US3661789A - Stabilized oxygen bleach-activator system - Google Patents
Stabilized oxygen bleach-activator system Download PDFInfo
- Publication number
- US3661789A US3661789A US879573A US3661789DA US3661789A US 3661789 A US3661789 A US 3661789A US 879573 A US879573 A US 879573A US 3661789D A US3661789D A US 3661789DA US 3661789 A US3661789 A US 3661789A
- Authority
- US
- United States
- Prior art keywords
- sodium
- oxygen
- bleach
- activator
- perborate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title abstract description 50
- 229910052760 oxygen Inorganic materials 0.000 title abstract description 50
- 239000001301 oxygen Substances 0.000 title abstract description 50
- 239000012190 activator Substances 0.000 title abstract description 29
- 239000000203 mixture Substances 0.000 abstract description 46
- 239000002736 nonionic surfactant Substances 0.000 abstract description 13
- 230000002411 adverse Effects 0.000 abstract description 8
- 238000003860 storage Methods 0.000 abstract description 8
- 150000002334 glycols Chemical class 0.000 abstract description 5
- 239000007844 bleaching agent Substances 0.000 description 30
- 239000011734 sodium Substances 0.000 description 24
- -1 poly (ethyleneoxy) ethanols Chemical class 0.000 description 20
- 229910052708 sodium Inorganic materials 0.000 description 19
- 239000000945 filler Substances 0.000 description 14
- 235000010339 sodium tetraborate Nutrition 0.000 description 14
- JUVDEAXMLQQRFP-UHFFFAOYSA-N 1h-imidazol-2-yl(phenyl)methanone Chemical compound C=1C=CC=CC=1C(=O)C1=NC=CN1 JUVDEAXMLQQRFP-UHFFFAOYSA-N 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 13
- 229910021538 borax Inorganic materials 0.000 description 13
- 239000004328 sodium tetraborate Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- 239000003599 detergent Substances 0.000 description 12
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 11
- 229960001922 sodium perborate Drugs 0.000 description 11
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 11
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 8
- 238000004061 bleaching Methods 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229940081066 picolinic acid Drugs 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002304 perfume Substances 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 235000019832 sodium triphosphate Nutrition 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- MEYVLGVRTYSQHI-UHFFFAOYSA-L cobalt(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Co+2].[O-]S([O-])(=O)=O MEYVLGVRTYSQHI-UHFFFAOYSA-L 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000004682 monohydrates Chemical class 0.000 description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- CMHJKGDUDQZWBN-UHFFFAOYSA-N 2-(methylamino)-3-oxobutanoic acid Chemical compound CNC(C(C)=O)C(O)=O CMHJKGDUDQZWBN-UHFFFAOYSA-N 0.000 description 2
- DCNLTIGDTRBIJG-UHFFFAOYSA-N 2-chloro-1-(2-hydroxyphenyl)ethanone Chemical compound OC1=CC=CC=C1C(=O)CCl DCNLTIGDTRBIJG-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- 229920002359 Tetronic® Polymers 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- LAZUHOPLTJOKNS-UHFFFAOYSA-N 2-(2-chloroacetyl)oxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OC(=O)CCl LAZUHOPLTJOKNS-UHFFFAOYSA-N 0.000 description 1
- RGVIYLQXUDJMCP-UHFFFAOYSA-N 2-tridecylphenol Chemical compound CCCCCCCCCCCCCC1=CC=CC=C1O RGVIYLQXUDJMCP-UHFFFAOYSA-N 0.000 description 1
- USFZGCVGLNMJPL-UHFFFAOYSA-N 3,5-dichloro-n-(4-chlorophenyl)-2-hydroxybenzamide Chemical compound OC1=C(Cl)C=C(Cl)C=C1C(=O)NC1=CC=C(Cl)C=C1 USFZGCVGLNMJPL-UHFFFAOYSA-N 0.000 description 1
- ZRGXFRPXHJVPCM-UHFFFAOYSA-N 3-butyl-2-phenylphenol;sodium Chemical compound [Na].CCCCC1=CC=CC(O)=C1C1=CC=CC=C1 ZRGXFRPXHJVPCM-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- RIXLIAYYGCYMPR-UHFFFAOYSA-N 6-methylheptane-1-sulfonic acid Chemical compound CC(C)CCCCCS(O)(=O)=O RIXLIAYYGCYMPR-UHFFFAOYSA-N 0.000 description 1
- JSFATNQSLKRBCI-NLORQXDXSA-N 73945-47-8 Chemical compound CCCCCC(O)\C=C\C=C\C\C=C\C\C=C\CCCC(O)=O JSFATNQSLKRBCI-NLORQXDXSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- PFEJAYXTHRDPDH-UHFFFAOYSA-N C(C(C)C)C=1C(=C(C2=CC=CC=C2C1)CC(C)C)CC(C)C.[Na] Chemical compound C(C(C)C)C=1C(=C(C2=CC=CC=C2C1)CC(C)C)CC(C)C.[Na] PFEJAYXTHRDPDH-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical class [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- IUHDTQIYNQQIBP-UHFFFAOYSA-M benzyl-ethyl-dimethylazanium;chloride Chemical class [Cl-].CC[N+](C)(C)CC1=CC=CC=C1 IUHDTQIYNQQIBP-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- RZMWTGFSAMRLQH-UHFFFAOYSA-L disodium;2,2-dihexyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCC RZMWTGFSAMRLQH-UHFFFAOYSA-L 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000004872 foam stabilizing agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- TVHALOSDPLTTSR-UHFFFAOYSA-H hexasodium;[oxido-[oxido(phosphonatooxy)phosphoryl]oxyphosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O TVHALOSDPLTTSR-UHFFFAOYSA-H 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- ILHIHKRJJMKBEE-UHFFFAOYSA-N hydroperoxyethane Chemical compound CCOO ILHIHKRJJMKBEE-UHFFFAOYSA-N 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- YNFAEFZZHQSSDP-UHFFFAOYSA-N phenyl acetate;sodium Chemical compound [Na].CC(=O)OC1=CC=CC=C1 YNFAEFZZHQSSDP-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- FQLQNUZHYYPPBT-UHFFFAOYSA-N potassium;azane Chemical compound N.[K+] FQLQNUZHYYPPBT-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- AKMJJGSUTRBWGW-UHFFFAOYSA-N pyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC=CC=N1.OC(=O)C1=CC=CC=N1 AKMJJGSUTRBWGW-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019980 sodium acid phosphate Nutrition 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- YJSBZMJLQLDBTN-UHFFFAOYSA-M sodium triacontyl sulfate Chemical class S(=O)(=O)(OCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC)[O-].[Na+] YJSBZMJLQLDBTN-UHFFFAOYSA-M 0.000 description 1
- NTWXWSVUSTYPJH-UHFFFAOYSA-M sodium;1,4-bis(2-methylpropoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [Na+].CC(C)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(C)C NTWXWSVUSTYPJH-UHFFFAOYSA-M 0.000 description 1
- RUQIYMSRQQCKIK-UHFFFAOYSA-M sodium;2,3-di(propan-2-yl)naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S([O-])(=O)=O)=C(C(C)C)C(C(C)C)=CC2=C1 RUQIYMSRQQCKIK-UHFFFAOYSA-M 0.000 description 1
- PWWJJDVDTKXWOF-UHFFFAOYSA-M sodium;2-[hexadecanoyl(methyl)amino]ethanesulfonate Chemical compound [Na+].CCCCCCCCCCCCCCCC(=O)N(C)CCS([O-])(=O)=O PWWJJDVDTKXWOF-UHFFFAOYSA-M 0.000 description 1
- FGDMJJQHQDFUCP-UHFFFAOYSA-M sodium;2-propan-2-ylnaphthalene-1-sulfonate Chemical compound [Na+].C1=CC=CC2=C(S([O-])(=O)=O)C(C(C)C)=CC=C21 FGDMJJQHQDFUCP-UHFFFAOYSA-M 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940104261 taurate Drugs 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- OQNGNXKLDCKIIH-UHFFFAOYSA-N tetradecyl benzenesulfonate Chemical class CCCCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 OQNGNXKLDCKIIH-UHFFFAOYSA-N 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000012749 thinning agent Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- KVSKGMLNBAPGKH-UHFFFAOYSA-N tribromosalicylanilide Chemical compound OC1=C(Br)C=C(Br)C=C1C(=O)NC1=CC=C(Br)C=C1 KVSKGMLNBAPGKH-UHFFFAOYSA-N 0.000 description 1
- ICUTUKXCWQYESQ-UHFFFAOYSA-N triclocarban Chemical compound C1=CC(Cl)=CC=C1NC(=O)NC1=CC=C(Cl)C(Cl)=C1 ICUTUKXCWQYESQ-UHFFFAOYSA-N 0.000 description 1
- 229960001325 triclocarban Drugs 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3937—Stabilising agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/055—Peroxyhydrates; Peroxyacids or salts thereof
- C01B15/12—Peroxyhydrates; Peroxyacids or salts thereof containing boron
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3907—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3932—Inorganic compounds or complexes
Definitions
- Oxygen releasing bleaches such as perborates are combined with activators and nonionic surfactants or glycols to provide compositions unusually stable upon storage under adverse conditions of high temperature and humidity to which they are normally subjected.
- oxygen bleaches include hydrogen peroxide and per compounds which give rise to hydrogen peroxide in aqueous solution.
- Suitable compounds include water soluble oxygen releasing compounds such as the alkali metal persulfates, percarbonates, perborates, perpyrophosphates and persilicates. Although not all of the preceding are true persalts in the chemical sense they are believed to provide hydrogen peroxide in aqueous solution.
- oxygen bleach activators are heavy metal salts of transition metals as cobalt, iron or copper combined with chelating agents as picolinic acid (US. Pat. No.
- One major drawback which has prevented the Widespread use and acceptance of the previously described oxygen bleach-activator systems is that the activators tend to react with the oxygen bleach in the package. This results in limited efiectiveness of the bleach composition, a poor commercial product and lack of consumer acceptance.
- a prime requirement of a commercial bleach product is that it give standardized results, i.e., similar results from similar amounts of bleach at difierent times.
- the known activated perborate (oxygen) bleach compositions have failed to give such satisfactory standardized results.
- the premature activation in the package of the perborate bleach by the activator especially under the adversely high humidity conditions present in laundry areas results in products that continuously lose their original bleaching potential during product storage and use. This results in products which do not provide uniform results to the consumer.
- the stabilization of the oxygen bleach-activator system is accomplished by using a non-ionic surfactant.
- the non-ionic surfactants used will preferably (although not necessarily) be liquid at ambient use temperature.
- the non-ionic surfactant is exemplified by the following general classes.
- R-Q-O omommrromomorr wherein R is an alkyl radical and n is the number of moles of ethanol oxide in the molecule (Igepals, GAF) (2) Ethoxylates of isomeric linear secondary alcohols having the general formula:
- n is the number of moles of methylene and x is the number of moles of ethylene oxide in the molecule.
- x and y represent respectively the number of moles of propylene oxide and ethylene oxide in the molecule.
- x is the number of methyl groups (chiefly C to C and y is the number of moles of ethylene oxide present. (Alfonics, Conoco.)
- Glycols are exemplified by such as propylene glycol, triethylene glycol and trimethylene glycol.
- the non-ionic surfactants or glycols are incorporated into the oxygen bleach-activator system in from about to about five times the weight of the oxygen bleachactivator used.
- the non-ionic surfactant is used in about equal weight amounts with the oxygen bleachactivator.
- Puffed borax may also be included in the composition of this invention and is a known form of borax made by the rapid heating of hydrates of sodium tetraborate.
- the compound is characterized by versatility of bulk density, large surface area, rapid solubility rate, and high absorp tive potential for many substances.
- the puffer borax contemplated for inclusion in compositions of the invention is further characterized by having less than 5 moles of water per mole of sodium tetraborate, a bulk density ranging from about 3 lbs/cu. ft. to about 40 lbs/cu. ft. and a particle size distribution based on the desired bulk density and the proper selection of the starting borax feed material.
- puffed boraxes having particle size distribution so that the major portion of the puffer borax is of a size within the US. sieve range of from 20 to about +200. In the more preferred forms over 90% of the particles of puffed borax are in the US. sieve range from about to 60. At the optimum compositions of the instant disclosed inventions, the bulk density of the puffed borax is about 15 lbs/cu. ft.
- the oxygen bleach-activator compositions of the present invention may also include conventional additives for such compositions. These may include binders, other fillers builders, optical brighteners, perfumes, colorings, enzymes, bacteriostats, etc., all of which may be added to provide properties required in any particular instance. Additionally, the stabilized oxygen bleach-activator compositions can be incorporated into cleaning compositions containing soap and/or synthetic organic detergents and formulated for use as heavy duty household detergents, fine fabric washing detergent systems or clothes washing formulations in general.
- Illustrative of the soaps which may be used in the present invention are the Well known salts of fatty acids. These may include the Na, K, Li or ammonium salts of myristic, palmitic, stearic, behenic, oleic, lauric, abietic, capric, caproic, ricinoleic, linoleic hydrogenated and dehydrogenated abietic acids, the surface active hydrolysis products of tallow, coconut oil, cottonseed oil, soybean oil, peanut oil, sesame oil, linseed oil, olive oil, corn oil, castor oil, and the like.
- the Well known salts of fatty acids may include the Na, K, Li or ammonium salts of myristic, palmitic, stearic, behenic, oleic, lauric, abietic, capric, caproic, ricinoleic, linoleic hydrogenated and dehydrogenated abietic acids, the surface active hydrolysis products of tallow
- long chain alkyl aryl sulfonates such as sodium octyl-, nonyl-, dodecyldecyl-, tri-decyl and tetradecylbenzene sulfonates
- N-long chain acyl N-alkyl taurates such as sodium oleoyl methyltaurate, sodium palmitoyl methyl taurate, sodium or potassium lauroyl methyl taurate and the corresponding acyl ethyl taurates
- long chain alkyl oxyethylene sulfates such as sodium or potassium laurylpolyoxyethylene sulfate, sodium laurylmonooxyethylene sulfate,
- sodium octadecylpolyoxyethylene sulfate and sodium cetyl polyoxyethylene sulfate long chain alkyl aryl oxyethylene sulfates such as ammonium, sodium or potassium nonyl-, octyl-, and tridecylphenol monoand polyoxyethylene sulfates, long chain alkyl sulfates such as sodium lauryland stearylsulfates, long chain alkyl isethionates such as sodium oleic isethionate, sodium lauric isethionate, sodium diisopropyl naphthalene sulfonate, sodium isopropyl naphthalene sulfonate, sodium isobutyland diisobutyl naphthalene sulfonate, sodium isohexylbenzene sulfonate monobutyl biphenyl sodium monosulfonate, monobutylphenylphenol sodium monosul
- alkali metal and amine salts may be employed, as, for example, those with potassium ammonium, lower alkyl amines such as methylamine, ethylamine, propylamine and isopropylamine, lower alkylolamines such as mono, di-, and triethanoland isopropanolamines, cyclic amines such as cyclohexylamine, morpholine, and pyrrolidine and the like.
- the above-mentioned detergents may be used alone or may be employed as mixtures. Additionally, the detergents can be used in combination with the Water-soluble soaps and water conditioners.
- the term water conditioner as used in the present specification and claims designates those compounds which sequester, or inactivate water hardness and aid in cleaning, and the term is fully intended to include both the inorganic and organic complexing agents, sequestering agents and chelating agents.
- the organic type of chelating and sequestering agents the ethylene diamine tetraacetic acid type and its salts and nitrilotriacetic acid and its salts are among the most effective. While these foregoing materials are preferred, there are numerous other types of organic products offered and reference may be had to the book Chemistry of the Metal Chelating Compounds, by Martell and Ca'lvin, for many further examples.
- Illustrative of the inorganic water conditioners useful in the present invention are the zeolites (hydrated silicates of aluminum and either sodium or calcium or both), sodium carbonate, sodium phosphate, sodium acid phosphate, tetrasodium pyrophosphate, sodium tripolyphosphate, trisodium phosphate, sodium metaphosphate, sodium hexametaphosphate, and sodium tetraphosphate. While the sodium salts of the inorganic compounds are preferred, the other alkali metal salts such as the potassium and lithium salts may be used.
- Suitable additives e.g., binders, additional fillers, builders, optical brighteners, perfumes, colorings, bacteriostats, enzymes, etc., may be added to provide properties regarded as desirable in particular instance, as noted hereinbefore.
- Illustrative of some of the various additives used by those skilled in the detergent and soap art are builders (borax, sodium sulfate, sodium carbonate, etc.) corrosion inhibitors (sodium silicate), anti-redeposition agents (carboxymethyl cellulose), fabric brighteners (fluorescent or optical pigments), fillers (talc), binders (gums, starches, dextrins), coloring, foam stabilizers and suppressors, preservatives and bacteriostats and bactericides (trichlorocarbanilide, trichlorosalicylanilide, tribromosalicylanilide). Each ingredient is selected to perform a specific function.
- the corrosion inhibitor protects the metals used in washing machines.
- the anti-redeposition agent is used to aid in preventing removed soil from redeposting on the fabric being washed.
- the foam stabilizer or suppressor aids in tailoring the sudsing characteristics of the product.
- the optical brighteners aid in maintaining fabric whiteness or brightness.
- the enzymes aid in removing the soil from the fabric being washed.
- compositions contemplated within this invention may be prepared in any forms recognized in the art. This would include granules, powders, beads, tablets, individual premeasured units (envelopes, packets, etc.) or combinations with coatings of various materials selected to provide a difierential release rate of the ingredients forming the compositions.
- EXAMPLE 1 Samples were made by mixing the activating system, BID (benzoylimidazole) with a number of fillers referred to hereinafter, and then combining the above mixture with sodium perborate monohydrate. The samples were then stored at 90 F./90% R.H. in open containers for 72 hours. The samples were removed and titrated for the amount of active oxygen present with the standard perm-anganate titration. On Table I, following column I specifies the filler tested. Columns H to IV, respectively, set out the amounts of filler, BID and sodium perborate in the compositions tested. Column V lists the measured loss under the adverse storage conditions.
- BID benzoylimidazole
- Table I clearly delineates the unexpected stability of oxygen bleach-activator systems containing puffed borax and those containing standard fillers including light density fillers or soaps.
- a sodium perborate bleach composition was formulated into activated bleach compositions containing picolinic acid (2-pyridinecarboxylic acid) and cobalt sulfate heptahydrate (CoSO -7H O).
- the sodium perborate bleach composition (control) was compared to the activated bleach compositions, with and without puffed borax, after storage under adverse conditions by measuring the amount of active oxygen lost.
- the compositions were prepared as follows:
- the samples were stored in closed glass containers at F./90% RH. for 42 days. During storage the active oxygen content of the samples were measured using a standard permanganate titration.
- Sodium perborate composition is a commercial type perborate bleaching composition containing about 4.3% available oxygen from 30% sodium perborate monohydrate, sodium tripolyphosphate, sodium silicate, sodium sulfate, non-ionic surfactant and additives such as perfumes, brighteners, etc.
- a perborate activating system was prepared in the following manner: One gram of benzoylimidazole (BID) was solubilized in a non-ionic or cationic surfactant or a glycol which was liquid at ambient room temperature. Then 0.05 g. of the solubilized BID mixture was mixed with 2.00 g. of potent borax (15 lbs/cu. ft. density). This potfed borax activator system was admixed with sodium perborate monohydrate (15.2% active oxygen) giving a BIDzNa perborate monohydrate ratio of 0.25:0.23. The sample was then stored in open containers at 90 F./7S% RH. for 72 hours, at which time active oxygen content was determined by the standard permanganate titration.
- BID benzoylimidazole
- Each sample of Table 3 contains 0.25 gm. of BID and 0.23 gm. of Na PCIbOIZIlCC'I-I O.
- Alforiic l0126 having an averageiethylene oxide content of about 60% and an alkyl chain of C10 to Cu.
- the formulations of the present invention may be proucked by various conventional mixing operations. These would include dry blending, spray drying and wet (slurry) blending methods. It has been found that the best stability characteristics of perborate bleaches are produced when the activator is mixed with a non-ionic (preferably liquid at ambient room temperature) and this mixture incorporated with promisfed borax. If desired, small amounts (up to 5% by weight) of an alcohol such as methanol, ethanol or isopropanol may be included to act as a thinning agent in preparing the compositions of the present invention.
- a non-ionic preferably liquid at ambient room temperature
- an alcohol such as methanol, ethanol or isopropanol
- compositions of the present invention may comprise, by weight:
- compositions of the active ingredients of the present invention may comprise, by weight:
- Filler from about 40.0% up to about 95.50%.
- Oxygen bleach activator from about 1.50% up to about Oxygen releasing bleach substance from about 1.00% up to about 30.0%.
- compositions which utilize the principles taught by the present invention are, by weight:
- Percent Filler sodium silicate and sodium sulfate 47.75 BID 2.25 Sodium perborate composition (1) 50.00
- Example 11 Composition defined in Example 11 containing 30% sodium perborate monohydrate.
- a stabilized oxygen active bleaching composition consisting essentially of an inorganic oxygen-releasing bleaching substance, an oxygen bleach activator for said oxygen-active bleaching substance and from about 0.1 to about 5 times by Weight of said activator of a glycol stabilizer selected from the class consisting of propylene glycol, triethylene glycol, and trimethylene glycol, said bleaching composition containing about 0.1% to about 25% by weight of said bleach activator and from about 0.1% to about 40% by weight of said inorganic releasing bleach substance.
- composition according to claim 1 wherein said glycol is triethylene glycol.
- composition of claim 1 wherein said stabilizing substance is present in the amount of about equal in weight to the amount of activator.
- composition of claim 1 wherein said oxygenreleasing bleaching substance is selected from the group 5 consisting of alkali metal persulfates, percarbonates, perborates, perpyrophosphates and persilicates.
- composition of claim 1 wherein said oxygenblcach activator substance is selected from the group consisting of benzoylimidazole, picolinic acid, methylaminodiacetic acid, aminotriacetic acid, hydroxymethylaminodiacetic acid, chloroacetylphenol, chloroacetylsalicyclic acid, triacetylcyanurate, N,'N,N,'N-tetraacetylethylene diamine and sodium-p-acetoxy benzene sulfonate.
- said oxygenblcach activator substance is selected from the group consisting of benzoylimidazole, picolinic acid, methylaminodiacetic acid, aminotriacetic acid, hydroxymethylaminodiacetic acid, chloroacetylphenol, chloroacetylsalicyclic acid, triacetylcyanurate, N,'N,N,'N-tetraacetylethylene diamine and sodium-p-acetoxy benzene sulfon
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Detergent Compositions (AREA)
Abstract
OXYGEN RELEASING BLEACHES SUCH AS PERBORATES ARE COMBINED WITH ACTIVATORS AND NONIONIC SURFACTANTS OR GLYCOLS TO PROVIDE COMPOSITIONS UNUSUALLY STABLE UPON STORAGE UNDER ADVERSE CONDITIONS OF HIGH TEMPERATURE AND HUMIDITY TO WHICH THEY ARE NORMALLY SUBJECTED.
Description
United States Patent 3,661,789 STABILIZED OXYGEN BLEACH-ACTIVATOR SYSTEM Garland G. Corey, Milltown, and Bernard Weinsteiu, Plainfield, N.J., assignors to American Home Products Corporation, New York, N.Y.
No Drawing. Continuation-impart of application Ser. No. 843,829, July 22, 1969. This application Nov. 24, 1969, Ser. No. 879,573
Int. Cl. C01b 15/00; Clld 7/51 US. Cl. 252-186 Claims ABSTRACT OF THE DISCLOSURE Oxygen releasing bleaches such as perborates are combined with activators and nonionic surfactants or glycols to provide compositions unusually stable upon storage under adverse conditions of high temperature and humidity to which they are normally subjected.
BACKGROUND OF THE INVENTION The use of bleaching agents as aids to laundering is well known. Of the two major types of bleaches, oxygenreleasing and chlorine-releasing, the oxygen bleaches are more advantageous to use in that oxygen bleaches do not attack the fluorescent dyes commonly used as fabric brighteners or the fabrics and do not, to any appreciable extent, yellow the resin fabric finishes as chlorine bleaches are apt to do. However, one major drawback to an oxygen bleach is the high temperatures (140 F.- 160 F.) necessary to etficiently activate the bleach. The United States washing temperatures are in the range of 120 F.- 130 F., below the effective temperatures for activating an oxygen bleach. Considerable effort has been expended to find substances to activate the oxygen bleach at lower temperature.
The use of various substances as oxygen bleaches are taught. These include hydrogen peroxide and per compounds which give rise to hydrogen peroxide in aqueous solution. Suitable compounds include water soluble oxygen releasing compounds such as the alkali metal persulfates, percarbonates, perborates, perpyrophosphates and persilicates. Although not all of the preceding are true persalts in the chemical sense they are believed to provide hydrogen peroxide in aqueous solution. Among the suggested oxygen bleach activators are heavy metal salts of transition metals as cobalt, iron or copper combined with chelating agents as picolinic acid (US. Pat. No. 3,156,- 654) or stronger chelating agents at higher temperatures as methylaminodiacetic acid, aminotriacetic acid and hydroxyethylaminodiacetic acid (U.S. Pat. No. 3,211,658). Esters have been suggested as activators for oxygen re- 3,561,789 Patented May 9, 1972 leasing bleach. Exemplary are chloroacetyl phenol and chloroacetyl salicylic acid (US. Pat. No. 3,130,165), triacetyl cyanurate, N,N,N ,N -tetraacetylethylene diamine and sodium-p-acetoxy benezne sulfonate. Recently, benzoylimidazole and its derivatives with some success have been used. The problems inherent in activating oxygen bleach systems is discussed fully in, Effective Bleaching With Sodium Perborate, Dr. A. H. Gilbert, Detergent Age, June 1967, pages 18-20, July 1967, pages 30, 32, 33 and August 1967, pages 26, 27 and 67.
One major drawback which has prevented the Widespread use and acceptance of the previously described oxygen bleach-activator systems is that the activators tend to react with the oxygen bleach in the package. This results in limited efiectiveness of the bleach composition, a poor commercial product and lack of consumer acceptance. A prime requirement of a commercial bleach product is that it give standardized results, i.e., similar results from similar amounts of bleach at difierent times. The known activated perborate (oxygen) bleach compositions have failed to give such satisfactory standardized results. The premature activation in the package of the perborate bleach by the activator especially under the adversely high humidity conditions present in laundry areas results in products that continuously lose their original bleaching potential during product storage and use. This results in products which do not provide uniform results to the consumer.
OBJECT OF THE INVENTION In the light of the noted disadvantages in using oxygen (perborate) bleaches, it is an object of this invention to provide an oxygen bleach-activator system which has been stabilized against deterioration in the presence of moisture.
In general, according to this invention, the stabilization of the oxygen bleach-activator system is accomplished by using a non-ionic surfactant. The non-ionic surfactants used will preferably (although not necessarily) be liquid at ambient use temperature. The non-ionic surfactant is exemplified by the following general classes.
(1) Straight chain alkylphenoxypoly (ethyleneoxy) ethanols having the general formula:
R-Q-O omommrromomorr wherein R is an alkyl radical and n is the number of moles of ethanol oxide in the molecule (Igepals, GAF) (2) Ethoxylates of isomeric linear secondary alcohols having the general formula:
CHa-( 2)n a -(CHzCHg0);H
wherein n is the number of moles of methylene and x is the number of moles of ethylene oxide in the molecule. (Tergitols, Union Carbide.)
(3) Condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propyl ene oxide with propylene glycol having the general formula:
Tao-(emulate).-oHcHzo)b-(cHzoH20),-H
wherein a and 0 represent moles of ethylene oxide and b represent moles of propylene glycol. (Pluronics, Wyandotte Chemical.)
(4) Addition products of propylene oxide to ethylene diamine followed by the addition of ethylene oxide having the general formula:
wherein x and y represent respectively the number of moles of propylene oxide and ethylene oxide in the molecule. (Tetronics, Wyandotte Chemicals.)
(5) Ethylene oxide adducts of straight chain alcohols having the general formula:
wherein x is the number of methyl groups (chiefly C to C and y is the number of moles of ethylene oxide present. (Alfonics, Conoco.)
(6) Glycols are exemplified by such as propylene glycol, triethylene glycol and trimethylene glycol.
The non-ionic surfactants or glycols are incorporated into the oxygen bleach-activator system in from about to about five times the weight of the oxygen bleachactivator used. Preferably the non-ionic surfactant is used in about equal weight amounts with the oxygen bleachactivator.
Puffed borax may also be included in the composition of this invention and is a known form of borax made by the rapid heating of hydrates of sodium tetraborate. The compound is characterized by versatility of bulk density, large surface area, rapid solubility rate, and high absorp tive potential for many substances. The puffer borax contemplated for inclusion in compositions of the invention, is further characterized by having less than 5 moles of water per mole of sodium tetraborate, a bulk density ranging from about 3 lbs/cu. ft. to about 40 lbs/cu. ft. and a particle size distribution based on the desired bulk density and the proper selection of the starting borax feed material. Found to be particularly useful are puffed boraxes having particle size distribution so that the major portion of the puffer borax is of a size within the US. sieve range of from 20 to about +200. In the more preferred forms over 90% of the particles of puffed borax are in the US. sieve range from about to 60. At the optimum compositions of the instant disclosed inventions, the bulk density of the puffed borax is about 15 lbs/cu. ft.
The oxygen bleach-activator compositions of the present invention may also include conventional additives for such compositions. These may include binders, other fillers builders, optical brighteners, perfumes, colorings, enzymes, bacteriostats, etc., all of which may be added to provide properties required in any particular instance. Additionally, the stabilized oxygen bleach-activator compositions can be incorporated into cleaning compositions containing soap and/or synthetic organic detergents and formulated for use as heavy duty household detergents, fine fabric washing detergent systems or clothes washing formulations in general.
Illustrative of the soaps which may be used in the present invention are the Well known salts of fatty acids. These may include the Na, K, Li or ammonium salts of myristic, palmitic, stearic, behenic, oleic, lauric, abietic, capric, caproic, ricinoleic, linoleic hydrogenated and dehydrogenated abietic acids, the surface active hydrolysis products of tallow, coconut oil, cottonseed oil, soybean oil, peanut oil, sesame oil, linseed oil, olive oil, corn oil, castor oil, and the like.
Illustrative of the synthetic organic detergents useful in the present invention, there may be mentioned long chain alkyl aryl sulfonates such as sodium octyl-, nonyl-, dodecyldecyl-, tri-decyl and tetradecylbenzene sulfonates, N-long chain acyl N-alkyl taurates such as sodium oleoyl methyltaurate, sodium palmitoyl methyl taurate, sodium or potassium lauroyl methyl taurate and the corresponding acyl ethyl taurates, long chain alkyl oxyethylene sulfates such as sodium or potassium laurylpolyoxyethylene sulfate, sodium laurylmonooxyethylene sulfate,
sodium octadecylpolyoxyethylene sulfate and sodium cetyl polyoxyethylene sulfate, long chain alkyl aryl oxyethylene sulfates such as ammonium, sodium or potassium nonyl-, octyl-, and tridecylphenol monoand polyoxyethylene sulfates, long chain alkyl sulfates such as sodium lauryland stearylsulfates, long chain alkyl isethionates such as sodium oleic isethionate, sodium lauric isethionate, sodium diisopropyl naphthalene sulfonate, sodium isopropyl naphthalene sulfonate, sodium isobutyland diisobutyl naphthalene sulfonate, sodium isohexylbenzene sulfonate monobutyl biphenyl sodium monosulfonate, monobutylphenylphenol sodium monosulfonate, dibutylphenylphenol sodium disulfonate, lower alkyl sulfates and sulfonates such as sodium sulfate derivative of 2-ethyl hexanol-l, sodium Z-ethyl-l-hexenyl sulfonate, sodium isooctyl sulfonate, sodium isononyl (also triisopropylyene) sulfonate, lower alkyl esters of aliphatic sulfocarboxylic acids such as sodium diamyl sulfosuccinate, sodium diisobutyl sulfosuccinate, sodium dihexyl sulfosuccinate, sodium dioctyl sulfosuccinate, sodium triamyl sulfotricarballylate, sodium triisobutyl sulfotricarballylate, and sodium tri-n-butyl sulfotricarballylate.
While the foregoing sodium salts of the above detergents may be preferred, other alkali metal and amine salts may be employed, as, for example, those with potassium ammonium, lower alkyl amines such as methylamine, ethylamine, propylamine and isopropylamine, lower alkylolamines such as mono, di-, and triethanoland isopropanolamines, cyclic amines such as cyclohexylamine, morpholine, and pyrrolidine and the like.
The above-mentioned detergents may be used alone or may be employed as mixtures. Additionally, the detergents can be used in combination with the Water-soluble soaps and water conditioners. The term water conditioner as used in the present specification and claims designates those compounds which sequester, or inactivate water hardness and aid in cleaning, and the term is fully intended to include both the inorganic and organic complexing agents, sequestering agents and chelating agents.
Referring first to the organic type of chelating and sequestering agents, the ethylene diamine tetraacetic acid type and its salts and nitrilotriacetic acid and its salts are among the most effective. While these foregoing materials are preferred, there are numerous other types of organic products offered and reference may be had to the book Chemistry of the Metal Chelating Compounds, by Martell and Ca'lvin, for many further examples. Illustrative of the inorganic water conditioners useful in the present invention are the zeolites (hydrated silicates of aluminum and either sodium or calcium or both), sodium carbonate, sodium phosphate, sodium acid phosphate, tetrasodium pyrophosphate, sodium tripolyphosphate, trisodium phosphate, sodium metaphosphate, sodium hexametaphosphate, and sodium tetraphosphate. While the sodium salts of the inorganic compounds are preferred, the other alkali metal salts such as the potassium and lithium salts may be used.
Suitable additives, e.g., binders, additional fillers, builders, optical brighteners, perfumes, colorings, bacteriostats, enzymes, etc., may be added to provide properties regarded as desirable in particular instance, as noted hereinbefore. Illustrative of some of the various additives used by those skilled in the detergent and soap art are builders (borax, sodium sulfate, sodium carbonate, etc.) corrosion inhibitors (sodium silicate), anti-redeposition agents (carboxymethyl cellulose), fabric brighteners (fluorescent or optical pigments), fillers (talc), binders (gums, starches, dextrins), coloring, foam stabilizers and suppressors, preservatives and bacteriostats and bactericides (trichlorocarbanilide, trichlorosalicylanilide, tribromosalicylanilide). Each ingredient is selected to perform a specific function. The corrosion inhibitor protects the metals used in washing machines. The anti-redeposition agent is used to aid in preventing removed soil from redeposting on the fabric being washed. The foam stabilizer or suppressor aids in tailoring the sudsing characteristics of the product. The optical brighteners aid in maintaining fabric whiteness or brightness. The enzymes aid in removing the soil from the fabric being washed.
The compositions contemplated within this invention may be prepared in any forms recognized in the art. This would include granules, powders, beads, tablets, individual premeasured units (envelopes, packets, etc.) or combinations with coatings of various materials selected to provide a difierential release rate of the ingredients forming the compositions.
The following examples are illustrative of the present invention:
EXAMPLE 1 Samples were made by mixing the activating system, BID (benzoylimidazole) with a number of fillers referred to hereinafter, and then combining the above mixture with sodium perborate monohydrate. The samples were then stored at 90 F./90% R.H. in open containers for 72 hours. The samples were removed and titrated for the amount of active oxygen present with the standard perm-anganate titration. On Table I, following column I specifies the filler tested. Columns H to IV, respectively, set out the amounts of filler, BID and sodium perborate in the compositions tested. Column V lists the measured loss under the adverse storage conditions.
TABLE 1 I II III IV V Grams Na Percent perborate active Grams Grams -H O (15.4% oxygen Filler of filler BI active 02) loss a Pufled borax b 2.00 0. 25 0. 23 22 Borax decahydrate a 2. 00 0. 25 0.23 49 Low density sodium carbonate (Flozan) 2. 00 0. 25 0.23 94 Light density sodium tripolyphosphate 2.00 0. 25 0. 23 29 Soap flakes 1 2. 00 0. 25 0. 23 55 a After 72 hours at 90 F./90% R.H. b 15 lbsJcu. it. Q 52 lbs./cu. it. d 32 lbs./cu. it.
v 33 lbs/cu. it. 1 85% tallow/15% coconut oil ratio soap having an Iodine Value (Hanus method) of 38-42.-
Table I clearly delineates the unexpected stability of oxygen bleach-activator systems containing puffed borax and those containing standard fillers including light density fillers or soaps.
EXAMPLE II A sodium perborate bleach composition was formulated into activated bleach compositions containing picolinic acid (2-pyridinecarboxylic acid) and cobalt sulfate heptahydrate (CoSO -7H O). The sodium perborate bleach composition (control) was compared to the activated bleach compositions, with and without puffed borax, after storage under adverse conditions by measuring the amount of active oxygen lost. The compositions were prepared as follows:
(a) 5 g. picolinic acid was dissolved in 100 g. ethanol to give (b) 50 g. (I) was combined with 50 g. puffed borax (6 lbs/cu. ft.) to give (11);
(c) 50 g. (II) was combined with 150 g. of a sodium perborate bleach composition to give (HI);
(d) 100 g. (III) was combined with 1 g. cobalt sulfate heptahydrate to give (IV);
(e) 100 g. sodium perborate bleach composition was combined with 0.6 g. picolinic acid and 1.0 g. cobalt sulfate heptahydrate to give (V).
6 The samples were stored in closed glass containers at F./90% RH. for 42 days. During storage the active oxygen content of the samples were measured using a standard permanganate titration.
acid and 00804.7H 0.
a From 7-42 days at 90 F./90% R.H. b Sodium perborate composition is a commercial type perborate bleaching composition containing about 4.3% available oxygen from 30% sodium perborate monohydrate, sodium tripolyphosphate, sodium silicate, sodium sulfate, non-ionic surfactant and additives such as perfumes, brighteners, etc.
The data presented in Table 2 clearly demonstrates that under the adverse test conditions the control composition showed no loss of active oxygen. The complete activated oxygen bleach activator system containing picolinic acid and cobalt sulfate showed a 49% loss under the measured adverse storage conditions; whereas, the same composition protected with puffed borax showed no loss.
EXAMPLE III A perborate activating system was prepared in the following manner: One gram of benzoylimidazole (BID) was solubilized in a non-ionic or cationic surfactant or a glycol which was liquid at ambient room temperature. Then 0.05 g. of the solubilized BID mixture was mixed with 2.00 g. of puifed borax (15 lbs/cu. ft. density). This puifed borax activator system was admixed with sodium perborate monohydrate (15.2% active oxygen) giving a BIDzNa perborate monohydrate ratio of 0.25:0.23. The sample was then stored in open containers at 90 F./7S% RH. for 72 hours, at which time active oxygen content was determined by the standard permanganate titration.
Each sample of Table 3 contains 0.25 gm. of BID and 0.23 gm. of Na PCIbOIZIlCC'I-I O.
TABLE 8 A B O D E Percent Grams Grams active suriacpuffed oxygen Sample Type of surfactant tant borax loss None 44 2. 00 23 2. 00 20 2. 00 15 2. 00 10 2. 00 ll 2. 00 22 2. 00 32 Pluronic L-61-having a molecular weight of the poloxypropylene hydrophobic base of about 1,750 and about 10% polyoxyethylene in the total molecule and an average molecular weight of about 2,000.
b Alforiic l0126having an averageiethylene oxide content of about 60% and an alkyl chain of C10 to Cu.
0 'Ietronic 701-having a molecular weight of about 3,600.
d Tergitol 15-S-9-having 0 11-015 linear alcohol and 9 moles of ethylene oxide per molecule.
B'IC 2125(50% active)(U.S. Pat. No. 2,676,986) 25% n-alkyl (60% C14, 30% C15, 5% C12, 5% C18) dimethyl benzyl ammonium chlorides, 25% n-alkyl (50% On, 30% C14, 17% C15, 3% 01a) dimethyl ethylbenzyl ammonium chlorides. 50% inert ingredients.
It is apparent from the above data that: (1) the use of puifed borax as a filler increases the active oxygen life of Na perborate. (2) the use of non-ionic surfactants tends to increase the active oxygen life of Na perborate while cationics have an opposite effect (Sample No. 8) and (3), the various non-ionics give varying results.
In a further series of experiments delineating the activity of non-ionic surfactants and glycols as stabilizers for oxygen bleach-activator systems. Equal amounts of the activator (BID) and glycol or non-ionic surfactant (0.25 g.)
were combined with a sodium perborate bleach composition. After aging under adverse storage conditions the amount of oxygen lost was ascertained using a standard permanganate titration. The results are set forth in Table 4 and clearly demonstrate that the combination containing activator and non-ionic surfactant or glycol was more stable than the combination containing the activator alone.
TABLE 4 G rams Na perborate monohydrate Grams 05-16% Percent non- G rams active active Sample Nonionie ionic BI Oz) 02 loss a 1 Pluronic L-61 0.25 0.25 0. 25 22 2 Tetronic 701 0. 25 0. 25 0. 25 20 3 Triethylene glycoL 0. 25 0. 25 0. 25 7 4 Alionie 101443. 0. 25 0. 25 0. 25 15 5 None 0.00 0. 25 0.25 38 a After 72 hr. open container at F./90% R.H.
EXAMPLE IV TABLE A B C D Sodium perborate,
mono- Triacctyl- Triethylene- Active Oz hydrate, cyanuiate, glycol, remaining, grams grams grams percent EXAMPLE V The effect of puffed borax on various sodium perborate combinations was tested. The results expressed as percent tea stain removal was measured by a Ter-gotometer after washing at 120 F. for twenty minutes. The data in Tables 6 and 7 clearly demonstrate that the effect of oxygen bleach activator is unhindered by the presence of puffed borax. The compositions are expressed as per-cent by weight.
TABLE 6.-WITH HEAVY DUTY DETERG ENT COM POSITION Sample A B C D Percent BID 5. 85 3. 30 1. 69 0. 00 Percent Na perborate monohydrate 16% active 02) 5. 15 2. 80 1. 45 2. 02 Percent puffed borax 46. 95 48. 43 48. 54 Percent detergent compos on 46. 95 48. 43 48. 54 Percent tea stain removal. 80 75 65 47 A commercially available heavy duty detergent composition com prising about 20% alkylaryl su1l'ouate,4550% sodium tripolyphosphato nd q.s. to 100% of additives.
The formulations of the present invention may be pro duced by various conventional mixing operations. These would include dry blending, spray drying and wet (slurry) blending methods. It has been found that the best stability characteristics of perborate bleaches are produced when the activator is mixed with a non-ionic (preferably liquid at ambient room temperature) and this mixture incorporated with puifed borax. If desired, small amounts (up to 5% by weight) of an alcohol such as methanol, ethanol or isopropanol may be included to act as a thinning agent in preparing the compositions of the present invention.
In general, the compositions of the present invention may comprise, by weight:
In the more preferred form, the compositions of the active ingredients of the present invention may comprise, by weight:
Filler from about 40.0% up to about 95.50%.
Oxygen bleach activator from about 1.50% up to about Oxygen releasing bleach substance from about 1.00% up to about 30.0%.
Particular compositions which utilize the principles taught by the present invention are, by weight:
(I) SPRAY DRIED BUILT OXYGEN RELEASING BLEACH [Active oxygen 2.25%]
Percent Filler (sodium silicate and sodium sulfate) 47.75 BID 2.25 Sodium perborate composition (1) 50.00
1 Composition defined in Example 11 containing 30% sodium perborate monohydrate.
(II) DRY BLENDED OXYGEN RELEASING BLEACH [Active oxygen 0.75%]
Percent Filler (sodium sulfate) 50.0 BID 6.0 Pluronic L-61 6.0 Na perborate-H O (15-16% active oxygen) 5.0 Sodium Tripolyphosphate 32.0
Adjuvantsdye, optical brightener, perfume, etc.
What is claimed is:
1. A stabilized oxygen active bleaching composition consisting essentially of an inorganic oxygen-releasing bleaching substance, an oxygen bleach activator for said oxygen-active bleaching substance and from about 0.1 to about 5 times by Weight of said activator of a glycol stabilizer selected from the class consisting of propylene glycol, triethylene glycol, and trimethylene glycol, said bleaching composition containing about 0.1% to about 25% by weight of said bleach activator and from about 0.1% to about 40% by weight of said inorganic releasing bleach substance.
2. A composition according to claim 1 wherein said glycol is triethylene glycol.
3. The composition of claim 1 wherein said stabilizing substance is present in the amount of about equal in weight to the amount of activator.
4. The composition of claim 1 wherein said oxygenreleasing bleaching substance is selected from the group 5 consisting of alkali metal persulfates, percarbonates, perborates, perpyrophosphates and persilicates.
5. The composition of claim 1 wherein said oxygenblcach activator substance is selected from the group consisting of benzoylimidazole, picolinic acid, methylaminodiacetic acid, aminotriacetic acid, hydroxymethylaminodiacetic acid, chloroacetylphenol, chloroacetylsalicyclic acid, triacetylcyanurate, N,'N,N,'N-tetraacetylethylene diamine and sodium-p-acetoxy benzene sulfonate.
References Cited UNITED STATES PATENTS 3,130,165 4/ 1964 BrocklehurSt 252-186 3,192,254 6/1965 Hayes 252-186 3,194,768 7/1965 Lindner et a1. 252-186 LEON D. ROSDOL, Primary Examiner I. GLUCK, Assistant Examiner US. Cl. X.R.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US84382969A | 1969-07-22 | 1969-07-22 | |
| US87957369A | 1969-11-24 | 1969-11-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3661789A true US3661789A (en) | 1972-05-09 |
Family
ID=27126446
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US843829A Expired - Lifetime US3671439A (en) | 1969-07-22 | 1969-07-22 | Oxygen bleach-activator systems stabilized with puffed borax |
| US879573A Expired - Lifetime US3661789A (en) | 1969-07-22 | 1969-11-24 | Stabilized oxygen bleach-activator system |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US843829A Expired - Lifetime US3671439A (en) | 1969-07-22 | 1969-07-22 | Oxygen bleach-activator systems stabilized with puffed borax |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US3671439A (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2412837A1 (en) * | 1973-04-13 | 1974-10-31 | Henkel & Cie Gmbh | PROCESS FOR WASHING AND CLEANING THE SURFACES OF SOLID MATERIALS, IN PARTICULAR TEXTILES, AND MEANS FOR CARRYING OUT THE PROCESS |
| US3901819A (en) * | 1972-09-14 | 1975-08-26 | Kao Corp | Compositions for activating an inorganic peroxide bleaching agent |
| DE2543976A1 (en) * | 1974-10-03 | 1976-04-08 | Henkel & Cie Gmbh | SHOOTABLE SCALE AGGLOMERATE FOR DETERGENT AND CLEANING AGENTS |
| US3963634A (en) * | 1973-04-17 | 1976-06-15 | Kao Soap Co., Ltd. | Powdery bleaching detergent composition |
| US4009113A (en) * | 1971-04-30 | 1977-02-22 | Lever Brothers Company | Protection of materials |
| US4025609A (en) * | 1975-05-19 | 1977-05-24 | Kao Soap Co., Ltd. | Process for preparing stable sodium percarbonate |
| US4274975A (en) * | 1974-03-11 | 1981-06-23 | The Procter & Gamble Company | Detergent composition |
| US4283301A (en) * | 1980-07-02 | 1981-08-11 | The Procter & Gamble Company | Bleaching process and compositions |
| US4316879A (en) * | 1977-06-17 | 1982-02-23 | Fmc Corporation | Stabilized sodium carbonate peroxide preparation method |
| US4367156A (en) * | 1980-07-02 | 1983-01-04 | The Procter & Gamble Company | Bleaching process and compositions |
| US4422950A (en) * | 1980-12-09 | 1983-12-27 | Lever Brothers Company | Bleach activator granules and preparation thereof |
| US4605509A (en) * | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
| US4619663A (en) * | 1983-05-10 | 1986-10-28 | Atochem | Process for the bleaching of textiles and stabilizing composition therefor |
| US4636328A (en) * | 1984-04-05 | 1987-01-13 | Purex Corporation | Multi functional laundry product and employment of same during fabric laundering |
| US4964870A (en) * | 1984-12-14 | 1990-10-23 | The Clorox Company | Bleaching with phenylene diester peracid precursors |
| US5002691A (en) * | 1986-11-06 | 1991-03-26 | The Clorox Company | Oxidant detergent containing stable bleach activator granules |
| EP0427314A3 (en) * | 1989-11-09 | 1991-10-23 | Unilever Nv | Bleaching composition |
| US5112514A (en) * | 1986-11-06 | 1992-05-12 | The Clorox Company | Oxidant detergent containing stable bleach activator granules |
| US5269962A (en) * | 1988-10-14 | 1993-12-14 | The Clorox Company | Oxidant composition containing stable bleach activator granules |
| WO2005005588A3 (en) * | 2003-07-15 | 2005-05-06 | T Kimya Ve Teknoloji Sanayi Ti | An anti-foam composition comprising puffed |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3986987A (en) * | 1974-05-15 | 1976-10-19 | Canada Packers Limited | Light-density, low phosphate, puffed borax-containing detergent compositions |
| US4395261A (en) * | 1982-01-13 | 1983-07-26 | Fmc Corporation | Vapor hydrogen peroxide bleach delivery |
| US4996001A (en) * | 1989-01-23 | 1991-02-26 | Capital City Products Company | Puffed borax as an agglomerating aid |
| HUP0401100A2 (en) * | 2001-01-16 | 2004-11-29 | Unilever N.V. | Dentifrice composition |
| US20060105045A1 (en) * | 2004-11-08 | 2006-05-18 | Buchanan Charles M | Cyclodextrin solubilizers for liquid and semi-solid formulations |
| US20060105992A1 (en) * | 2004-11-08 | 2006-05-18 | Buchanan Charles M | Pharmaceutical formulations of cyclodextrins and selective estrogen receptor modulator compounds |
| CA2635313C (en) | 2005-12-29 | 2013-12-31 | Osmotica Corp. | Triple combination release multi-layered tablet |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2730428A (en) * | 1950-10-21 | 1956-01-10 | Tepha Ges Fur Pharmazeutische | Method and composition for washing and bleaching fibrous materials |
| US3192254A (en) * | 1959-10-19 | 1965-06-29 | Shawinigan Chem Ltd | Stabilization of peracids with picolinic acid |
| DE1121594B (en) * | 1960-07-07 | 1962-01-11 | Henkel & Cie Gmbh | Process for the production of liquid, storage-stable concentrates containing active oxygen |
| BE621901A (en) * | 1961-08-31 | |||
| US3454357A (en) * | 1964-08-03 | 1969-07-08 | American Potash & Chem Corp | Process and apparatus for expanding inorganic salts |
| US3449254A (en) * | 1966-06-14 | 1969-06-10 | Allied Chem | Borax-sodium silicate stabilizers for peroxide bleaching |
| US3538005A (en) * | 1967-06-26 | 1970-11-03 | American Home Prod | Dry powder bleaching compositions |
-
1969
- 1969-07-22 US US843829A patent/US3671439A/en not_active Expired - Lifetime
- 1969-11-24 US US879573A patent/US3661789A/en not_active Expired - Lifetime
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4009113A (en) * | 1971-04-30 | 1977-02-22 | Lever Brothers Company | Protection of materials |
| US3901819A (en) * | 1972-09-14 | 1975-08-26 | Kao Corp | Compositions for activating an inorganic peroxide bleaching agent |
| DE2412837C3 (en) * | 1973-04-13 | 1989-10-12 | Henkel & Cie Gmbh | Means for washing or bleaching textiles using crystalline water-insoluble silicates, their preparation and their use |
| DE2412837A1 (en) * | 1973-04-13 | 1974-10-31 | Henkel & Cie Gmbh | PROCESS FOR WASHING AND CLEANING THE SURFACES OF SOLID MATERIALS, IN PARTICULAR TEXTILES, AND MEANS FOR CARRYING OUT THE PROCESS |
| US3963634A (en) * | 1973-04-17 | 1976-06-15 | Kao Soap Co., Ltd. | Powdery bleaching detergent composition |
| US4605509A (en) * | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
| US4274975A (en) * | 1974-03-11 | 1981-06-23 | The Procter & Gamble Company | Detergent composition |
| DE2543976A1 (en) * | 1974-10-03 | 1976-04-08 | Henkel & Cie Gmbh | SHOOTABLE SCALE AGGLOMERATE FOR DETERGENT AND CLEANING AGENTS |
| US4025609A (en) * | 1975-05-19 | 1977-05-24 | Kao Soap Co., Ltd. | Process for preparing stable sodium percarbonate |
| US4316879A (en) * | 1977-06-17 | 1982-02-23 | Fmc Corporation | Stabilized sodium carbonate peroxide preparation method |
| US4283301A (en) * | 1980-07-02 | 1981-08-11 | The Procter & Gamble Company | Bleaching process and compositions |
| US4367156A (en) * | 1980-07-02 | 1983-01-04 | The Procter & Gamble Company | Bleaching process and compositions |
| US4422950A (en) * | 1980-12-09 | 1983-12-27 | Lever Brothers Company | Bleach activator granules and preparation thereof |
| US4619663A (en) * | 1983-05-10 | 1986-10-28 | Atochem | Process for the bleaching of textiles and stabilizing composition therefor |
| US4636328A (en) * | 1984-04-05 | 1987-01-13 | Purex Corporation | Multi functional laundry product and employment of same during fabric laundering |
| US4964870A (en) * | 1984-12-14 | 1990-10-23 | The Clorox Company | Bleaching with phenylene diester peracid precursors |
| US5002691A (en) * | 1986-11-06 | 1991-03-26 | The Clorox Company | Oxidant detergent containing stable bleach activator granules |
| US5112514A (en) * | 1986-11-06 | 1992-05-12 | The Clorox Company | Oxidant detergent containing stable bleach activator granules |
| US5269962A (en) * | 1988-10-14 | 1993-12-14 | The Clorox Company | Oxidant composition containing stable bleach activator granules |
| EP0427314A3 (en) * | 1989-11-09 | 1991-10-23 | Unilever Nv | Bleaching composition |
| EP0694607A2 (en) | 1991-03-25 | 1996-01-31 | The Clorox Company | Oxidant composition containing stable bleach activator granules |
| WO2005005588A3 (en) * | 2003-07-15 | 2005-05-06 | T Kimya Ve Teknoloji Sanayi Ti | An anti-foam composition comprising puffed |
Also Published As
| Publication number | Publication date |
|---|---|
| US3671439A (en) | 1972-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3661789A (en) | Stabilized oxygen bleach-activator system | |
| EP0079674B1 (en) | Controlled release laundry bleach product | |
| EP0070067B2 (en) | Controlled release laundry bleach product | |
| EP0103416B2 (en) | Peroxyacid bleach compositions | |
| EP0079129B1 (en) | Controlled release laundry bleach product | |
| JPS6125759B2 (en) | ||
| JPH037720B2 (en) | ||
| MXPA97002315A (en) | Compositions liquid detergents containing non-aqueous bleach | |
| JPS63288267A (en) | Improved bleaching agent compounded detergent composition and fabric washing method | |
| JPH01280000A (en) | Heavy washing detergent composition | |
| CA1105658A (en) | Activated bleaching process and compositions therefor | |
| JPS61179300A (en) | Method and composition for activating hydrogen peroxide | |
| JP2595052B2 (en) | Detergent composition containing hectorite clay fabric softener | |
| GB1569258A (en) | Bleaching compositions and processes | |
| JPS59120698A (en) | detergent composition | |
| US4443352A (en) | Silicate-free bleaching and laundering composition | |
| GB2129456A (en) | Stabilized bleaching and laundering composition | |
| US4430244A (en) | Silicate-free bleaching and laundering composition | |
| US3979313A (en) | Bleaching composition | |
| JPS6126958B2 (en) | ||
| US3756776A (en) | Bleaching process and composition | |
| US3558497A (en) | Laundry detergent compositions containing a perborate and a peroxymonopersulfate | |
| CA1207956A (en) | Peroxyacid bleaching and laundering composition | |
| EP0083560B1 (en) | Substituted-butanediperoxoic acid and process for bleaching | |
| US3338836A (en) | Cleansing tablets |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BOYLE-MIDWAY HOUSEHOLD PRODUCTS, INC., 685 THIRD A Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN HOME PRODUCTS CORPORATION, A DE. CORP.;REEL/FRAME:004725/0166 Effective date: 19870513 |