventional inert organic solvent can be utilized in carrying out this reaction.
- hydrocarbons such as xylene, toluene and halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, chlorobenzene, etc.
- this reaction is carried out by treating the compound of formula IV above with a halogenating agent at a temperature of from about to 40 C.
- the compound of formula V above is converted to' the compound of formula I above via reaction step (c) by treating the compound of formula V above with a base or a metal selected from the group consisting of Group III metals and transition metals.
- a base or a metal selected from the group consisting of Group III metals and transition metals Any conventional base can be utilized.
- the preferred bases are included inorganic bases such as sodium hydroxide,
- potassium hydroxide and organic amine bases such as piperazine, pyridine, picoline, piperidine, etc.
- Any conventional Group III metal or transition metal can be utilized in carrying out this reaction. Among the preferred metals are included iron, zinc, copper, aluminum, platinum, palladium, etc.
- a metal is utilized in carrying out this reaction the compound of formula V above is treated with the metal in powdered form. This reaction can take place in the presence of a conventional inert organic solvent.
- Any conventional inert organic solvent can be utilized.
- the conventional inert organic solvents which can be utilized are the hydrocarbon solvents such as tetralin, toluene, xylene, etc.
- reaction temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, elevated temperatures and pressures can be utilized in carrying out this reaction. If desired, the reaction can take place at conditions of temperature and'pressure where the compound of formula V is in the vapor phase. Generally, it is preferred to carry out this reaction at the reflux temperature of the solvent medium.
- the compound of formula IV above is directly converted to the compound of formula I above, via reaction step (d) by treating the compound of formula IV above with a dehydrogenating'agent.
- a dehydrogenating'agent any conventional dehydrogenating agent can be utilized.
- the conventional dehydrogenating agents which can be utilized dichlorodicyanoquinone, mercuric acetate and palladium on carbon are preferred.
- this reaction is carried out in a conventional inert organic solvent. Any conventional inert organic solvent can be utilized.
- tetralin, benzene, toluene, xylene and organic acids which include lower alkanoic acids such as acetic acid are preferred.
- palladium on carbon is utilized as the dehydrogenating agent, no solvent need be present and the reaction can be carried out by heating the reaction medium in the presence of air to a temperature of from about 150 C. to about 300 C.
- a solvent is utilized, the reaction proceeds very slowly at room temperature. Therefore, it is generally preferred to utilize elevated temperatures in carrying out this reaction. In general, temperatures of from about 50 C. to 200 C. are preferred depending upon the reflux temperature of the solvent utilized in the reaction medium.
- Example 1 pentanone were added to the stirred reaction mixture over a period of 45 minutes (the. temperature was maintained between 20 and 25). When of the s0lution was left, 18 g. (0.15 in) more of potassium butoxide were added to the flask and the addition was continued. After completion of addition, the ice bath was removed and the reaction mixture stirred for further 30 minutes.
- reaction mixture was then partitioned between etheraqueous NaCl.
- the ether phase was washed five times with aqueous NaCl (until the aqueous wash was no longer basic to pH paper). It was dried over anhydrous sodium sulfate and concentrated at atmospheric pressure (on steam bath) until the temperature rose to 85. The residue was then distilled under vacuum by a water pump. From the residue one obtained 2,5 ,6-trimethyl-2-cyclohexenone as a fraction.
- Example 2 2,3-dichloro-2,5,6-trimethylcycloiiexanone 13.8 g. (10 mmoles) of 2,5,6-trimethyl-2-cyclohexenone were diluted with 50 cc of carbon tetrachloride and cooled to -20 C. At this temperature, 7.1 g. (10 mmoles) of chlorine was slowly introduced by way of a subsurface glass-tubing gas-inlet. After all of the chlorine has been absorbed, the solvent was removed under reduced pressure at 20 C. to provide 20.9 g. percent of theory) of 2,3-dichloro-2,5,6- trimethylcyclohexanone as residue. This product showed a new strong band in the lR-spectrum at 1720 cm.
- Example 4 7.7 g. of 2,3-dichloro-2,5,6-trimethylcyclohexanone were added to 23.1 g. of pyridine and refluxed for 6 hours.
- the brown reaction mixture was diluted with water, cooled in an ice bath and concentrated HCl added until strongly acidic. After three extractions with ether and two washings with saturated NaCl-solution, the organic layers were combined and dried over magnesium sulfate. After filtration, removal of the solvent 10 wherein R1, R2 nd R3 are allfiyl and X is chlorine and distillation of the residue (b.p. ca 120 C./ ll mg Hg) one obtained 4.35 g. of 2,3,6-trimethylphenol.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Condensation products of Alpha , Beta -unsaturated aldehydes with di-lower alkyl ketones and the preparation of 2,3,6-trilower alkyl phenols therefrom.
Description
United States Patent Wehrli [451 Sept. 19, 1972 s41 CONDENSATION PRODUCTS 0F a,/3- [56] References Cited UNSATURATED ALDEl-IYDES WITH QTHER PUBLICATIONS LOWER ALKYL KETONES Inventor: Pius Anton Wehrli, 9 Runnymede Gardens, Linn Drive, Verona, NJ. 07044 Filed: March 7, 1969 Appl. No.: 805,365
US. Cl. ..260/586 R, 260/621 H, 260/624 R,
260/626 R, 260/626 T Int. Cl. ....C07c 49/30, C07c 37/06, C07c 49/48 Field of Search", ..260/586 R Morrison et a1., Organic Chemistry p. 199 (1962) Baker, Jour. Chem. Soc. Vol. 1926, pp. 663- 670 1926) [57] ABSTRACT Condensation products of a,B-unsaturated aldehydes with di-lower alkyl ketones and the preparation of 2,3,6-t1i-lower alkyl phenols therefrom.
2 Claims, No Drawings CONDENSATION PRODUCTS OF (1,13- UNSATURATED ALDEHYDES WITH LOWER ALKYL KETONES BACKGROUND OF THE INVENTION The commercially available 2,3,6-tri-lower alkyl phenols which are important starting materials in the synthesis of tri-lower' alkyl hydroquinones, intermediates for vitamin E, are of a very low purity. This has proven extremely disadvantageous since the trilower alkyl hydroquinones, which are intermediates for vitamin E and related compounds, should have a high degree ofpurity. The alkyl hydroquinones which are prepared from the commercially available 2,3,6-trilower alkyl phenols generally contain impurities which result from utilizing these impure phenols as starting materials. It is with considerable difficulty and expense that the final tri-lower alkyl hydroquinones are purified for commercial use. Therefore, a method whereby 2,3,6-tri-lower alkyl phenols of high purity can be prepared from economic starting materials has long been desired in the art.
SUMMARY OF'THE INVENTION In accordance with this invention, 2,3,6-tri-lower alkyl phenols of the formula wherein R It, and R are lower alkyl are prepared through the reaction of an a,B-unsaturated aldehyde of the formula wherein R is lower alkyl with a ketone of the formula wherein R and R are lower alkyl.
In this manner a simple and economic means is provided for producing pure 2,3,6-tri-lower alkyl phenols.
DETAILED DESCRIPTION The term lower alkyl as used throughout the specification designates both straight and branched chain alkyl groups containing from one to seven carbon atoms such as methyl, ethyl, propyl and isopropyl. The term halogen as used throughout the specification includes all four halogens, i.e., chlorine, fluorine,
r-CHz-C-OHz-Ra III s 0 (b) R, =0
IV V
Rs -OI-I wherein R R and R are as above and X is halogen.
In accordance with the process of this invention, the aldehyde of formula II is condensed with the ketone of formula III via reaction step (a) to produce the compound of formula IV above. This condensation reaction is carried out in the presence of a base. Any conventional organic or inorganic base can be utilized in this reaction. Among the conventional bases which can be utilized in carrying out this reaction are included the alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, etc.; alkali metal-lower alkoxides such as sodium methoxide, sodium ethoxide, etc.; alkali metal hydrides such as sodium hydride, lithium hydride, etc.; alkali metal amides such as sodium amide, potassium amide, etc., and organic amine bases such as pyridine, piperidine, etc. In carrying out this reaction, one mole of the compound of formula II is reacted with one mole of the compound of formula III above. Generally, it is preferable that the ketone of formula HI above be present in excess of the stoichiometric amount required to react with the compound of formula H above. Generally, it is preferred to have at least 5 moles of the ketone of formula III above per mole of the compound of formula II. In carrying out this reaction excess ketone of formula III above can be utilized as the reaction medium. If desired, any conventional inert organic solvent can be used as the reaction medium. Among the conventional inert organic solvents which can be utilized, toluene, benzene, xylene, dioxane, diethyl ether and tetrahydrofuran are preferred. In carrying out this reaction, temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, if desired, elevated or reduced temperatures, i.e., temperatures between 10 C. to C., depending upon the reflux temperature of the solvent medium, can be utilized.
In the next step of the process of this invention the compound of formula IV above is converted to the compound of formula V above via reaction step (b). This reaction is carried out by treating the compound of formula IV above with a halogenating agent. Any conventional halogenating agent can be utilized in carrying out the reaction of step (b). Among the conventional halogenating agents which can be utilized are included N-bromosuccinimide, alkali metal hypohalites or a halogen such as chlorine, bromine, or iodine. Generally, this reaction is carried out in an inert organic solvent. Any conventional inert organic solvent can be utilized in carrying out this reaction. Among the preferred inert organic solvents which can be utilized in carrying out this reaction are included hydrocarbons such as xylene, toluene and halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, chlorobenzene, etc. Generally, this reaction is carried out by treating the compound of formula IV above with a halogenating agent at a temperature of from about to 40 C.
The compound of formula V above is converted to' the compound of formula I above via reaction step (c) by treating the compound of formula V above with a base or a metal selected from the group consisting of Group III metals and transition metals. Any conventional base can be utilized. Among the preferred bases are included inorganic bases such as sodium hydroxide,
potassium hydroxide; and organic amine bases such as piperazine, pyridine, picoline, piperidine, etc. Any conventional Group III metal or transition metal can be utilized in carrying out this reaction. Among the preferred metals are included iron, zinc, copper, aluminum, platinum, palladium, etc. When a metal is utilized in carrying out this reaction the compound of formula V above is treated with the metal in powdered form. This reaction can take place in the presence of a conventional inert organic solvent. Any conventional inert organic solvent can be utilized. Among the conventional inert organic solvents which can be utilized are the hydrocarbon solvents such as tetralin, toluene, xylene, etc. In carrying out this reaction, temperature and pressure are not critical and this reaction can be carried out at room temperature and atmospheric pressure. However, elevated temperatures and pressures can be utilized in carrying out this reaction. If desired, the reaction can take place at conditions of temperature and'pressure where the compound of formula V is in the vapor phase. Generally, it is preferred to carry out this reaction at the reflux temperature of the solvent medium.
In accordance with another embodiment of this invention, the compound of formula IV above is directly converted to the compound of formula I above, via reaction step (d) by treating the compound of formula IV above with a dehydrogenating'agent. In carrying out this reaction, any conventional dehydrogenating agent can be utilized. Among the conventional dehydrogenating agents which can be utilized, dichlorodicyanoquinone, mercuric acetate and palladium on carbon are preferred. Generally, this reaction is carried out in a conventional inert organic solvent. Any conventional inert organic solvent can be utilized. Among the conventional inert organic solvents that can be utilized in this reaction, tetralin, benzene, toluene, xylene and organic acids which include lower alkanoic acids such as acetic acid are preferred. When palladium on carbon is utilized as the dehydrogenating agent, no solvent need be present and the reaction can be carried out by heating the reaction medium in the presence of air to a temperature of from about 150 C. to about 300 C. When a solvent is utilized, the reaction proceeds very slowly at room temperature. Therefore, it is generally preferred to utilize elevated temperatures in carrying out this reaction. In general, temperatures of from about 50 C. to 200 C. are preferred depending upon the reflux temperature of the solvent utilized in the reaction medium.
The invention will be more fully understood from the specific examples which follow. These examples are intended to illustrate the invention and are not to be construed as limitative thereof. The temperatures utilized in these examples are in degrees Centigrade.
Example 1 pentanone were added to the stirred reaction mixture over a period of 45 minutes (the. temperature was maintained between 20 and 25). When of the s0lution was left, 18 g. (0.15 in) more of potassium butoxide were added to the flask and the addition was continued. After completion of addition, the ice bath was removed and the reaction mixture stirred for further 30 minutes.
The reaction mixture was then partitioned between etheraqueous NaCl. The ether phase was washed five times with aqueous NaCl (until the aqueous wash was no longer basic to pH paper). It was dried over anhydrous sodium sulfate and concentrated at atmospheric pressure (on steam bath) until the temperature rose to 85. The residue was then distilled under vacuum by a water pump. From the residue one obtained 2,5 ,6-trimethyl-2-cyclohexenone as a fraction.
Example 2 Example 3 2,3-dichloro-2,5,6-trimethylcycloiiexanone 13.8 g. (10 mmoles) of 2,5,6-trimethyl-2-cyclohexenone were diluted with 50 cc of carbon tetrachloride and cooled to -20 C. At this temperature, 7.1 g. (10 mmoles) of chlorine was slowly introduced by way of a subsurface glass-tubing gas-inlet. After all of the chlorine has been absorbed, the solvent was removed under reduced pressure at 20 C. to provide 20.9 g. percent of theory) of 2,3-dichloro-2,5,6- trimethylcyclohexanone as residue. This product showed a new strong band in the lR-spectrum at 1720 cm.
Example 4 7.7 g. of 2,3-dichloro-2,5,6-trimethylcyclohexanone were added to 23.1 g. of pyridine and refluxed for 6 hours. The brown reaction mixture was diluted with water, cooled in an ice bath and concentrated HCl added until strongly acidic. After three extractions with ether and two washings with saturated NaCl-solution, the organic layers were combined and dried over magnesium sulfate. After filtration, removal of the solvent 10 wherein R1, R2 nd R3 are allfiyl and X is chlorine and distillation of the residue (b.p. ca 120 C./ ll mg Hg) one obtained 4.35 g. of 2,3,6-trimethylphenol. The
' lR-spectrum of this material was superimposable with an authentic sample.
Claims (1)
- 2. The compound of claim 1 wherein R1, R2 and R3 are methyl and X is chlorine.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US80536569A | 1969-03-07 | 1969-03-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3692839A true US3692839A (en) | 1972-09-19 |
Family
ID=25191375
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US805365A Expired - Lifetime US3692839A (en) | 1969-03-07 | 1969-03-07 | Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3692839A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3891717A (en) * | 1971-02-16 | 1975-06-24 | Quaker Oats Co | Preparation of O-chlorophenols |
| US4081482A (en) * | 1975-10-22 | 1978-03-28 | Basf Aktiengesellschaft | Manufacture of 2,6,6-trimethyl-cyclohex-2-en-1-one |
| US5233095A (en) * | 1986-03-18 | 1993-08-03 | Catalytica, Inc. | Process for manufacture of resorcinol |
-
1969
- 1969-03-07 US US805365A patent/US3692839A/en not_active Expired - Lifetime
Non-Patent Citations (2)
| Title |
|---|
| Baker, Jour. Chem. Soc. Vol. 1926, pp. 663 670 (1926) * |
| Morrison et al., Organic Chemistry p. 199 (1962) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3891717A (en) * | 1971-02-16 | 1975-06-24 | Quaker Oats Co | Preparation of O-chlorophenols |
| US4081482A (en) * | 1975-10-22 | 1978-03-28 | Basf Aktiengesellschaft | Manufacture of 2,6,6-trimethyl-cyclohex-2-en-1-one |
| US5233095A (en) * | 1986-03-18 | 1993-08-03 | Catalytica, Inc. | Process for manufacture of resorcinol |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Chatani et al. | Palladium-catalyzed addition of trimethylgermyl cyanide to terminal acetylenes | |
| Burckhalter et al. | Ethylene and Phenylacetyl Chloride in the Friedel-Crafts Reaction. Novel Syntheses of 2-Tetralones and Benzofuranones1 | |
| US4144397A (en) | Preparation of 2-aryl-propionic acids by direct coupling utilizing a mixed magnesium halide complex | |
| HAAR et al. | THE SYNTHESIS OF 1, 2-CYCLOHEPTANEDIONE DIOXIME1 | |
| Saito et al. | The Palladium-catalyzed Arylation of 4-Chromanone Enol Esters. A New Synthesis of Isoflavanones | |
| US3692839A (en) | Condensation products of {60 ,{62 -unsaturated aldehydes with lower alkyl ketones | |
| US3857892A (en) | Process for the preparation of 2,5,6-tri-lower-alkyl-2-cyclohexenones | |
| Chikashita et al. | Nonacidic and highly chemoselective protection of the carbonyl function. 3-Methylbenzothiazolines as a base-and acid-resistant protected form for the carbonyl groups. | |
| Wang et al. | Novel reductive coupling cyclization of 1, 1-dicyanoalkenes promoted by metallic samarium in aqueous media | |
| Ojima et al. | The synthesis of benzannelated annulenes. Dibenzo-tetrakisdehydro-[18] annulene, and tribenzo-bisdehydro [14] annulene. | |
| TWEEDIE et al. | Hydrogenolysis by Metal Hydrides. III. Hydrogenolysis of Alkylallylarylamines by Lithium Aluminum Hydride1 | |
| Timberlake et al. | Synthetic routes to cyclopropyl-substituted azoalkanes. Some reactions of cyclopropylcarbinyl cyanates, isocyanates, benzoates, and p-nitrobenzoates | |
| JP2004524328A (en) | Process for producing vinyl, aryl and heteroaryl acetic acids and derivatives thereof | |
| US4072723A (en) | Preparation of 2,3,6-tri-lower alkyl phenols | |
| Gunn et al. | The facile oxidation of phenacyl bromides with N, N-dialkylhydroxylamines | |
| Collins et al. | Convenient preparation of 3-alkylcyclopentenones from alkylcyclopentadienes | |
| Hutchins et al. | Reduction of tertiary halides to hydrocarbons with sodium borohydride in sulfolane | |
| Casy et al. | Alkylation reactions of propargyl alcohol; improved routes to prostaglandin α-side chain precursors | |
| Botteron et al. | Ring-Size Effects in the Pinacol Rearrangement | |
| JPS629098B2 (en) | ||
| Ishikawa | The Synthesis of Ethyl β-Ionylideneacetate by the Wittig Reaction | |
| BAILEY et al. | Pyrolysis of Esters. XII. Ketone Cleavage of Acetoacetic Esters by Pyrolysis1, 2 | |
| JP6477339B2 (en) | Process for producing dialkyldithienobenzodifuran | |
| JPS5855129B2 (en) | Method for producing 2-substituted or unsubstituted geranyl acetates | |
| EP0499980B1 (en) | Process for producing irone |