[go: up one dir, main page]

US3677830A - Processing of the precipitation hardening nickel-base superalloys - Google Patents

Processing of the precipitation hardening nickel-base superalloys Download PDF

Info

Publication number
US3677830A
US3677830A US14678A US3677830DA US3677830A US 3677830 A US3677830 A US 3677830A US 14678 A US14678 A US 14678A US 3677830D A US3677830D A US 3677830DA US 3677830 A US3677830 A US 3677830A
Authority
US
United States
Prior art keywords
heat treatment
temperature
solvus
processing
base superalloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US14678A
Inventor
Arthur R Cox
Marvin M Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Aircraft Corp filed Critical United Aircraft Corp
Application granted granted Critical
Publication of US3677830A publication Critical patent/US3677830A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates in general to the processing of the worked, precipitation hardened nickel-base superalloys.
  • the typical nickel-base superalloy is essentially a nickelchrornium solid solution (7 phase) hardened by the additions of elements such as aluminum and titanium to precipitate a secondary phase (7' phase), usually represented by the formula Ni '(Al,Ti). These alloys also frequently contain cobalt to raise the solvus temperature of the 7' phase, refractory metal additions for solution strengthening, and carbon, boron and zirconium to promote ductility and fabricability.
  • alloys of this general nature are those identified in the industry as follows:
  • Nominal composition 4.5% A1, 5.3% Mo, .07% C., 0.3 B, bal. Ni. Waspaloy 19.5% Cr, 13.5% C0, 3% Ti, 1.4% A1, 4% Mo, .08% C, .005% B, 08% Zr, bal. Ni.
  • alloys may be fabricated by direct upset forging at or near the secondary phase solvus followed by hammer forging below the solvus temperature. After working it has been the previous practice to heat treat as close to the secondary solvus as practical followed by subsequent aging.
  • the present invention comprises a thermal processing technique for the as-worked, precipitation hardening nickel-base superalloys, particularly the highly alloyed compositions of the 7-7 type. It contemplates, after working but before aging, subjecting the alloy to a duplex heat treatment comprising a first heat treatment estab lishing uniformity of the precipitated phase throughout the alloy microstructure and nucleation of a new grain structure under conditions of restricted growth due to the presence of a secondary phase, and a second heat treatment providing uniform solutioning of the secondary phase and controlled grain growth by relying upon grain annihilation under conditions of uniform strain energy distribution within the polycrystalline aggregate.
  • the first heat treatment is performed within the range of 25-100 F. below the true secondary phase solvus and the solutioning heat treatment within about 25 F. of the solvus.
  • the overall result is a uniform, reproducible microstructure from which subsequent aging heat treatments can promote maximum alloy strength.
  • the basic problem leading to the generation of the present invention was the non-uniformity of superalloy mechanical property response in large gas turbine engine dis-k forgings following normal deformation and heat treatment.
  • the source of property scatter problem was eventually traced to extensive segregation of the secondary phase and non-uniform recrystallization of the polycrystalline structure, the problem being particularly acute in the highly alloyed compositions.
  • a thermal process to provide a uniformly controlled microstructural condition in the as-Worked, precipitationhardening nickel-base superalloys was developed. Basically, the process prescribes exposure of the alloy in the worked condition to a temperature 25 -100 F. below the true secondary phase solvus followed by a second exposure 025 F. below that temperature.
  • the present process effects recrystallization at a low temperature where the presence of a secondary phase will inhibit grain growth followed by a treatment at about the solvus temperature with control of grain growth by annihilation of one recrystallized grain by another rather than, as in conventional processing, by annihilation of a deformed grain by a recrystallized grain, the latter being the faster and more coarsening operative.
  • the initial heat treatment causes partial dissolution of the secondary phase in alloy segregated areas followed by elemental diffusion to regions of alloy depletion and subsequent reprecipitation to an equilibrium concentration.
  • the net transfer established uniformity of the precipitated phase through the worked structure. Additionally, this initial exposure promotes partial or complete recrystallization and annealing, depending upon the specific energy input during working, under conditions of restricted grain growth.
  • the second heat treatment produces uniform solutioning of the secondary phase and enables the completion of recrystallization and annealing while still maintaining a condition of inhibited grain growth.
  • the overall result is a. uniform structure from which subsequent aging heat treatments can promote maximum alloy strength.
  • the time required for the initial heat treatment is essentially one which, based on metal diffusion rates, is equivalent to the time required for equilibration at the true solvus temperature.
  • the time required for the second 3 heat treatment is that for which equilibrium between the primary and secondary phases can be achieved.
  • the true solvus of the component is determined experimentally. At this temperature for the nickel-base superalloys of the -q" type it has been determined that a ten hour exposure will equilibrate the entire system, other than that of grain 4 are employed and the part is usually air cooled (although this is of no importance because of the metallurgical phenomena involved).
  • the solution heat treatment is accomplished at about the true solvus temperature, usually specifying heat treatment 25 F. below the solvus to compensate primarily for thermal variations within commercial furnaces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

AFTER WORKING AND PRIOR TO AGING, THE PRECIPITATION HARDENING NICKEL-BASE SUPERALLOYS ARE SUBJECTED TO A DUPLEX HEAT TREATMENT COMPRISING A FIRST HEAT TREATMENT AT A TEMPERATURE OF 25* -100*F. BELOW THE SECONDARY PHASE SOLVUS AND A SECOND HEAT TREATMENT IN THE TEMPERATURE RANGE OF 0-25*F. BELOW THE SECONDARY PHASE SOLVUS.

Description

United States Patent Oifice 3,677,830. Patented July 18, 1972 3,677,830 PROCESSING OF THE PRECIPITATION HARDEN- IN G NICKEL-BASE SUPERALLOYS Arthur R. Cox, Lake Park, and Marvin M. Allen, North Palm Beach, Fla., assignors to United Aircraft Corporation, East Hartford, Conn. No Drawing. Filed Feb. 26, 1970, Ser. No. 14,678 Int. Cl. C22f 1/18 US. Cl. 14812.7 3 Claims ABSTRACT OF THE DISCLOSURE After working and prior to aging, the precipitation hardening nickel-base superalloys are subjected to a duplex heat treatment comprising a first heat treatment at a temperature of 25 -l00 F. below the secondary phase solvus and a second heat treatment in the temperature range of 25 F. below the secondary phase solvus.
BACKGROUND OF THE 'INVENTION The present invention relates in general to the processing of the worked, precipitation hardened nickel-base superalloys.
The typical nickel-base superalloy is essentially a nickelchrornium solid solution (7 phase) hardened by the additions of elements such as aluminum and titanium to precipitate a secondary phase (7' phase), usually represented by the formula Ni '(Al,Ti). These alloys also frequently contain cobalt to raise the solvus temperature of the 7' phase, refractory metal additions for solution strengthening, and carbon, boron and zirconium to promote ductility and fabricability.
Representative of alloys of this general nature are those identified in the industry as follows:
Nominal composition 4.5% A1, 5.3% Mo, .07% C., 0.3 B, bal. Ni. Waspaloy 19.5% Cr, 13.5% C0, 3% Ti, 1.4% A1, 4% Mo, .08% C, .005% B, 08% Zr, bal. Ni.
These alloys may be fabricated by direct upset forging at or near the secondary phase solvus followed by hammer forging below the solvus temperature. After working it has been the previous practice to heat treat as close to the secondary solvus as practical followed by subsequent aging.
Unfortunately, with this processing there has typically occurred both extensive segregation of the secondary phase and non-uniform recrystallization of the polycrystalline microstructure, both of these conditions resulting in poor repeatability of mechanical properties from part to part, especially in terms of yield and creep strength, and creep-rupture ductility. This is particularly critical in sensitive aircraft engine components where the superalloys find their greatest utility and particularly in the highly-alloyed superalloys, i.e., those containing a large amount of the precipitated secondary phase. Since design criteria must be established on the basis of the weakest component in the system, the wide scatter band associated with conventionally processed superalloy components has demanded designs which do not adequately utilize the mechanical properties of which these alloys are capable.
SUMMARY OF THE INVENTION The present invention comprises a thermal processing technique for the as-worked, precipitation hardening nickel-base superalloys, particularly the highly alloyed compositions of the 7-7 type. It contemplates, after working but before aging, subjecting the alloy to a duplex heat treatment comprising a first heat treatment estab lishing uniformity of the precipitated phase throughout the alloy microstructure and nucleation of a new grain structure under conditions of restricted growth due to the presence of a secondary phase, and a second heat treatment providing uniform solutioning of the secondary phase and controlled grain growth by relying upon grain annihilation under conditions of uniform strain energy distribution within the polycrystalline aggregate. The first heat treatment is performed within the range of 25-100 F. below the true secondary phase solvus and the solutioning heat treatment within about 25 F. of the solvus. The overall result is a uniform, reproducible microstructure from which subsequent aging heat treatments can promote maximum alloy strength.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic problem leading to the generation of the present invention was the non-uniformity of superalloy mechanical property response in large gas turbine engine dis-k forgings following normal deformation and heat treatment. The source of property scatter problem was eventually traced to extensive segregation of the secondary phase and non-uniform recrystallization of the polycrystalline structure, the problem being particularly acute in the highly alloyed compositions.
A thermal process to provide a uniformly controlled microstructural condition in the as-Worked, precipitationhardening nickel-base superalloys was developed. Basically, the process prescribes exposure of the alloy in the worked condition to a temperature 25 -100 F. below the true secondary phase solvus followed by a second exposure 025 F. below that temperature.
Any amount of work above approximately ten percent deformation will cause recrystallization. The present process effects recrystallization at a low temperature where the presence of a secondary phase will inhibit grain growth followed by a treatment at about the solvus temperature with control of grain growth by annihilation of one recrystallized grain by another rather than, as in conventional processing, by annihilation of a deformed grain by a recrystallized grain, the latter being the faster and more coarsening operative.
The initial heat treatment causes partial dissolution of the secondary phase in alloy segregated areas followed by elemental diffusion to regions of alloy depletion and subsequent reprecipitation to an equilibrium concentration. The net transfer established uniformity of the precipitated phase through the worked structure. Additionally, this initial exposure promotes partial or complete recrystallization and annealing, depending upon the specific energy input during working, under conditions of restricted grain growth.
The second heat treatment produces uniform solutioning of the secondary phase and enables the completion of recrystallization and annealing while still maintaining a condition of inhibited grain growth. The overall result is a. uniform structure from which subsequent aging heat treatments can promote maximum alloy strength.
The time required for the initial heat treatment is essentially one which, based on metal diffusion rates, is equivalent to the time required for equilibration at the true solvus temperature. The time required for the second 3 heat treatment is that for which equilibrium between the primary and secondary phases can be achieved.
After the normal Working is completed, the true solvus of the component is determined experimentally. At this temperature for the nickel-base superalloys of the -q" type it has been determined that a ten hour exposure will equilibrate the entire system, other than that of grain 4 are employed and the part is usually air cooled (although this is of no importance because of the metallurgical phenomena involved).
The solution heat treatment is accomplished at about the true solvus temperature, usually specifying heat treatment 25 F. below the solvus to compensate primarily for thermal variations within commercial furnaces.
ROOM TEMPERATURE TENSILE PROPERTIES Elongation Reduction of area 0.2% yield (K 5.1.) Ultimate (K s.i.) (percent) (percent) Standard Duplex processing processing Standard Duplex Standard Duplex Standard Duplex 151. 9 144. 0 216. 0 202.8 18. 19.0 20.4 26. 0 146. 6 144. 0 208.0 201. 2 16. 5 21.0 19.2 27.0 152. 0 144. 0 215. 2 200. 0 16. 0 20. 0 17. 4 23. 0 149. 0 140. 0 214. 0 195. 6 16. 5 20.0 19.6 27.0 152. 0 146. 6 217. 0 206. 0 17. 5 21. o 18.1 29. 0 152. s 141.0 209. 5 196. s 12. 0 21. 0 13.0 27. 0 155. 2 144. 0 215. 0 19s. 0 13. 0 20. 0 13. a 22. 0 160.8 149. s 222. 0 210. 4 13. 0 21.0 12. 3 23. 0
159.8 150. 9 217. 5 212. 1 1 1. g 21.0 11 .5 29. 0 L LQ 144. 0 181. 7 202. 0 y 20. 0 3 27. 0 Elli 145. s 214. 0 204. 0 12.0 19. 0 14. 2 24. 0 160. 7 144. 0 220. 0 197. s 12. 5 20. 0 18. 1 25. 9 165. s 136. 0 225. 5 195. 6 10. 0 20. 0 11. 9 22. 3
1,400 F. TENSILE PROPERTIES 141. 3 130. 4 s. 6 156. 5 25. 0 33. 0 39. 4 44. 0 13s. 4 132. 4 178.0 152. 4 21. 5 32. 0 2s. 6 42. 0 119. a 131. 2 159. 0 154. 2 24. 0 33. 0 42. 4 44. 0
128. 0 12s. 4 150. 4 152. 4 26. 5 31. o 38.2 51. 3 132. 2 160. 29. 5 43. 6 135. 0 160. a 25.5 42.0 141.7 167. 5 30.0 45. 3 143 163. 5 15. 0 19. e 132. 5 162.1 23.0 30. 0 29. a 15s. 7 22. 0 37. 6
1 Property sought.
Norm-Underlined values failed specification.
boundary area reduction which is a reduction of crystal STRESS RUPTURE PROPERTIES surface energy. With knowledge of the true solvus and the ten hour baseline as the time for certain equilibration, the Life 11114.) time requirements to achieve the same conditions at S 1 est St St d Sta d lower temperatures may be found from the following $3: $4. 1; gff, i Duplex 2 d Duplex u on: eq Smo0th 1,400 85.0 2 77.4 17.1 19.3
1) 2 2 7.1 74.4 19.1 24.7 log t T 1 3 77.9 29.7 28.8 1 140. 6 20. 9 19. 1 where 27. 9 70. 3 9g 25. a
2.4 2. T =true solvus 3 3 Z in Z T =lower temperature being considered 1 1 0 1 s5. 0 136, 5 1 1() 0 K==con n Sta t 0.1% CREEP PROPERTIES The constant K for the nickel-base superalloycomposr- Time to L0% (hm) tions prec1p1tat1ng the 7 phase remalns essentially constant at a value approximating 24 for all of these alloys. standard Dumex Once the time-temperature relationships are established, 1,300 74. 0 144,; 168. 5 the practical aspects of heat treatment become controlling 173. 4 242. 0 insofar as temperature conditions are concerned. In the m initial heat treatment at temperatures more than 100 F. 125; 223") below the solvus, heat treatment times become extremely 5L3 174"] long, thus establishing a practical lower temperature limit. 139-18 As the temperature is raised approaching the solvus, the 13-011 1,300 74.0 1 150.0 problems associated with conventional processmg are approached. Thus, an initial heat treatment 25 "-100 1 Specification property. below the true secondary phase solvus is established. No'rE.Underlined valuesfailed specification. Within this range closer control may be desired with specific temperature selection based primarily upon the fundamental problem to be solved or the condition to be The preferred duplex processing for a number of 1 achieved dunng the cycle. If more uniform recrystalliza- Ioys is as follows.
tion is demanded, a lower temperature is used. If alloy segregation is the main concern, a higher temperature is employed.
In practice once the processing parameters have been established, otherwise standard heat treatment techniques 5 Alloy description: Heat treatment Astroloy (forged) 2025 F. for 50 hours, air cool, plus 2065 F. for 4 hours. Waspaloy (forged) 1825 F. for 50 hours, air cool, plus 2150 F. for 4 hours. Temperature control *-l F.
Comparative test data for Astroloy showing mechanical property uniformity and reduction of scatter is summarized below.
Although the invention has been described in detail and with reference to several preferred embodiments for the purposes of illustration, the invention in its broader aspects is not limited to the exact details described, for obvious modications will occur to those skilled in the art.
What is claimed is: 1. The method of processing the precipitation hardening nickel-base superalloys of the 'y,'y'-type containing as essential elements about, by weight, 5-30 percent chromium, up to 0.2 percent carbon, and at least 4 percent of at least one element selected from the group consisting of aluminum and titanium, which comprises, after working but prior to aging:
heat treating the as-worked superalloy at a temperature about 25 -100 F. below the true 7 solvus temperature to provide a uniform distribution of the 7' phase;
and subsequently heat treating the superalloy at about the true 7' phase solvus temperature to effect uniform solutioning and essentially complete recrystallization with inhibited grain growth.
2. The method according to claim 1 wherein: the latter heat treatment is conducted within 25 F. of but below the true 7' phase solvus temperature. 3. The method of processing the precipitation hardening nickel-base superalloys of the '-type containing as essential elements about, by weight, 5-30 percent chromium, up to 0.2 percent carbon, and at least 4 percent of at least one element selected from the group consisting of aluminum and titanium, which comprises, after working:
heat treating the as-worked superalloy at a temperature 25-100 F. below the true 'y' phase solvus temperature for a minimum of about 10 hours; subsequently heat treating the alloy within about 25 F. of but not substantially exceeding the true 7' phase solvus temperature for a minimum of about 4 hours; and then aging the superalloy to promote alloy strength.
References Cited UNITED STATES PATENTS 2,497,667 2/ 1950 Gresham et a1 148-162 X 3,272,666 9/1966 Symonds 148-162 X 3,048,485 8/1962 Bieber 148- 162 X 3,145,124 8/1964 Hignett et a1. 148-162 3,147,155 9/1964 Lamb 148-115 R 3,576,681 4/1971 Barker et al -171 X CHARLES N. LOVELL, Primary Examiner US. Cl. X.R.
US14678A 1970-02-26 1970-02-26 Processing of the precipitation hardening nickel-base superalloys Expired - Lifetime US3677830A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1467870A 1970-02-26 1970-02-26

Publications (1)

Publication Number Publication Date
US3677830A true US3677830A (en) 1972-07-18

Family

ID=21766992

Family Applications (1)

Application Number Title Priority Date Filing Date
US14678A Expired - Lifetime US3677830A (en) 1970-02-26 1970-02-26 Processing of the precipitation hardening nickel-base superalloys

Country Status (1)

Country Link
US (1) US3677830A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318753A (en) * 1979-10-12 1982-03-09 United Technologies Corporation Thermal treatment and resultant microstructures for directional recrystallized superalloys
US4453985A (en) * 1982-02-18 1984-06-12 Bbc Brown, Boveri & Company, Limited Process for the production of a fine-grained work piece as finished part from a heat resistant austenitic nickel based alloy
US4514360A (en) * 1982-12-06 1985-04-30 United Technologies Corporation Wrought single crystal nickel base superalloy
FR2557148A1 (en) * 1983-12-27 1985-06-28 United Technologies Corp PROCESS FOR INCREASING THE FORGEABILITY OF A NICKEL-BASED SUPERALLIAGE ARTICLE
FR2557147A1 (en) * 1983-12-27 1985-06-28 United Technologies Corp PROCESS FOR FORGING HIGH-RESISTANCE NICKEL-BASED SUPERALLIER MATERIALS, ESPECIALLY IN MOLDED FORM
US4769087A (en) * 1986-06-02 1988-09-06 United Technologies Corporation Nickel base superalloy articles and method for making
US5302217A (en) * 1992-12-23 1994-04-12 United Technologies Corporation Cyclic heat treatment for controlling grain size of superalloy castings
US5328659A (en) * 1982-10-15 1994-07-12 United Technologies Corporation Superalloy heat treatment for promoting crack growth resistance
US5551999A (en) * 1984-04-23 1996-09-03 United Technologies Corporation Cyclic recovery heat treatment
US5693159A (en) * 1991-04-15 1997-12-02 United Technologies Corporation Superalloy forging process
US6416564B1 (en) 2001-03-08 2002-07-09 Ati Properties, Inc. Method for producing large diameter ingots of nickel base alloys
US20070029017A1 (en) * 2003-10-06 2007-02-08 Ati Properties, Inc Nickel-base alloys and methods of heat treating nickel-base alloys
US20070044875A1 (en) * 2005-08-24 2007-03-01 Ati Properties, Inc. Nickel alloy and method of direct aging heat treatment
US20110206553A1 (en) * 2007-04-19 2011-08-25 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US20140360242A1 (en) * 2012-02-28 2014-12-11 Hamilton Sundstrand Corporation Rotor end band

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318753A (en) * 1979-10-12 1982-03-09 United Technologies Corporation Thermal treatment and resultant microstructures for directional recrystallized superalloys
US4453985A (en) * 1982-02-18 1984-06-12 Bbc Brown, Boveri & Company, Limited Process for the production of a fine-grained work piece as finished part from a heat resistant austenitic nickel based alloy
US5328659A (en) * 1982-10-15 1994-07-12 United Technologies Corporation Superalloy heat treatment for promoting crack growth resistance
US4514360A (en) * 1982-12-06 1985-04-30 United Technologies Corporation Wrought single crystal nickel base superalloy
FR2557148A1 (en) * 1983-12-27 1985-06-28 United Technologies Corp PROCESS FOR INCREASING THE FORGEABILITY OF A NICKEL-BASED SUPERALLIAGE ARTICLE
FR2557147A1 (en) * 1983-12-27 1985-06-28 United Technologies Corp PROCESS FOR FORGING HIGH-RESISTANCE NICKEL-BASED SUPERALLIER MATERIALS, ESPECIALLY IN MOLDED FORM
DE3445767A1 (en) * 1983-12-27 1985-07-04 United Technologies Corp., Hartford, Conn. Method of forging nickel-base superalloys and a nickel-base superalloy article having improved forgeability
DE3445768A1 (en) * 1983-12-27 1985-07-04 United Technologies Corp., Hartford, Conn. METHOD FOR FORGING SUPER ALLOYS
US4574015A (en) * 1983-12-27 1986-03-04 United Technologies Corporation Nickle base superalloy articles and method for making
US4579602A (en) * 1983-12-27 1986-04-01 United Technologies Corporation Forging process for superalloys
US5551999A (en) * 1984-04-23 1996-09-03 United Technologies Corporation Cyclic recovery heat treatment
US4769087A (en) * 1986-06-02 1988-09-06 United Technologies Corporation Nickel base superalloy articles and method for making
US5693159A (en) * 1991-04-15 1997-12-02 United Technologies Corporation Superalloy forging process
US5302217A (en) * 1992-12-23 1994-04-12 United Technologies Corporation Cyclic heat treatment for controlling grain size of superalloy castings
US6416564B1 (en) 2001-03-08 2002-07-09 Ati Properties, Inc. Method for producing large diameter ingots of nickel base alloys
US6719858B2 (en) 2001-03-08 2004-04-13 Ati Properties, Inc. Large diameter ingots of nickel base alloys
US20070029014A1 (en) * 2003-10-06 2007-02-08 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys
US20070029017A1 (en) * 2003-10-06 2007-02-08 Ati Properties, Inc Nickel-base alloys and methods of heat treating nickel-base alloys
US7491275B2 (en) 2003-10-06 2009-02-17 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys
US7527702B2 (en) 2003-10-06 2009-05-05 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys
US20070044875A1 (en) * 2005-08-24 2007-03-01 Ati Properties, Inc. Nickel alloy and method of direct aging heat treatment
US7531054B2 (en) 2005-08-24 2009-05-12 Ati Properties, Inc. Nickel alloy and method including direct aging
US20110206553A1 (en) * 2007-04-19 2011-08-25 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US8394210B2 (en) 2007-04-19 2013-03-12 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US20140360242A1 (en) * 2012-02-28 2014-12-11 Hamilton Sundstrand Corporation Rotor end band
US9923434B2 (en) * 2012-02-28 2018-03-20 Hamilton Sundstrand Corporation Rotor end band

Similar Documents

Publication Publication Date Title
US3660177A (en) Processing of nickel-base alloys for improved fatigue properties
US3677830A (en) Processing of the precipitation hardening nickel-base superalloys
US3642543A (en) Thermomechanical strengthening of the superalloys
US4092181A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JP5867991B2 (en) Heat treatment method and product for Ni-base superalloy article
Chang et al. Metallurgical control of fatigue crack propagation in superalloys
US20040011443A1 (en) Nickel base superalloys and turbine components fabricated therefrom
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
Nagesha et al. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue
EP0076360A2 (en) Single crystal nickel-base superalloy, article and method for making
US5302217A (en) Cyclic heat treatment for controlling grain size of superalloy castings
Muller et al. The effects of solution and intermediate heat treatments on the notch-rupture behavior of Inconel 718
US3741824A (en) Method to improve the weldability and formability of nickel-base superalloys
JPH07116575B2 (en) Heat treatment of alloy 718 for improving stress corrosion cracking resistance
US3133839A (en) Process for improving stress-corrosion resistance of age-hardenable alloys
JPS63162846A (en) Method for enhancing ductility of work composed of oxide dispersed and hardened nickel base superalloy
JP3926877B2 (en) Heat treatment method for nickel-base superalloy
US3420716A (en) Method of fabricating and heat-treating precipitation-hardenable nickel-base alloy
US4359349A (en) Method for heat treating iron-nickel-chromium alloy
CA1074674A (en) Multi-step heat treatment for superalloys
US3372068A (en) Heat treatment for improving proof stress of nickel-chromium-cobalt alloys
US5223053A (en) Warm work processing for iron base alloy
JPS62167839A (en) Ni-based alloy and its manufacturing method
US4221610A (en) Method for homogenizing alloys susceptible to the formation of carbide stringers and alloys prepared thereby
Muzyka et al. Microstructure approach to property optimization in wrought superalloys