[go: up one dir, main page]

US3659633A - Method of making parallel wire strand - Google Patents

Method of making parallel wire strand Download PDF

Info

Publication number
US3659633A
US3659633A US43463A US3659633DA US3659633A US 3659633 A US3659633 A US 3659633A US 43463 A US43463 A US 43463A US 3659633D A US3659633D A US 3659633DA US 3659633 A US3659633 A US 3659633A
Authority
US
United States
Prior art keywords
strand
wires
wire
hexagonal
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US43463A
Inventor
Jackson L Durkee
Arthur F Beighley
Donald E Dunlap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bethlehem Steel Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from US00043464A external-priority patent/US3855777A/en
Application granted granted Critical
Publication of US3659633A publication Critical patent/US3659633A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/10Devices for taking-up or winding the finished rope or cable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/14Aprons, endless belts, lattices, or like driven elements
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0693Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/002Making parallel wire strands
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2033Parallel wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49801Shaping fiber or fibered material

Definitions

  • This invention relates to prefabricated parallel-wire strands, and more particularly to prefabricated parallel-wire structural strands with superior physical properties.
  • structural strand refers to a multiwire strand used as a substantially fixed permanent structural member.
  • the parallel-wire strand of the present invention has, however, been found particularly useful for building up larger parallel-wire structural cables such as are used for the main supporting cables of suspension bridges. This invention will therefore be described with respect to parallel-wire strand fabricated for use in the construction of suspension bridge main cables.
  • Parallel-wire cables are the primary type used for suspension bridges because of their superior strength and axial stiffness over cables made of helical-wire strand, which do not develop the unit ultimate strength or the modulus of elasticity of parallel-laid wires. It has been the practice to construct parallel-wire cables in suspension on the bridge by a process known as aerial spinning, that is by hauling individual loops of bridge wire back and forth over the bridge towers and connecting them to the anchorages. A number of such wires are bundled together to form a parallel-wire strand. A group of such parallel-wire strands are formed consecutively and then compacted together to form the parallel-wire suspension cable.
  • hexagonal parallel-wire strand in a hexagonal roller die using wires arranged with their casts opposed, pulling the strand through the die by means of a hexagonal clamping device, and securing the strand wires together by resilient binding means; and that such parallelwire strand can be effectively reeled with alternate rotation about the strand axis in opposite directions.
  • hexagonal parallel-wire strand can be continuously made and reeled by the use of a dynamic clamp, i.e. a continuously movable clamp, interposed between the forming dies and the reel.
  • FIG. 1 shows a plan view of an arrangement according to the present invention for forming parallel-wire strand.
  • FIG. 2 shows a side elevation of the arrangement shown in FIG. 1.
  • FIG. 3 shows an isometric view of an initial portion of the apparatus.
  • FIG. 4 shows an elevation of the reeling portion of the apparatus.
  • FIG. 5 shows a plan view of the portion of the apparatus shown in FIG. 4.
  • FIG. 6 shows a cross section of one form of the strand of the present invention.
  • FIG. 7 is a cross-section through the parallel-wire strand in FIG. 3 at 77 showing one roller die.
  • FIG. 8 is a diagrammatic cross-section through one form of dynamic clamp.
  • FIG. 9 is a diagrammatic lateral view of the dynamic clamp of FIG. 8 showing supporting structure and one movable element particularly viewed along line 9-9 of FIG. 8.
  • FIG. 10 is an enlarged diagrammatic cross-sectional view of an alternate dynamic clamp arrangement.
  • FIG. 11 is a diagrammatic elevation of the alternate dynamic clamp arrangement of FIG. 10.
  • FIGS. 1, 2 and 3 a series of turntables 11 and 13 are shown in FIGS. 1, 2 and 3. Each turntable is supported upon a suitable base 15 and is provided with braking means 17 frictionally engaged against drum 18 by any suitable motivating means such as pneumatic cylinder 20 calibrated to place uniform back tension on wire being unwound from the turntable. There may be 91 wires in a typical bridge strand and therefore 91 turntables. For convenience only a few of the turntables are shown; however, it is to be understood that the remainder would be arranged in the same manner.
  • Turntables 11 have what may be termed left-handed coils of the wire mounted thereon and turntables 13 have what may be termed right-handed coils of wire mounted thereon. That is to say, the wire when it is drawn from the top of the turntable will rotate the turntable either clockwise or counterclockwise respectively.
  • the wires pulled ofi from turntables 11 are indicated as a group as wires 19, while the wires pulled off from turntables 13 are indicated as a group as wires 21.
  • Wires 19 are pulled through fairleads 23 and wires 21 are pulled through fairleads 25, except for the wire from the last, or end, turntable in each group, to lay plates 27 and 29, respectively.
  • the wire from the last turntable of each group passes directly to the lay plate.
  • lay plate 27 has guide holes in it delineating the left half of a hexagonal pattern and lay plate 29 has guide holes in it delineating the right half of a hexagonal pattern.
  • the groups of wires 19 and 21 pass through the guide holes in combined lay plate 31 whose guide holes delineate the hexagonal shape of the final strand.
  • guide holes in lay plate 31 There are 9] guide holes in lay plate 31 for a 9l-wire strand. It will be noted that all the wires which pass from turntables 11 through lay plate 27 pass through the left half of the hexagonal configuration of guide holes in lay plate 31, and that all the wires from turntables 13 which pass through lay plate 29 pass through the right half of the hexagonal configuration of guide holes in lay plate 31.
  • roller die 33 comprises a base 34, and a support ring 35 in which are resiliently mounted six freelyrotatable rollers 37 alternately displaced into two radial rings each comprised of three rollers 37 so that the roller journals 39 do not interfere with each other, and arranged to delineate a hexagonal die opening.
  • one radial ring of rollers 37 is shown in dotted outline where it is partially obscured by the second radial ring of rollers.
  • Rollers 37 are resiliently urged by means of springs 43 attached to each roller mounting 45 against the wires passing therethrough to fonn a hexagonal strand 41.
  • hexagonal strand 41 passes through further hexagonal roller dies 47, 49, 50, and 51' which may be substantially identical in construction with roller die 33.
  • Dynamic clamp 53 may conveniently take the form of a socalled caterpuller-type capstan, or dynamic pulling clamp, having three meshing caterpuller-type tracks each clamping to two of the six flat surfaces of the hexagonal strand.
  • two dynamic clamps 135 and 137 can be used in tandem as shown diagrammatically in FIGS. 10 and 11. In the event two dynamic clamps 135 and 137 are used as shown in FIGS.
  • Dynamic clamp 53 serves to pull the wires from the turntables 11 and 13 through roller dies 33, 47, 49, 50 and 51.
  • roller dies 33, 47, 49, 50 and 51 prevent any external wires of the strand from lagging behind, such as might occur around the inner perimeter of a solid die as a result of friction of the wires against such die. It will thus be seen that the combined use of a hexagonal strand clamping means and a hexagonal roller die with a hexagonal strand, enables the fabrication of parallel-wire strands wherein the wires are equally stressed during manufacture of the strand and therefore precisely equal in length. It is not essential that the hexagonal strand be equilateral as an extra layer of wires may be added to any flat of the hexagon in order to make up a strand of varying numbers of wires. It is necessary, however, that the closely-packed hexagonal structure be maintained as has been explained heretofore.
  • Dynamic clamp 53 which as illustrated in FIGS. 8 and 9 comprises one suitable form of clamping structure, is comprised of endless articulated clamping surfaces 55, 87 and 89, rotatable upon cog wheels 57 and 59, and driven by means of drive shaft 61, and, in the case of articulated clamping surface 55, meshing bevel gears 63 and 65 which rotate shaft 67 upon which is mounted sprocket wheel 57.
  • Drive shaft 61 is driven through chain 69 by combined motor and gear reducer 71.
  • Gears 73, 75 and 77 serve to rotate shafts 79 and 81 which in turn rotate shafts 83 and 85 upon which are mounted supporting sprocket wheels similar to sprocket wheel 57, and upon which the other two opposing articulated clamping surfaces 87 and 89, shown in partial section in FIG. 8, are rotated.
  • Rollers 91 are journaled on link connecting pins 93 between track links 95 and 97. It will be noted in FIG. 9 that extensions 99 on each alternate link 97 overlap similar extensions 101, shown in dotted outline, on each adjacent link 95 to enable pins 93 to connect and articulate the links.
  • Sprocket wheels 57 and 59 with their shafts are journaled in supporting plates 103 and 105 secured to end plates 107 and 109 by brackets 104.
  • Brackets 113 and 115 are mounted on the outside of supporting plates 103 and 105.
  • Shafts 117 pass through brackets 113 and 115 in sliding relationship therewith to support two movable inner track elements 119 and 121 which are urged inwardly by springs 123 against links 95 and 97 as they pass along the parallel-wire strand 41 to urge the clamping faces of the links 95 and 97 against the parallel-wire strand as shown in FIG. 8.
  • Nuts 125 on shafts 117 prevent tracks 119 and 121 from being forced inwardly too far.
  • An upper section 1270f end plates 107 and 109 may be arranged to separate along line 129 so that one whole track assembly may be thrown back to facilitate threading of the parallel-wire strand through the clamp.
  • hydraulic means may be used in place of, or in addition to, springs 123 to urge the tracks and clamping links 95 and 97 against the strand 41, and, in this case, the strand may be threaded by opening the tracks by the operation of the hydraulic means sufficiently to allow threading to take place. If a mechanical sleeve splice on a wire passes through the dynamic clamp, first track element 119, and then track element 121 will lift to allow the splice to pass through. It will be seen that while one track is lifted the other will provide effcient clamping action so that the internal wires in the strand will not slip with respect to each other.
  • each clamp may have only one pair of articulated clamping surfaces.
  • the articulated clamping surfaces 143 and 145 of dynamic clamp 137 are turned at a 60-degree angle with respect to articulated clamping surfaces 139 and 141 of dynamic clamp as illustrated in FIG. 10.
  • Articulated clamping surfaces 139, 141, 143 and 145 are composed of connected track links 147 and 149 comparable to track links 95 and 97 of dynamic clamp 53 except that each track link carries three clamping faces engaging three sides of the hexagonal strand rather than two clamping faces as in the construction of dynamic clamp 53.
  • the construction of the two articulated clamping surfaces of dynamic clamps 135 and 137 are substantially the same as that of threetrack dynamic clamp 53 and the same part numbers have been used where applicable in the FIGURES.
  • a securing material 128 As the parallel-wire strand is drawn through the roller dies it is bound at intervals with a securing material 128 at binding stations located between the roller dies. This may be done by stopping the strand every few feet and applying suitable tape manually at points between adjacent roller dies, or alternatively a suitable mechanical traveling taping device may be used to tape the strand while the strand is moving. When a mechanical taping device is used it will be possible to use fewer roller dies. If manual taping is done it may be desired to increase the number of roller dies in order to increase the number of taping stations. Suitable variations will occur to those skilled in the art. Normally taping the strand at 3-foot intervals will be found effective in maintaining the strand wires in a compact cross-sectional shape during subsequent strand evolutions such as reeling and erection.
  • a motor 165 operates traverse 161 through suitable drive means, gear reducer 166, and chain 167 which moves traverse carriage 168 on which are mounted horizontal and vertical roller guides 170 and172.
  • a motor 169 operates reel 159 through appropriate gearing in gear reducer 171, chain 173, clutch and brake disk 177.
  • a parallel-wire strand may be reeled effectively if the strand is bound at intervals as described above with a resilient securing means which will stretch sufficiently to allow the strand to open up slightly as it is reeled, but insufficiently to allow the wires in the strand to become a loose bundle of wires, and, in addition, if the strand is rotated or allowed to rotate in alternate directions about its own axis through a range of approximately 270 as it is reeled.
  • the binding tape must have sufiicient strength so that it will not break as it confines the wires of the strand during reeling, and it must have a maximum stretch of not over about percent in order that it can permit the wires to open or spread sufficiently to adjust the strermen in the strand during reeling, without at the same time allowing the wires of the strand to become unduly disarranged. It is highly desirable for the tape to be resilient enough to return at least partially to its former length when tension is reduced.
  • a tape which has been found very suitable is a rayon-reinforced plastic tape wherein a rayon yarn or filament reinforcing is mounted in an acetate or polyester film matrix, and a rubber resin backing provides adhesion.
  • Tape of such description 2 or 3 inches wide and 0.010 inch thick may be wrapped three times around the strand to comprise each binding 128. Different widths or numbers of wraps may be used to provide whatever strength is required for the particular strand being fabricated depending upon the number of the wires comprising the strand.
  • the tape should also provide good abrasion resistance.
  • the following tables give examples of the important properties of the most suitable, and two unsuitable tapes for comparison.
  • Fabrication and reeling of the strand may be done as a continuous unitary operation if a hexagonal parallel-wire strand is formed in a hexagonal die, and then passed through a hexagonal dynamic clamp, as illustrated, to the reel.
  • the dynamic clamp effectively isolates the fabrication operation from the reeling operation so that the reeling of the strand does not adversely affect the fabrication. It is most satisfactory if this is done by means of a hexagonal dynamic clamp which is also a capstan such as a caterpullcr-type capstan as illustrated in FIGS. 8 and 9, or 10 and 11.
  • the effective isolation of the two operations is provided by the combined use of a hexagonal dynamic clamp with a hexagonal strand so that the wires of the strand are securely gripped and prevented from moving longitudinally relative to each other in the forming section of the apparatus due to the stresses incident to bending the strand on the reel.
  • the strand is allowed, or encouraged, to rotate about its own axis in alternating directions as may be seen in FIGS. 4 and 5, as it passes onto reel 159, where, as may be seen in FIG. 5, it is spooled alternately from side to side on the reel in as many layers as may be required.
  • the alternating strand rotation, and the resilience of the tape securing the strand relieve the distortions and stresses incident to reeling the strand and allow the strand to be reeled without damage.
  • the strand must not be hampered in commencing to rotate as it approaches the reel.
  • Unsuitable vinyl plastic tape 5 11 10052 lira 90. 6 23 136. 25 10 12% 10% 87. 0 22% 137. 5 15 15% 10% 86. 7 22V; 136. 25 20 19 45 11%; 1% 87.6 231: 25 23 123. 75
  • a satisfactory parallel-wire strand can be fabricated according to the present invention by first clamping the leading ends of the wires into a hexagonal strand shape by means of a suitable hexagonal clamp and then drawing the strand through the roller die 33 and the succeeding roller dies by means of a towing line attached to the clamp.
  • a socket may be attached to the end of the strand and the towing line attached thereto for drawing the strand forward.
  • any reeling operation be isolated in some manner from the forming operation so that the strand distortions and stresses incident to bending of the strand during reeling will turntables 11 upon which left-hand wound coils are mounted will tend to have a cast or natural curvature opening toward the left-hand side of the apparatus, as viewed in FIG. 3, while wires 21 derived from turntables 13 will have a cast or natural curvature opening towards the right-hand side of the apparatus as viewed in FIG. 3.
  • these curvatures are maintained in the same directions as the strand is fabricated, and the finished strand, therefore, has all the wires arranged in the strand with their natural casts or curvatures in the same direction with respect to each other as they are when on the turntables.
  • the cast of the wires is effectively balanced in the strand, so that the strand itself has no tendency to twist or coil.
  • the leading ends of the individual wires are first clamped together with their natural casts or curvatures arranged in the same directions as the wires are coiled on the turntables. This may be conveniently done by placing a right-angle bend in the end of each wire and securing it on a board or other flat surface by stapling, or otherwise, in the radial position which it is to maintain in the strand with respect to the other wires in order to maintain the natural curvatures of the wires in the desired opposing directions, and then attaching a portable clamp, or the dynamic clamp, around the strand a short distance away from the board. The board and the attached bent wire ends may then be severed from the end of the strand.
  • Full-strength-type socketing may be done by bending the end of the strand upwards, inserting the end in a moltenmetal-type socket, spreading the individual wires, and pouring in the appropriate molten metal. It will be realized that the wires must be securely clamped together behind the clamp be fore this can be done, in order that wires will not slip relative to one another during socketing. The socket may then be fastened to the reel in order to begin reeling. The Wires of the fabricated strand will then still be arranged with their natural casts evenly opposed or balanced, with the result that the strand will be found to be free from all tendency to twist and coil.
  • the wire coils on the turntables 11 and 13 be respectively lefthanded and right-handed coils so that the leading end of the wires leaves the coil from the top.
  • the strand must also be securely clamped or socketed at the terminal end so that in the completed strand the wires are securely held at both ends and the balance of wire casts is not lost.
  • the cast of the wires need not all be arranged in one of two directions as illustrated, nor need each wire be grouped together with all the other wires having a cast maintained in the same direction, so long as each wire having a cast maintained in one direction is substantially balanced by another strand wire having its cast maintained in the opposite direction.
  • the wires may be mixed together with casts opposing in two, three, or four or more directions.
  • the strand and method of formation as illustrated and described has been found very desirable and practical, however.
  • Prefabricated parallel-wire strandsmade in accordance with the present invention are extremely stable with negligible tendency to twist or curl, and when used for the construction of parallel-wire suspension bridge cables exhibit greater uniformity of individual wire lengths when suspended between the bridge towers than is normally attainable in strands spunin-place of the bridge.
  • a method of forming a parallel-wire strand according to claim 1 wherein e. the preceding portion of the strand is secured in a hexagonal clamping means whereby the individual wires are all firmly gripped by clamping pressure exerted on the sides of the strand, and f. the parallel-wire strand is drawn through a hexagonal roller die means to form a hexagonal strand.
  • 3. A method of fon'ning a parallel-wire strand according to claim 2 wherein g. substantially one-half of the wires are drawn from lefthanded wire coils on rotatable pay-off means rotating in one direction, A
  • a .method of forming parallel-wire strand according to claim 1 additionally comprising the improvementwhereby the strand can be continuously formed and reeled comprising:
  • a method of continuously forming and reeling parallelwire strand comprising:

Landscapes

  • Ropes Or Cables (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A stabilized parallel wire strand is made by drawing a plurality of wires through a forming die from a plurality of rotatable payoffs each of which is arranged to rotate in a direction opposite to at least one other pay-off while clamping the wires at their leading ends to prevent rotation of the wires about their axes and finally binding the wires together with a resilient binding at intervals along the length of the strand. After binding the strand can be immediately reeled by actively or passively rotating the strand periodically about its longitudinal axis in alternate clockwise and counterclockwise directions as it passes onto a reel.

Description

O United States Patent 1151 3,659,633 Durkee et al. 1 May 2, 1972 54] METHOD OF MAKING PARALLEL 334,709 1/1886 Kruesi et al ..57/1 WIRE STRAND 1.157500 10/1915 Brackerbohm, ...s7/110 1,664,231 3/1928 Thomas ..57/138 [72] Inventors: Jackson L. Durkee, Bethlehem; Arthur F. 114 13 12/1938 Howe et 3]" 57 1 0 Beighley, Williamspon. both of P 4 1,904,885 4 1933 Seeley .226/172 Donald Dunlap, deceased, late of 1,427,471 8/1922 Howe ..14/22 wursville Pan y y p. i 1,537,698 5/1925 Robinson ..14 22 istratrix 3,352,098 ll/l967 Gilmore 174/130 [73] Assignee. Bethlehem Steel Corporation Primary Emminer Loweu A. Larson [22] Filed: June 4, 1970 Attorney-Joseph J. OKeeffe [21] Appl. No.: 43,463 [57] ABSTRACT Relmed l p A stabilized parallel wire strand is made by drawing a plurality [74] Division ofser. NO. 575 O38 Aug. 25 I966 Pat No. of wires through a forrning die from a plurality of rotatable 3 570 pay-offs each of which is arranged to rotate in a chrection op- I posite to at least one other pay-off while clamping the wires at 52 us. c1 ..140/111, 14/22 29/419 heir leading ends Prevent 51 1111.01. ..B2ir 15/06 i f finally bindmg wires l 58 Field of Search ..140 2, 1 1 1- 29 419, 429; .bmdmg mervals alqng l h Strand:
14/22 161/175 57/139 165 mg the strand can be immediately reeled by acnvely or passively rotating the strand periodically about its longitudinal References Cited axis in alternate clockwise and counterclockwise directions as it passes onto a reel. UNITED STATES PATENTS 5 Claims, 11 Drawing Figures 3,025,656 3/1962 Cook ..57/34 Patented May 2, 1972 32 l? 41 4.9 504 'i'i i 4 Sheets-Shoot 'IIIII INVENTORS Jackson L. Our/fee (Dona/o E. Dun/0,0,) Deceased CROSS-REFERENCES TO RELATED APPLICATIONS This application is a division of US. application Ser. No. 575,038 filed Aug. 25, 1966, by the present inventors, now US. Pat. No. 3,526,570.
BACKGROUND OF THE INVENTION This invention relates to prefabricated parallel-wire strands, and more particularly to prefabricated parallel-wire structural strands with superior physical properties.
As used herein, the term structural strand refers to a multiwire strand used as a substantially fixed permanent structural member. The parallel-wire strand of the present invention has, however, been found particularly useful for building up larger parallel-wire structural cables such as are used for the main supporting cables of suspension bridges. This invention will therefore be described with respect to parallel-wire strand fabricated for use in the construction of suspension bridge main cables.
Parallel-wire cables are the primary type used for suspension bridges because of their superior strength and axial stiffness over cables made of helical-wire strand, which do not develop the unit ultimate strength or the modulus of elasticity of parallel-laid wires. It has been the practice to construct parallel-wire cables in suspension on the bridge by a process known as aerial spinning, that is by hauling individual loops of bridge wire back and forth over the bridge towers and connecting them to the anchorages. A number of such wires are bundled together to form a parallel-wire strand. A group of such parallel-wire strands are formed consecutively and then compacted together to form the parallel-wire suspension cable. Spinning of the parallel-wire strands in place on the bridge itself is slow and difficult, and, since it is done under field conditions at a great height, tends also to be dangerous. The length of each individual wire must be carefully adjusted immediately upon erection in order to provide a compact strand with minimum length differentials among the wires as they hang in a catenary across the bridge spans. Attempts have been made to prefabricate the parallel-wire strands on the ground at the bridge site, but these efforts have proven unsatisfactory for a variety of reasons. Such strands have often exhibited troublesome tendencies to twist and coil, because of the curvature or cast of the manufactured wire. In addition, it has been thought impossible to reel parallel-wire strand so as to make it conveniently transportable, because the maximumradius strand wires on the reel would presumably be greatly stretched and the minimum-radius wires correspondingly compressed when bent around the drum during reeling.
It is an object of the present invention therefore to provide a prefabricated parallel-wire strand having equal-length wires, and method of making the same, such that the strand is stabilized in such manner that it has a minimum tendency to twist and coil.
It is a further object of the present invention to provide a method of continuously reeling parallel-wire strand as it is fabricated, without harming the individual wires.
SUMMARY OF THE INVENTION We have discovered that the foregoing objects can be attained by forming a hexagonal parallel-wire strand in a hexagonal roller die using wires arranged with their casts opposed, pulling the strand through the die by means of a hexagonal clamping device, and securing the strand wires together by resilient binding means; and that such parallelwire strand can be effectively reeled with alternate rotation about the strand axis in opposite directions. We have further discovered that hexagonal parallel-wire strand can be continuously made and reeled by the use of a dynamic clamp, i.e. a continuously movable clamp, interposed between the forming dies and the reel.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a plan view of an arrangement according to the present invention for forming parallel-wire strand.
FIG. 2 shows a side elevation of the arrangement shown in FIG. 1.
FIG. 3 shows an isometric view of an initial portion of the apparatus.
FIG. 4 shows an elevation of the reeling portion of the apparatus.
FIG. 5 shows a plan view of the portion of the apparatus shown in FIG. 4.
FIG. 6 shows a cross section of one form of the strand of the present invention. 7
FIG. 7 is a cross-section through the parallel-wire strand in FIG. 3 at 77 showing one roller die.
FIG. 8 is a diagrammatic cross-section through one form of dynamic clamp.
FIG. 9 is a diagrammatic lateral view of the dynamic clamp of FIG. 8 showing supporting structure and one movable element particularly viewed along line 9-9 of FIG. 8.
FIG. 10 is an enlarged diagrammatic cross-sectional view of an alternate dynamic clamp arrangement. I
FIG. 11 is a diagrammatic elevation of the alternate dynamic clamp arrangement of FIG. 10.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring more particularly to the drawings, a series of turntables 11 and 13 are shown in FIGS. 1, 2 and 3. Each turntable is supported upon a suitable base 15 and is provided with braking means 17 frictionally engaged against drum 18 by any suitable motivating means such as pneumatic cylinder 20 calibrated to place uniform back tension on wire being unwound from the turntable. There may be 91 wires in a typical bridge strand and therefore 91 turntables. For convenience only a few of the turntables are shown; however, it is to be understood that the remainder would be arranged in the same manner. Turntables 11 have what may be termed left-handed coils of the wire mounted thereon and turntables 13 have what may be termed right-handed coils of wire mounted thereon. That is to say, the wire when it is drawn from the top of the turntable will rotate the turntable either clockwise or counterclockwise respectively. The wires pulled ofi from turntables 11 are indicated as a group as wires 19, while the wires pulled off from turntables 13 are indicated as a group as wires 21. Wires 19 are pulled through fairleads 23 and wires 21 are pulled through fairleads 25, except for the wire from the last, or end, turntable in each group, to lay plates 27 and 29, respectively. The wire from the last turntable of each group passes directly to the lay plate. As may be seen more clearly from FIG. 3, lay plate 27 has guide holes in it delineating the left half of a hexagonal pattern and lay plate 29 has guide holes in it delineating the right half of a hexagonal pattern. After passing through the lay plates 27 and 29, the groups of wires 19 and 21 pass through the guide holes in combined lay plate 31 whose guide holes delineate the hexagonal shape of the final strand. There are 9] guide holes in lay plate 31 for a 9l-wire strand. It will be noted that all the wires which pass from turntables 11 through lay plate 27 pass through the left half of the hexagonal configuration of guide holes in lay plate 31, and that all the wires from turntables 13 which pass through lay plate 29 pass through the right half of the hexagonal configuration of guide holes in lay plate 31.
From lay plate 31 the wires are conducted to a small hexagonal lay plate 32 which directs them into a first roller die 33. As shown in FIG. 7, roller die 33 comprises a base 34, and a support ring 35 in which are resiliently mounted six freelyrotatable rollers 37 alternately displaced into two radial rings each comprised of three rollers 37 so that the roller journals 39 do not interfere with each other, and arranged to delineate a hexagonal die opening. In FIG. 7 one radial ring of rollers 37 is shown in dotted outline where it is partially obscured by the second radial ring of rollers. Rollers 37 are resiliently urged by means of springs 43 attached to each roller mounting 45 against the wires passing therethrough to fonn a hexagonal strand 41.
From roller die 33 the hexagonal strand 41 passes through further hexagonal roller dies 47, 49, 50, and 51' which may be substantially identical in construction with roller die 33.
From roller die 51 the hexagonal strand passes to a hexagonal dynamic clamp 53, diagrammatically shown in cross section in FIG. 8, and having extended articulated means 55, 87, and 89 designed to cooperate as shown in FIG. 8 so as to place an equal clamping pressure on all sides of the strand. Dynamic clamp 53 may conveniently take the form of a socalled caterpuller-type capstan, or dynamic pulling clamp, having three meshing caterpuller-type tracks each clamping to two of the six flat surfaces of the hexagonal strand. Altemately if desired two dynamic clamps 135 and 137 can be used in tandem as shown diagrammatically in FIGS. 10 and 11. In the event two dynamic clamps 135 and 137 are used as shown in FIGS. 10 and 11, each need only have two articulated clamping surfaces 139 and 141, and 143 and 145 as shown in FIG. 10, which illustrates how the clamping surfaces of dynamic clamp 137 are turned at a 60 angle from those of dynamic clamp 135 in order to obtain full strand clamping action.
Dynamic clamp 53 serves to pull the wires from the turntables 11 and 13 through roller dies 33, 47, 49, 50 and 51. In order to pull the wires through the apparatus absolutely evenly it is important that a uniform grip be obtained on each wire of the strand. If one wire is not gripped as tightly as the others this wire may lag behind and the resulting strand will not be composed of wires of equal length. It has been found necessary to use a hexagonal strand shape and pattern of wires such that the wires are in the minimum-void position within the strand. With this configuration, each wire has three lines of contact and clamping as illustrated in FIG. 6. This arrangement provides even clamping and effectively prevents any internal wires of the strand from lagging behind. At the same time roller dies 33, 47, 49, 50 and 51 prevent any external wires of the strand from lagging behind, such as might occur around the inner perimeter of a solid die as a result of friction of the wires against such die. It will thus be seen that the combined use of a hexagonal strand clamping means and a hexagonal roller die with a hexagonal strand, enables the fabrication of parallel-wire strands wherein the wires are equally stressed during manufacture of the strand and therefore precisely equal in length. It is not essential that the hexagonal strand be equilateral as an extra layer of wires may be added to any flat of the hexagon in order to make up a strand of varying numbers of wires. It is necessary, however, that the closely-packed hexagonal structure be maintained as has been explained heretofore.
Dynamic clamp 53, which as illustrated in FIGS. 8 and 9 comprises one suitable form of clamping structure, is comprised of endless articulated clamping surfaces 55, 87 and 89, rotatable upon cog wheels 57 and 59, and driven by means of drive shaft 61, and, in the case of articulated clamping surface 55, meshing bevel gears 63 and 65 which rotate shaft 67 upon which is mounted sprocket wheel 57. Drive shaft 61 is driven through chain 69 by combined motor and gear reducer 71. Gears 73, 75 and 77 serve to rotate shafts 79 and 81 which in turn rotate shafts 83 and 85 upon which are mounted supporting sprocket wheels similar to sprocket wheel 57, and upon which the other two opposing articulated clamping surfaces 87 and 89, shown in partial section in FIG. 8, are rotated. Rollers 91 are journaled on link connecting pins 93 between track links 95 and 97. It will be noted in FIG. 9 that extensions 99 on each alternate link 97 overlap similar extensions 101, shown in dotted outline, on each adjacent link 95 to enable pins 93 to connect and articulate the links. Sprocket wheels 57 and 59 with their shafts are journaled in supporting plates 103 and 105 secured to end plates 107 and 109 by brackets 104. Also mounted between supporting plates 103 and 105 is an outer track element 111 upon which rollers 91 travel. Brackets 113 and 115 are mounted on the outside of supporting plates 103 and 105. Shafts 117 pass through brackets 113 and 115 in sliding relationship therewith to support two movable inner track elements 119 and 121 which are urged inwardly by springs 123 against links 95 and 97 as they pass along the parallel-wire strand 41 to urge the clamping faces of the links 95 and 97 against the parallel-wire strand as shown in FIG. 8. Nuts 125 on shafts 117 prevent tracks 119 and 121 from being forced inwardly too far. An upper section 1270f end plates 107 and 109 may be arranged to separate along line 129 so that one whole track assembly may be thrown back to facilitate threading of the parallel-wire strand through the clamp. If desired, hydraulic means may be used in place of, or in addition to, springs 123 to urge the tracks and clamping links 95 and 97 against the strand 41, and, in this case, the strand may be threaded by opening the tracks by the operation of the hydraulic means sufficiently to allow threading to take place. If a mechanical sleeve splice on a wire passes through the dynamic clamp, first track element 119, and then track element 121 will lift to allow the splice to pass through. It will be seen that while one track is lifted the other will provide effcient clamping action so that the internal wires in the strand will not slip with respect to each other.
In the event two dynamic clamps are used as shown in FIGS. 10 and 11, each clamp may have only one pair of articulated clamping surfaces. The articulated clamping surfaces 143 and 145 of dynamic clamp 137 are turned at a 60-degree angle with respect to articulated clamping surfaces 139 and 141 of dynamic clamp as illustrated in FIG. 10. Articulated clamping surfaces 139, 141, 143 and 145 are composed of connected track links 147 and 149 comparable to track links 95 and 97 of dynamic clamp 53 except that each track link carries three clamping faces engaging three sides of the hexagonal strand rather than two clamping faces as in the construction of dynamic clamp 53. Other than this, the construction of the two articulated clamping surfaces of dynamic clamps 135 and 137 are substantially the same as that of threetrack dynamic clamp 53 and the same part numbers have been used where applicable in the FIGURES.
As the parallel-wire strand is drawn through the roller dies it is bound at intervals with a securing material 128 at binding stations located between the roller dies. This may be done by stopping the strand every few feet and applying suitable tape manually at points between adjacent roller dies, or alternatively a suitable mechanical traveling taping device may be used to tape the strand while the strand is moving. When a mechanical taping device is used it will be possible to use fewer roller dies. If manual taping is done it may be desired to increase the number of roller dies in order to increase the number of taping stations. Suitable variations will occur to those skilled in the art. Normally taping the strand at 3-foot intervals will be found effective in maintaining the strand wires in a compact cross-sectional shape during subsequent strand evolutions such as reeling and erection.
After the strand is drawn through dynamic clamp 53, firmly secured between the extended clamping surfaces 55, it is passed to take-up 157 where it is reeled onto a large-diameter reel 159. As the strand passes to reel 159 it is supported beyond dynamic clamp 53 by roller table 163 and then passes across traverse mechanism 161 which directs the strand onto reel 159 mounted on shaft which is journaled in bearings 162 in mounting 164, and prevented from rotating independently of shaft 160 by keepers 158. A motor 165 operates traverse 161 through suitable drive means, gear reducer 166, and chain 167 which moves traverse carriage 168 on which are mounted horizontal and vertical roller guides 170 and172. A motor 169 operates reel 159 through appropriate gearing in gear reducer 171, chain 173, clutch and brake disk 177.
It has always been considered impractical to reel parallelwire strand because the wires on the shorter inner circumference presumably could not be adjusted to the wires on the longer outer circumference of a reeled parallel-wire strand without inducing excessive stress in the individual wires. This is a particular disadvantage in a strand to be used in a bridge cable since the strand wires must be maintained precisely equal in length, and overstressing and kinking of wires would be intolerable. It has been discovered, however, that a parallel-wire strand may be reeled effectively if the strand is bound at intervals as described above with a resilient securing means which will stretch sufficiently to allow the strand to open up slightly as it is reeled, but insufficiently to allow the wires in the strand to become a loose bundle of wires, and, in addition, if the strand is rotated or allowed to rotate in alternate directions about its own axis through a range of approximately 270 as it is reeled. It is not necessary to actively rotate the strand, since effective, though somewhat uneven, rotation will be obtained by merely allowing the strand free rein to rotate of its own accord The binding tape must have sufiicient strength so that it will not break as it confines the wires of the strand during reeling, and it must have a maximum stretch of not over about percent in order that it can permit the wires to open or spread sufficiently to adjust the strermen in the strand during reeling, without at the same time allowing the wires of the strand to become unduly disarranged. It is highly desirable for the tape to be resilient enough to return at least partially to its former length when tension is reduced. A tape which has been found very suitable is a rayon-reinforced plastic tape wherein a rayon yarn or filament reinforcing is mounted in an acetate or polyester film matrix, and a rubber resin backing provides adhesion. Tape of such description 2 or 3 inches wide and 0.010 inch thick may be wrapped three times around the strand to comprise each binding 128. Different widths or numbers of wraps may be used to provide whatever strength is required for the particular strand being fabricated depending upon the number of the wires comprising the strand. The tape should also provide good abrasion resistance. The following tables give examples of the important properties of the most suitable, and two unsuitable tapes for comparison.
have no disturbing effect on the wires at the forming die. Such isolation may be attained if the reeling operation is separated from the die by an appropriate distance sufficient to effectively separate the two operations. Alternatively, die forming and reeling can be done in separate operations. It will readily be understood that this is inconvenient, particularly if the two separate operations are resorted to and the strands are very long.
Fabrication and reeling of the strand, however, may be done as a continuous unitary operation if a hexagonal parallel-wire strand is formed in a hexagonal die, and then passed through a hexagonal dynamic clamp, as illustrated, to the reel. The dynamic clamp effectively isolates the fabrication operation from the reeling operation so that the reeling of the strand does not adversely affect the fabrication. It is most satisfactory if this is done by means of a hexagonal dynamic clamp which is also a capstan such as a caterpullcr-type capstan as illustrated in FIGS. 8 and 9, or 10 and 11. The effective isolation of the two operations is provided by the combined use of a hexagonal dynamic clamp with a hexagonal strand so that the wires of the strand are securely gripped and prevented from moving longitudinally relative to each other in the forming section of the apparatus due to the stresses incident to bending the strand on the reel.
As the parallel-wire strand leaves the clamping surfaces of dynamic clamp 53 or dynamic clamps and 137, the strand is allowed, or encouraged, to rotate about its own axis in alternating directions as may be seen in FIGS. 4 and 5, as it passes onto reel 159, where, as may be seen in FIG. 5, it is spooled alternately from side to side on the reel in as many layers as may be required. The alternating strand rotation, and the resilience of the tape securing the strand, relieve the distortions and stresses incident to reeling the strand and allow the strand to be reeled without damage. The strand must not be hampered in commencing to rotate as it approaches the reel.
It will be seen in FIGS. 1, 2 and 3 that wires 19 derived from Length at Test return Percent sample Load, Length at to no Perm Percent Load at stretch at no. lb. load, in. load, in. set, in. return break, lb. break Suitable rayon-reinforced acetate tape 25 10% 10 0 100 5 50 10A 10 0 100 6. 25 '75 10% 10%: is: so 6. 50 100 10% 10%2 552 58. 2 177% 7. 18 125 10 146 10% /5 45. 4 7. 88 150 10% 10 %2 39. 3 180 6. 25 1'75 Il is 10 115 1 As 29. 4 179 G. 25
Unsuitable glass-filament reinforced acetate tape 50 10%|; 10 0 100 395 5. 63 100 10% 10 2 ,6 75 394 4. 38 150 10% 10A: 32 75 390 4 38 200 10%; 10 0 100 388 250 1092i? 10 0 100 391 3. 75 300 10% u 10 0 100 397 3. 75 350 10113 10 0 100 398 3. 75 4 00 385 3. 75
Unsuitable vinyl plastic tape 5 11 10052 lira 90. 6 23 136. 25 10 12% 10% 87. 0 22% 137. 5 15 15% 10% 86. 7 22V; 136. 25 20 19 45 11%; 1% 87.6 231: 25 23 123. 75
A satisfactory parallel-wire strand can be fabricated according to the present invention by first clamping the leading ends of the wires into a hexagonal strand shape by means of a suitable hexagonal clamp and then drawing the strand through the roller die 33 and the succeeding roller dies by means of a towing line attached to the clamp. Alternatively, a socket may be attached to the end of the strand and the towing line attached thereto for drawing the strand forward.
Because of the longitudinal stresses occasioned in the individual wires of the strand by reeling, however, it is necessary that any reeling operation be isolated in some manner from the forming operation so that the strand distortions and stresses incident to bending of the strand during reeling will turntables 11 upon which left-hand wound coils are mounted will tend to have a cast or natural curvature opening toward the left-hand side of the apparatus, as viewed in FIG. 3, while wires 21 derived from turntables 13 will have a cast or natural curvature opening towards the right-hand side of the apparatus as viewed in FIG. 3. In the present invention these curvatures are maintained in the same directions as the strand is fabricated, and the finished strand, therefore, has all the wires arranged in the strand with their natural casts or curvatures in the same direction with respect to each other as they are when on the turntables. As a result, the cast of the wires is effectively balanced in the strand, so that the strand itself has no tendency to twist or coil.
When beginning the formation of the strand the leading ends of the individual wires are first clamped together with their natural casts or curvatures arranged in the same directions as the wires are coiled on the turntables. This may be conveniently done by placing a right-angle bend in the end of each wire and securing it on a board or other flat surface by stapling, or otherwise, in the radial position which it is to maintain in the strand with respect to the other wires in order to maintain the natural curvatures of the wires in the desired opposing directions, and then attaching a portable clamp, or the dynamic clamp, around the strand a short distance away from the board. The board and the attached bent wire ends may then be severed from the end of the strand.
Full-strength-type socketing may be done by bending the end of the strand upwards, inserting the end in a moltenmetal-type socket, spreading the individual wires, and pouring in the appropriate molten metal. It will be realized that the wires must be securely clamped together behind the clamp be fore this can be done, in order that wires will not slip relative to one another during socketing. The socket may then be fastened to the reel in order to begin reeling. The Wires of the fabricated strand will then still be arranged with their natural casts evenly opposed or balanced, with the result that the strand will be found to be free from all tendency to twist and coil. In order to unreel the wire efficiently it is desirable that the wire coils on the turntables 11 and 13 be respectively lefthanded and right-handed coils so that the leading end of the wires leaves the coil from the top. When the length of strand whichit is desired to make has been completed the strand must also be securely clamped or socketed at the terminal end so that in the completed strand the wires are securely held at both ends and the balance of wire casts is not lost.
The cast of the wires need not all be arranged in one of two directions as illustrated, nor need each wire be grouped together with all the other wires having a cast maintained in the same direction, so long as each wire having a cast maintained in one direction is substantially balanced by another strand wire having its cast maintained in the opposite direction. For instance, the wires may be mixed together with casts opposing in two, three, or four or more directions. The strand and method of formation as illustrated and described has been found very desirable and practical, however.
If the precise, even lengths of the individual wires in the strand are not so critical for a particular application as they are for the usual structural strand such as bridge suspension strand, and/or the strand does not need to be reeled, it is not necessary that a hexagonal strand be formed or that roller dies and a hexagonal clamp be used in order to form a stabilized parallel-wire strand according to the present invention, as the pairing of the natural curvatures of the individual wires in the strand may also effectively be made in a round or other configuration of strand where such strand may be desirable for a particular purpose.
Prefabricated parallel-wire strandsmade in accordance with the present invention are extremely stable with negligible tendency to twist or curl, and when used for the construction of parallel-wire suspension bridge cables exhibit greater uniformity of individual wire lengths when suspended between the bridge towers than is normally attainable in strands spunin-place of the bridge.
a. drawing a plurality of wires from a plurality of rotatable pay-off means, substantially each one of which is arranged to rotate in a direction opposite to at least one other pay-off means,
. through a forming-die means,
. while finnly securing a preceding portion of the strand to maintain the wires in the same relationship as their respective pay-ofi means with the natural curvature of substantially each wire being opposed to the natural curvature of another wire, and
d. binding the strand at intervals to maintain its integrity. 2. A method of forming a parallel-wire strand according to claim 1 wherein e. the preceding portion of the strand is secured in a hexagonal clamping means whereby the individual wires are all firmly gripped by clamping pressure exerted on the sides of the strand, and f. the parallel-wire strand is drawn through a hexagonal roller die means to form a hexagonal strand. 3. A method of fon'ning a parallel-wire strand according to claim 2 wherein g. substantially one-half of the wires are drawn from lefthanded wire coils on rotatable pay-off means rotating in one direction, A
h. The remainder of the wires are drawn from right-handed wire coils on rotatable pay-off means rotating in the opposite direction,
i. the wires from the left-handed coils are conductedtogether through fairleads and lay-plates to one-half of the hexagonal roller-die forming means, and j. the wires from the right-handed coils are conducted together through fairleads and lay-plates to the other half of the hexagonal roller-die forming means. 4. A .method of forming parallel-wire strand according to claim 1 additionally comprising the improvementwhereby the strand can be continuously formed and reeled comprising:
e. drawing the strand through a hexagonal die means by the action of a dynamic clamp which both draws the strand and effectively clamps the strand subsequent to its formation in the die means,
f. binding the strand with strong, resilient binding means to maintain its integrity,
g. reeling the strand onto a large-diameter reel subsequent to passing through the dynamic clamp, and
h. facilitating alternate rotation of the strand about its own axis between the dynamic clamp and the reel, and on the reel, whereby the distortions and stresses of bending the parallel-wire strand are rendered harmless as the strand is reeled.
5. A method of continuously forming and reeling parallelwire strand comprising:
a. drawing a plurality of wires through a hexagonal die forming means to form a hexagonal strand,
b. binding the strand at intervals with strong, resilient binding material to maintain its integrity after it passes through said die forming means,
c. drawing said hexagonal strand through a dynamic hexagonal clamp means beyond the die forming means,
d. reeling the strand upon a large-diameter reel beyond the dynamic clamp means, and
e. facilitating alternate rotation of the strand about its own axis between the dynamic clamp and the reel, and on the reel, whereby the distortions and stresses of bending the parallel-wire strand are rendered harmless as the strand is reeled.

Claims (5)

1. A method of forming a parallel-wire strand comprising: a. drawing a plurality of wires from a plurality of rotatable pay-off means, substantially each one of which is arranged to rotate in a direction opposite to at least one other pay-off means, b. through a forming-die means, c. while firmly securing a preceding portion of the strand to maintain the wires in the same relationship as their respective pay-off means with the natural curvature of substantially each wire being opposed to the natural curvature oF another wire, and d. binding the strand at intervals to maintain its integrity.
2. A method of forming a parallel-wire strand according to claim 1 wherein e. the preceding portion of the strand is secured in a hexagonal clamping means whereby the individual wires are all firmly gripped by clamping pressure exerted on the sides of the strand, and f. the parallel-wire strand is drawn through a hexagonal roller die means to form a hexagonal strand.
3. A method of forming a parallel-wire strand according to claim 2 wherein g. substantially one-half of the wires are drawn from left-handed wire coils on rotatable pay-off means rotating in one direction, h. The remainder of the wires are drawn from right-handed wire coils on rotatable pay-off means rotating in the opposite direction, i. the wires from the left-handed coils are conducted together through fairleads and lay-plates to one-half of the hexagonal roller-die forming means, and j. the wires from the right-handed coils are conducted together through fairleads and lay-plates to the other half of the hexagonal roller-die forming means.
4. A method of forming parallel-wire strand according to claim 1 additionally comprising the improvement whereby the strand can be continuously formed and reeled comprising: e. drawing the strand through a hexagonal die means by the action of a dynamic clamp which both draws the strand and effectively clamps the strand subsequent to its formation in the die means, f. binding the strand with strong, resilient binding means to maintain its integrity, g. reeling the strand onto a large-diameter reel subsequent to passing through the dynamic clamp, and h. facilitating alternate rotation of the strand about its own axis between the dynamic clamp and the reel, and on the reel, whereby the distortions and stresses of bending the parallel-wire strand are rendered harmless as the strand is reeled.
5. A method of continuously forming and reeling parallel-wire strand comprising: a. drawing a plurality of wires through a hexagonal die forming means to form a hexagonal strand, b. binding the strand at intervals with strong, resilient binding material to maintain its integrity after it passes through said die forming means, c. drawing said hexagonal strand through a dynamic hexagonal clamp means beyond the die forming means, d. reeling the strand upon a large-diameter reel beyond the dynamic clamp means, and e. facilitating alternate rotation of the strand about its own axis between the dynamic clamp and the reel, and on the reel, whereby the distortions and stresses of bending the parallel-wire strand are rendered harmless as the strand is reeled.
US43463A 1966-08-25 1970-06-04 Method of making parallel wire strand Expired - Lifetime US3659633A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57503866A 1966-08-25 1966-08-25
US4346370A 1970-06-04 1970-06-04
US00043464A US3855777A (en) 1966-08-25 1970-06-04 Reel of alternately rotated parallel-wire strand and method of making

Publications (1)

Publication Number Publication Date
US3659633A true US3659633A (en) 1972-05-02

Family

ID=27366335

Family Applications (1)

Application Number Title Priority Date Filing Date
US43463A Expired - Lifetime US3659633A (en) 1966-08-25 1970-06-04 Method of making parallel wire strand

Country Status (2)

Country Link
US (1) US3659633A (en)
GB (1) GB1193354A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919762A (en) * 1972-08-05 1975-11-18 Wolfgang Borelly Process for the manufacture of parallel wire strands for bridges and the like by winding and unwinding
US4117582A (en) * 1972-08-05 1978-10-03 Wolfgang Borelly Apparatus for producing parallel wire strands for bridges and the like by winding and unwinding strand of large cross-section and for simultaneously applying corrosion protection thereto
WO1994021860A1 (en) * 1993-03-24 1994-09-29 John Cunningham Method for supporting a transportation surface
US5573852A (en) * 1989-04-12 1996-11-12 Vorspann-Technik Gesellschaft M.B.H. Tensioning bundles comprising a plurality of tensioning members such as stranded wires, rods or single wires
US6560807B1 (en) * 1999-09-15 2003-05-13 Freyssinet International (Stup) Cable with parallel wires for building work structure, anchoring for said cable, and anchoring method
US20080250631A1 (en) * 2007-04-14 2008-10-16 Buckley David L Method and device for handling elongate strength members
WO2012142004A3 (en) * 2011-04-12 2013-04-04 Lambert Walter L Parallel wire cable
US8464497B2 (en) 2011-07-13 2013-06-18 Ultimate Strength Cable, LLC Stay cable for structures
WO2015123620A1 (en) * 2014-02-14 2015-08-20 The Trustees Of Columbia University In The City Of New York High-strength wires for uniform and hybrid structural cables
WO2018076417A1 (en) * 2016-10-28 2018-05-03 吴江市晓昱喷气织造有限公司 Doubling device
CN111112353A (en) * 2019-12-16 2020-05-08 天地科技股份有限公司 Steel strand and manufacturing method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2345389A1 (en) * 1976-03-23 1977-10-21 Havre Chantiers Puller head for handling and laying pipes - has three interconnected powered tracked units equally spaced around pipe circumference
FR2508426A1 (en) * 1981-06-30 1982-12-31 Lignes Telegraph Telephon Guide for die cutting of optical fibre support cylinder - has crawler tracks contg. ridges pressed against cylindrical rod passing through dies to cut grooves for receiving optical fibres
GB8333845D0 (en) * 1983-12-20 1984-02-01 British Ropes Ltd Flexible tension members
GB2333648A (en) * 1998-01-23 1999-07-28 Colin Freeman Perforated guide plate for bundling cables

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US334709A (en) * 1886-01-19 Oooooo oooo
US1157500A (en) * 1913-07-22 1915-10-19 Franz Braeckerbohm Apparatus for making cables.
US1427471A (en) * 1921-10-06 1922-08-29 American Steel & Wire Co Suspension-bridge cable
US1537698A (en) * 1924-10-15 1925-05-12 Holton D Robinson Laying of and seizing for suspension-bridge cables
US1664231A (en) * 1924-10-06 1928-03-27 Westinghouse Electric & Mfg Co Method of and means of producing cables
US1904885A (en) * 1930-06-13 1933-04-18 Western Electric Co Capstan
US2141138A (en) * 1936-10-26 1938-12-20 American Steel & Wire Co Bridge cable strand
US3025656A (en) * 1957-07-17 1962-03-20 Cook Foundation Inc Method and apparatus for making communication cable
US3352098A (en) * 1964-12-23 1967-11-14 American Chain & Cable Co Multi-element wire line having compacted strands

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US334709A (en) * 1886-01-19 Oooooo oooo
US1157500A (en) * 1913-07-22 1915-10-19 Franz Braeckerbohm Apparatus for making cables.
US1427471A (en) * 1921-10-06 1922-08-29 American Steel & Wire Co Suspension-bridge cable
US1664231A (en) * 1924-10-06 1928-03-27 Westinghouse Electric & Mfg Co Method of and means of producing cables
US1537698A (en) * 1924-10-15 1925-05-12 Holton D Robinson Laying of and seizing for suspension-bridge cables
US1904885A (en) * 1930-06-13 1933-04-18 Western Electric Co Capstan
US2141138A (en) * 1936-10-26 1938-12-20 American Steel & Wire Co Bridge cable strand
US3025656A (en) * 1957-07-17 1962-03-20 Cook Foundation Inc Method and apparatus for making communication cable
US3352098A (en) * 1964-12-23 1967-11-14 American Chain & Cable Co Multi-element wire line having compacted strands

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919762A (en) * 1972-08-05 1975-11-18 Wolfgang Borelly Process for the manufacture of parallel wire strands for bridges and the like by winding and unwinding
US4117582A (en) * 1972-08-05 1978-10-03 Wolfgang Borelly Apparatus for producing parallel wire strands for bridges and the like by winding and unwinding strand of large cross-section and for simultaneously applying corrosion protection thereto
US5573852A (en) * 1989-04-12 1996-11-12 Vorspann-Technik Gesellschaft M.B.H. Tensioning bundles comprising a plurality of tensioning members such as stranded wires, rods or single wires
WO1994021860A1 (en) * 1993-03-24 1994-09-29 John Cunningham Method for supporting a transportation surface
US5400454A (en) * 1993-03-24 1995-03-28 Cunningham; John Method for supporting a transportation surface
US6560807B1 (en) * 1999-09-15 2003-05-13 Freyssinet International (Stup) Cable with parallel wires for building work structure, anchoring for said cable, and anchoring method
US6658684B2 (en) 1999-09-15 2003-12-09 Freyssinet International (Stup) Cable with parallel wires for building work structure, anchoring for said cable and anchoring method
US20080250631A1 (en) * 2007-04-14 2008-10-16 Buckley David L Method and device for handling elongate strength members
US7891070B2 (en) 2007-04-14 2011-02-22 Air Logistics Corporation Method for handling elongate strength members
US20190313793A1 (en) * 2011-04-12 2019-10-17 Ultimate Strength Cable, LLC Transportation of Parallel Wire Cable
US10376051B2 (en) 2011-04-12 2019-08-13 Ultimate Strength Cable, LLC Transportation of parallel wire cable
US11287065B2 (en) 2011-04-12 2022-03-29 Ultimate Strength Cable, LLC Manufacturing of parallel wire cable
US20140301863A1 (en) * 2011-04-12 2014-10-09 Ultimate Strength Cable, LLC Stay Cable for Structures
US11187352B2 (en) 2011-04-12 2021-11-30 Ultimate Strength Cable, LLC Parallel wire cable
US10962145B2 (en) * 2011-04-12 2021-03-30 Ultimate Strength Cable, LLC Transportation of parallel wire cable
US9458642B2 (en) * 2011-04-12 2016-10-04 Ultimate Strength Cable, LLC Stay cables for structures
US9743764B2 (en) 2011-04-12 2017-08-29 Ultimate Strength Cable, LLC Transportation of parallel wire cable
US10955069B2 (en) 2011-04-12 2021-03-23 Ultimate Strength Cable, LLC Parallel wire cable
US10149536B2 (en) 2011-04-12 2018-12-11 Ultimate Strength Cable, LLC Transportation of Parallel wire cable
US10278493B2 (en) 2011-04-12 2019-05-07 Ultimate Strength Cable, LLC Parallel wire cable
US10758041B2 (en) 2011-04-12 2020-09-01 Ultimate Strength Cable, LLC Parallel wire cable
WO2012142004A3 (en) * 2011-04-12 2013-04-04 Lambert Walter L Parallel wire cable
US10508644B2 (en) 2011-04-12 2019-12-17 Ultimate Strength Cable, LLC Stay cable for structures
US8464497B2 (en) 2011-07-13 2013-06-18 Ultimate Strength Cable, LLC Stay cable for structures
EP2732156A4 (en) * 2011-07-13 2015-03-18 Walter L Lambert CABLE FOR STRUCTURES
US8474219B2 (en) 2011-07-13 2013-07-02 Ultimate Strength Cable, LLC Stay cable for structures
US11319723B2 (en) 2011-07-13 2022-05-03 Ultimate Strength Cable, LLC Stay cable for structures
WO2015123620A1 (en) * 2014-02-14 2015-08-20 The Trustees Of Columbia University In The City Of New York High-strength wires for uniform and hybrid structural cables
WO2018076417A1 (en) * 2016-10-28 2018-05-03 吴江市晓昱喷气织造有限公司 Doubling device
CN111112353A (en) * 2019-12-16 2020-05-08 天地科技股份有限公司 Steel strand and manufacturing method and application thereof
CN111112353B (en) * 2019-12-16 2021-10-01 天地科技股份有限公司 Steel strand and manufacturing method and application thereof

Also Published As

Publication number Publication date
GB1193354A (en) 1970-05-28

Similar Documents

Publication Publication Date Title
US3526570A (en) Parallel wire strand
US3659633A (en) Method of making parallel wire strand
US2639097A (en) Coil winding
US3396522A (en) Stranding machine
CN112813712B (en) Method and device for making rope by using micro steel wire
US4212151A (en) Manufacture of compacted strand
US4195469A (en) Method and device for producing metallic cords
US4448015A (en) Winding method and apparatus
US1937918A (en) Apparatus for winding tape or the like
EP0199461A2 (en) Manufacture of elongate members such as strand and rope
US3845913A (en) Method and apparatus for winding wire
US3586226A (en) Pulling system for parallel-wire strand
US4619107A (en) Wheel for drawing helical groove ring for optical fibers
EP0134140B1 (en) Method and equipment for making wire strands
US5390481A (en) Carousel assembly of helical tube bundles
IL24788A (en) Manufacture of wire strands
US2319827A (en) Means for manufacturing wire rope and the like
US3545194A (en) Reeling preassembled parallel wire strands for bridges and other structural applications
US3805852A (en) Assemblies and method for making cable beads
US3724768A (en) Method of making wrapped tubular concrete
US3531811A (en) Method for erecting parallel-wire bridge strand
US2445365A (en) Wire rope and method of manufacturing the same
JPH0145412B2 (en)
GB1576339A (en) Manufacture of elongate optical fibre waveguide structures
SU540951A1 (en) Cable car