US3640716A - Method of preventing color mixing in multilayer-type reversal color photographic light-sensitive materials - Google Patents
Method of preventing color mixing in multilayer-type reversal color photographic light-sensitive materials Download PDFInfo
- Publication number
- US3640716A US3640716A US826283A US3640716DA US3640716A US 3640716 A US3640716 A US 3640716A US 826283 A US826283 A US 826283A US 3640716D A US3640716D A US 3640716DA US 3640716 A US3640716 A US 3640716A
- Authority
- US
- United States
- Prior art keywords
- group
- coupler
- color
- sensitive
- emulsion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 title claims abstract description 35
- 239000000839 emulsion Substances 0.000 claims abstract description 117
- 125000003118 aryl group Chemical group 0.000 claims abstract description 25
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 20
- 125000003107 substituted aryl group Chemical group 0.000 claims abstract description 20
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 11
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 10
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims abstract description 10
- -1 silver halide Chemical class 0.000 claims description 66
- 229910052709 silver Inorganic materials 0.000 claims description 29
- 239000004332 silver Substances 0.000 claims description 29
- 230000002265 prevention Effects 0.000 claims description 19
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 claims description 7
- 229960001413 acetanilide Drugs 0.000 claims description 5
- FZERHIULMFGESH-UHFFFAOYSA-N N-phenylacetamide Chemical compound CC(=O)NC1=CC=CC=C1 FZERHIULMFGESH-UHFFFAOYSA-N 0.000 claims description 4
- HVLJEMXDXOTWLV-UHFFFAOYSA-N 2,4-dichloronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=C(Cl)C=C(Cl)C2=C1 HVLJEMXDXOTWLV-UHFFFAOYSA-N 0.000 claims description 3
- XRZDIHADHZSFBB-UHFFFAOYSA-N 3-oxo-n,3-diphenylpropanamide Chemical compound C=1C=CC=CC=1NC(=O)CC(=O)C1=CC=CC=C1 XRZDIHADHZSFBB-UHFFFAOYSA-N 0.000 claims description 3
- ACRWYXSKEHUQDB-UHFFFAOYSA-N 3-phenylpropionitrile Chemical compound N#CCCC1=CC=CC=C1 ACRWYXSKEHUQDB-UHFFFAOYSA-N 0.000 claims description 3
- QNGVNLMMEQUVQK-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine Chemical compound CCN(CC)C1=CC=C(N)C=C1 QNGVNLMMEQUVQK-UHFFFAOYSA-N 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- WONRDHPFOHAWOG-UHFFFAOYSA-N 2-chloronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=C(Cl)C=CC2=C1 WONRDHPFOHAWOG-UHFFFAOYSA-N 0.000 claims description 2
- KLQGUDRPUJLEEG-UHFFFAOYSA-N 3-(1-benzofuran-2-yl)propanenitrile Chemical compound C1=CC=C2OC(CCC#N)=CC2=C1 KLQGUDRPUJLEEG-UHFFFAOYSA-N 0.000 claims description 2
- NNGHWPIQPQHOKQ-UHFFFAOYSA-N 3-nitro-n-(5-oxo-1-phenyl-4h-pyrazol-3-yl)benzamide Chemical compound [O-][N+](=O)C1=CC=CC(C(=O)NC=2CC(=O)N(N=2)C=2C=CC=CC=2)=C1 NNGHWPIQPQHOKQ-UHFFFAOYSA-N 0.000 claims description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical group NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims 1
- QJLWSUZFWHSXJQ-UHFFFAOYSA-N 4-chloro-n-(5-oxo-1-phenyl-4h-pyrazol-3-yl)benzamide Chemical compound C1=CC(Cl)=CC=C1C(=O)NC1=NN(C=2C=CC=CC=2)C(=O)C1 QJLWSUZFWHSXJQ-UHFFFAOYSA-N 0.000 claims 1
- NTDRZJLMIOFNLK-UHFFFAOYSA-N 5-(4-nitroanilino)-2-(2,4,6-trichlorophenyl)-4h-pyrazol-3-one Chemical compound C1=CC([N+](=O)[O-])=CC=C1NC1=NN(C=2C(=CC(Cl)=CC=2Cl)Cl)C(=O)C1 NTDRZJLMIOFNLK-UHFFFAOYSA-N 0.000 claims 1
- QELUYTUMUWHWMC-UHFFFAOYSA-N edaravone Chemical compound O=C1CC(C)=NN1C1=CC=CC=C1 QELUYTUMUWHWMC-UHFFFAOYSA-N 0.000 claims 1
- HNLJTZUJURZMTN-UHFFFAOYSA-N n-[2-(2-acetamidophenyl)ethyl]-1-hydroxynaphthalene-2-carboxamide Chemical compound CC(=O)NC1=CC=CC=C1CCNC(=O)C1=CC=C(C=CC=C2)C2=C1O HNLJTZUJURZMTN-UHFFFAOYSA-N 0.000 claims 1
- HORJKCKUVGBYPK-UHFFFAOYSA-N n-butyl-1-hydroxynaphthalene-2-carboxamide Chemical compound C1=CC=CC2=C(O)C(C(=O)NCCCC)=CC=C21 HORJKCKUVGBYPK-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 238000011161 development Methods 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000975 dye Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 6
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 6
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000001043 yellow dye Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 235000010265 sodium sulphite Nutrition 0.000 description 3
- 125000004201 2,4-dichlorophenyl group Chemical group [H]C1=C([H])C(*)=C(Cl)C([H])=C1Cl 0.000 description 2
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 2
- 125000004204 2-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- 150000003931 anilides Chemical class 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 2
- 229940116357 potassium thiocyanate Drugs 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000001174 sulfone group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- 125000006276 2-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C(*)C([H])=C1[H] 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- XTBFKMDOQMQYPP-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine;hydron;chloride Chemical compound Cl.CCN(CC)C1=CC=C(N)C=C1 XTBFKMDOQMQYPP-UHFFFAOYSA-N 0.000 description 1
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 101100439240 Medicago sativa CHI1 gene Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 101100495510 Nicotiana tabacum CHI gene Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000098700 Sarcocheilichthys parvus Species 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 241000695776 Thorichthys aureus Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- MPLZNPZPPXERDA-UHFFFAOYSA-N [4-(diethylamino)-2-methylphenyl]azanium;chloride Chemical compound [Cl-].CC[NH+](CC)C1=CC=C(N)C(C)=C1 MPLZNPZPPXERDA-UHFFFAOYSA-N 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- HTKFORQRBXIQHD-UHFFFAOYSA-N allylthiourea Chemical compound NC(=S)NCC=C HTKFORQRBXIQHD-UHFFFAOYSA-N 0.000 description 1
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- FTYSHTGKLFLKRX-UHFFFAOYSA-N n-(2-methoxyphenyl)-3-oxo-3-phenylpropanamide Chemical compound COC1=CC=CC=C1NC(=O)CC(=O)C1=CC=CC=C1 FTYSHTGKLFLKRX-UHFFFAOYSA-N 0.000 description 1
- WNXSUQCWAVWWEE-UHFFFAOYSA-N n-[4-[(4-methylphenyl)sulfonylamino]phenyl]-3-oxo-3-phenylpropanamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(C=C1)=CC=C1NC(=O)CC(=O)C1=CC=CC=C1 WNXSUQCWAVWWEE-UHFFFAOYSA-N 0.000 description 1
- RMHJJUOPOWPRBP-UHFFFAOYSA-N naphthalene-1-carboxamide Chemical compound C1=CC=C2C(C(=O)N)=CC=CC2=C1 RMHJJUOPOWPRBP-UHFFFAOYSA-N 0.000 description 1
- SYXUBXTYGFJFEH-UHFFFAOYSA-N oat triterpenoid saponin Chemical compound CNC1=CC=CC=C1C(=O)OC1C(C=O)(C)CC2C3(C(O3)CC3C4(CCC5C(C)(CO)C(OC6C(C(O)C(OC7C(C(O)C(O)C(CO)O7)O)CO6)OC6C(C(O)C(O)C(CO)O6)O)CCC53C)C)C4(C)CC(O)C2(C)C1 SYXUBXTYGFJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000004989 p-phenylenediamines Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229940035339 tri-chlor Drugs 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/32—Colour coupling substances
- G03C7/36—Couplers containing compounds with active methylene groups
- G03C7/362—Benzoyl-acetanilide couplers
Definitions
- ABSTRACT Primary Examiner-Norman G. Torchin Assistant Examiner-John L. Goodrow Attorney-Sughrue, Rothwell, Mion, Zinn & Macpeak [57] ABSTRACT
- the invention is directed to a method for preventing color mixing in multilayer-type color photographic light-sensitive materials developed by the coupler-indeveloper process.
- the multilayer light-sensitive materials used herein comprise a film base coated with a red-sensitive emulsion layer, a green-sensitive emulsion layer, and a blue-sensitive emulsion layer respectively.
- Cyan and magenta dye formation is prevented in the blue emulsion layer by addition thereto of a ballasted yellow coupler having the general formula wherein R represents a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group or a substituted aryl group; R represents an unsubstituted aryl group. a substituted aryl group, an unsubstituted heterocyclic group, or a substituted heterocyclic group; and X represents hydrogen atom or a group capable of being split off during the coupling reaction.
- the present invention relates to a method of preventing color mixing in a multilayer-type color photographic light-sensitive material.
- a multilayer-type color photographic light-sensitive material having on a support a red-sensitive emulsion layer, a green-sensitive emulsion layer, and a blue-sensitive emulsion layer
- the photographic emulsion layers contain couplers capable of forming dyes by the reaction with the oxidation product of a silver halide and an aromatic amino developing agent
- the photographic emulsion layers do not contain such couplers therein.
- the latter-type color photographic lightsensitive material is, after exposure, processed in color-forming developers containing the coupler, the latter type of light-sensitive material is superior in image sharpness to the former type in which the photographic emulsion layers contain the couplers.
- the emulsion layer there is formed in the emulsion layer, besides a desired dye, other undesirable dyes, which cause color mixing and degrades the color reproduction of the color photographic light-sensitive material thus developed.
- a reversal color photographic light-sensitive material of the latter type having on a support a red-sensitive emulsion layer, a greensensitive emulsion layer, and a blue-sensitive emulsion layer in this order is subjected to a black and white development, a cyan color-forming development, a yellow color-forming development and a magenta color-forming development (hereinafter, these procedures are called coupler-indeveloper-type reversal color process")
- coupler-indeveloper-type reversal color process there is formed in the blue-sensitive emulsion layer, besides a yellow dye, a cyan dye or magenta dye, whereby the yellow image has a slight tinge of green or orange and hence a yellow color having a high color purity cannot be obtained.
- a development fog i.e., when an emulsion layer is subjected to a color-forming development, a silver halide grain in the unexposed portions of another emulsion layer is developed to produce an undesirable dye.
- Still another cause for the color mixing is that exposed silver halide grains having a latent image are not activated in a color-forming developer containing a coupler capable of giving a dye image, that is, left undeveloped and finally developed in a subsequent color-forming developer containing a coupler capable of giving another dye.
- the blue-sensitive layer to be developed in a yellow color-forming developer is brought into contact with a cyan color-forming developer before it is developed in the yellow color-formin g developer, which tends to cause the formation of cyan fog and then the formation of cyan color mixing.
- the blue-sensitive emulsion layer is, after the development in the yellow color-forming developer, brought into contact with a magenta color-forming developer, the silver halide grains in the blue-sensitive emulsion layer which have not completely been developed in the yellow color-forming developer are subjected to the magenta color-forming development in the magenta color-forming developer, which tends to cause magenta color mixing.
- a development accelerator may be added to the yellow color-forming developer for preventing the formation of magenta color mixing but when the yellow color-forming developer is activated by the addition of development accelerator, the grains to be coupled into magenta in the greensensitive emulsion layer tends to be fog-developed. which tends to cause yellow color mixing in the green-sensitive emulsion layer.
- an object of the present invention is to provide a process for preventing the formation of cyan color mixing or magenta color mixing in the yellow color-forming emulsion layer after development by the coupler-in-developer-type reversal color process and providing a yellow dye image having a high color purity.
- Another object of the present invention is to provide a multilayer color photographic light-sensitive material capable of forming a yellow dye image having a high color density after development by the coupler-in-developer-type reversal color process.
- the oxidation product of the developing agent is surprisingly caused to react predominantly with the ballasted yellow coupler present in the blue-sensitive emulsion layer rather than with the cyan coupler supplied from the developer and hence the cyan color mixing is remarkably reduced.
- the ballasted yellow coupler in the bluesensitive emulsion layer the development in the yellow colorforming developer is markedly accelerated and no undeveloped silver halide grains are left, which results in reducing the formation of magenta color mixing in yellow.
- the inventors have at the same time found that by incorporating the ballasted yellow coupler in the blue-sensitive emulsion layer, the density of the yellow dye image formed after development is increased. Therefore, by these effects, a desirable yellowimage having a high color density and less color mixing can be obtained.
- the ballasted yellow coupler used in the present invention can be selected from yellow couplers having the general formula where R, is a tertiary alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted dicycloalkyl group, or an unsubstituted or substituted aryl group; R is an unsubstituted or substituted aryl or heterocyclic group; and X is a hydrogen atom or a group capable of being split off at coupling.
- Examples of a suitable R group in general formula l are a tertiary alkyl group having from four to 32 carbon atoms such as an a-pivalyl group, a l,l-dimethylpropyl group, a l,l-dibutylheptadecyl group, a l,l-diisobutylheptadecyl group, a l,ldi-tert-butylheptadecyl group and the like; an unsubstituted cycloalkyl group or a cycloalkyl group substituted with an alkyl group, an alkoxy group, an alkoxyalkyl group, or an aryl group, in which the alkyl radical may have from one to l8 carbon atoms, such as, a cyclohexyl group, a l-methylcyclohexyl group, a l-butylcyclohexyl group, a l
- a 3-ethylcyclohexyl group a l-ethoxycyclohexyl group, a l-nonoxycyclohexyl group, a 2- butoxycyclohexyl group, a l-methoxyethylcyclohexyl group, a 3-methoxymethylcyclohexyl group, a l-phenylcyclohexyl group, a l-toluylcyclohexyl group, and the like; an unsaturated dicycloalkyl group or a dicycloalkyl group substituted with an alkyl group having one to 18 carbon atoms, an alkoxyl group, an alkoxyalkyl group, or an aryl group, such as, a 7,7- dimethylnorbornyl group, a 2-methyl-7,7-dimethylnorbornyl group, a 2-octadecyl-7,7-dimethylnorbornyl group,
- Examples of a suitable R group in formula (1) are an unsubstituted aryl group or an aryl group substituted with a halogen atom, an alkyl group, an alkoxyl group, an aryloxyl group, an acyl group, an alkoxy-carbonyl group, in which the alkyl radical may have from one to 18 carbon atoms, an amino group, a carbonamido group, a sulfonamido group, a ureido group, a carbamyl group, a sulfamyl group, a carboxyl group or a sulfone group, such as, a phenyl group, a 2-chlorophenyl group, a 2,4-dichlorophenyl group, a 2,4,6-trichlor ophenyl group, a 2-bromophenyl group, a Z-fluorophenyl group, a 4- methylphenyl group, a 4-trifluoro
- phenyl group a 4-phenylureidophenyl group, a 2- (2,4-di-tert-amylphenoxy)-5-(3,5-dimethoxycarbonylphenylcarbamyl)-phenyl group, a 3,5-dicarbamylphenyl group, a 4- [N-(phenylethyl)-N-(p-toluyl)sulfamyl] phenyl group, a 4- carboxyphenyl group, a 3,5-dicarboxyphenyl group, a 2- methoxy-S-carboxyphenyl group, a 2-chloro-5-carboxyphenyl group, a 2-(N-methyl-N-octylamino)-5-carboxyphenyl group, a 2-sulfophenyl group, a Z-methoxy-S-sulfophenyl group, a 2- chloro-S-sulfopheny
- a suitable X-group are a hydrogen atom or a group capable of being split off at coupling, such as, a halogen atom, e.g., a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, on SCN group, -OR group, --SR group, 0COR group, and -OSO R group (wherein R represents an alkyl group, an aryl group, or a heterocyclic group), a halogen atom, e.g., a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, on SCN group, -OR group, --SR group, 0COR group, and -OSO R group (wherein R represents an alkyl group, an aryl group, or a heterocyclic group), a
- Coupler 10 s omumm Q-c 0 011,0 ONH- COClsHai O 0 0 CuHu om-Goocrnoomr Coupler (13):
- ballasted yellow couplers shown above may be prepared by well-known methods as disclosed in, for example, British Pat. Nos. 595,314; 800,108; 1,045,633 and l.052,488; U.S. Pat. No. 3,265,506; Belgian-Pat. 692,947; and Japanese Pat. application No. 3985/66.
- the ballasted coupler used in this invention may be added to a photographic emulsion by such conventionally known methods.
- the yellow coupler may be added directly to the photographic emulsion as an alkali solution thereof, or it may be dissolved in an organic solvent such as dibutyl phthalate or tricresyl phosphate and after dispersing the solution in an aqueous medium such as an aqueous gelatin solution, the resulting dispersion is added to a photographic emulsion (cf., e.g., C. F. K. Mees and T. H. James, The Theory of the Photographic Process, 3rd Ed., Macmillan Co., p. 393 1966)), or it may be first fused by heating and the fused coupler directly added to a photographic emulsion or an aqueous medium.
- a photographic emulsion cf., e.g., C. F. K. Mees and T. H. James, The Theory of the Photographic Process,
- the ballasted yellow coupler may be incorporated in a photographic emulsion in any step before coating but is desirably added at a step between the end of post ripening and coating.
- the amount of the yellow coupler depends on the properties of a photographic silver halide emulsion to be used but in general is suitably 00005-05 mole per mole of the silver halide emulsion in the blue-sensitive emulsion layer.
- 00005-05 mole per mole of the silver halide emulsion in the blue-sensitive emulsion layer is suitably 00005-05 mole per mole of the silver halide emulsion in the blue-sensitive emulsion layer.
- the amount of the coupler is not limited to the above range.
- ballasted yellow couplers mentioned above may be used alone or in combinations of two or more.
- a silver iodobromide emulsion is desirable but other silver halide emulsions such as a silver chloride emulsion, a silver chlorobromide emulsion, and a silver bromide emulsion can be employed.
- the silver halide emulsion used in this invention may have been sensitized by well-known methods, e.g., with a compound containing an unstable sulfur such as ammonium thiosulfate or allylthiocarbamide, a gold compound such as a complex salt of monovalent gold and thiocyanic acid, a reducing agent such as stannous chloride, a polyalkylene oxide derivative, or a combination thereof.
- a compound containing an unstable sulfur such as ammonium thiosulfate or allylthiocarbamide
- a gold compound such as a complex salt of monovalent gold and thiocyanic acid
- a reducing agent such as stannous chloride, a polyalkylene oxide derivative, or a combination thereof.
- the silver halide emulsion may contain a stabilizer such as benzimidazole, lphenyI-S-mercaptotetrazole, and the like; a hardening agent such as formaldehyde, much-bromic acid, and the like; and a wetting agent such as saponine.
- a stabilizer such as benzimidazole, lphenyI-S-mercaptotetrazole, and the like
- a hardening agent such as formaldehyde, much-bromic acid, and the like
- a wetting agent such as saponine.
- a yellow filter layer Between the blue-sensitive emulsion layer and the greensensitive emulsion layer there may be inserted a yellow filter layer.
- the function of the yellow filter layer is to absorb remaining blue light which the blue-sensitive layer does not absorb.
- the blue-sensitive emulsion layer containing the ballasted yellow coupler is desirably positioned at the uppermost position as silver halide emulsion layer, that is, it is desirable that the red-sensitive emulsion layer, the green-sensitive emulsion layer, the yellow filter layer, and the blue-sensitive emulsion layer containing the yellow coupler be formed on a support in that order.
- the red-sensitive emulsion layer and the green-sensitive emulsion layer contain desirably no couplers in general but one of them may contain a ballasted cyan coupler and a ballasted magenta coupler respectively.
- the multilayer color photographic light-sensitive material containing the yellow coupler in this invention is desirably processed by a usual coupler-in-developer-type reversal color process.
- Each of the cyan, magenta and yellow color-forming developers contains at least a color-forming developing agent and a diffusible coupler coupling into a cyan, magenta or yellow dye respectively.
- color-forming developing agent As the color-forming developing agent are employed wellknown p-phenylene diamine derivatives such as 4-amino-N,N- diethylaniline, 4-amino-3-methyl-N-methyl-N(fi-methylsulfonamidoethyl )-aniline, 4-amino-3-methyl-N-ethyl-N-( B- hydroxyethyl) aniline, and the like (of, e.g., C. F. K. Mees and T. H. James, The Theory of the Photographic Process," 3rd Ed., page 387).
- p-phenylene diamine derivatives such as 4-amino-N,N- diethylaniline, 4-amino-3-methyl-N-methyl-N(fi-methylsulfonamidoethyl )-aniline, 4-amino-3-methyl-N-ethyl-N-( B- hydroxyethyl) aniline, and the like (
- the diffusible cyan couplers there are employed generally known phenolic couplers such as 2-chloro-lnaphthol, 2,4-dichloro-l-naphthol, l-hydroxy-N-butyLZ- naphthamide, l-hydroxy-N-( Z-acetamidophenethyl )-2- naphthamide, etc. (cf. ibid, page 387).
- the diffusible magenta couplers there are open-chain methylene couplers such as acylaceto-nitriles, 2-cyanoethylbenzofuran, benzylacetonitrile, and the like, cyclic methylene couplers such as l-phenyl-3-methyl-5-pyrazolone, l-phenyl-3-(4- chlorobenzamido)-5-pyrazolone. l-phenyl-3-(3-nitrobenzoylamino)-5-pyrazolone, l-(2,4,6-trichlorophenyl )-3( 4- nitroanilino )-5-pyrazolone, and the like.
- the diffusible yellow couplers there are acylacetarnide-type openchain methylene couplers such as Z-acetanilide, 2-aceto-2',
- EXAMPLE I A highly sensitive gelatino silver iodobromide reversal color photographic emulsion subjected to a sulfur sensitization and a gold sensitization was melted by heating and divided into several parts. Each emulsion was mixed with an aqueous a1- kaline solution of the yellow coupler shown in table 1 and then the pH of the emulsion was adjusted to 7.0 with the addition of citric acid.
- Potassium bromide 2.0 g. 0.1% Aq.so1n. of potassium iodide m1.
- Potassium thiocyanate 3 g. Sodium sulfite (anhydrous) 10 g. Sodium carbonate (mono-hydrate) 30 g.
- EXAMPLE 2 The gelatino silver iodobromide reversal color photographic emulsion same as in example 1 was melted by heating and divided into several parts. Five grams of the coupler shown in table 2 was dissolved in a mixed solution of 10 g. of dibutyl phthalate and 10 g. of ethyl acetate, the solution was dispersed in 50 g. of an aqueous 10 percent gelatin solution together with a surface active agent, the dispersion of the coupler thus obtained was added to the aforesaid silver halide emulsion in an amount shown in table 2, and the pH of the resulting emulsion was adjusted to 7.0.
- the blue-sensitive reversal color photographic emulsion containing the aforesaid coupler was applied to a photographic film having on a cellulose triacetate film a red-sensitive reversal color photographic emulsion layer, a green-sensitive reversal color photographic emulsion layer, a yellow filter layer, and a blue-sensitive emulsion layer such that the amount of Ag was 16.5 g./l00 cm. in the blue-sensitive layer and dried.
- the sample thus dried was exposed and processed as in example 1 and the density was measured as in the example, the results shown in table 2. The results show that the yellow density was increased and the cyan density and the magenta density were extremely reduced.
- the dried sample was exposed and developed as in example i except that different kinds of diffusuble couplers were used in the cyan, yellow, and magenta color developers respectively and 3 5 the density of each dye image was measured, the results of which are shown in table 3 together with the diffusable couplers used.
- the values in table 3 are the differences in yellow density, cyan density and magenta density between the case of adding the diffusible yellow coupler to the emulsion and the case of adding no such yellow coupler to the emulsion. When the value was plus it means that the density was increased by the addition of the ballasted yellow coupler to the emulsion layer, while minus value means that the density was reduced by the addition thereof.
- a blue-sensitive emulsion layer said developing being carried out with color developers containing a diffusable cyan, yellow and magenta couplers, respectively, said blue emulsion layer containing a ballasted yellow coupler of the formula 0 .l Ri- (3IIC-NH-R:
- R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted -dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group;
- R represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group;
- X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during the coupling reaction.
- a multilayer-type reversal color photographic material of the type to be developed in color developers containing couplers which comprises a support having thereon,
- a blue-sensitive emulsion layer said blue-sensitive emulsion layer containing a ballasted yellow coupler of the formula where R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl TABLE 3 Difiusible coupler used in the color developer Difference in density of yellow images 4 Yellow Cyan Magenta Experiment No. Cyan coupler (g./l.) Yellow coupler (g./l.) Magenta coupler (g./l.) density density density density 2-4-diehloro-1-naphthol (2). 2-benzoylacetanllide (1.8) 1-phenyl-3-(4-ch1orobenzamldo)-5- +0. 15 0. 12 0. 10
- R represents NHCOCHzCHzN a member selected from the group consisting of an unsub- 5 G 4 stituted aryl group, a substituted aryl group, an unsubstituted a 2 hctcrocyclic group, and a substituted heterocyclic group
- X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during Coupler (9):
- Coupler (10) 1 wherein said blue-sensitive silver halide emulsion containing S OZNHOIIID the ballasted yellow coupler is a gelatino silver iodobromide emulsion.
- Q-COCHzCONH- 5 5.
- Coupler (11) :
- ballasted yellow coupler is a member selected from the group consisting of C O CHQC QNH- CH; Coupler (1):
- said derivative 15 a member selected from the group consisting of 4-amino-N,N-diethylaniline, 4-amino-3-methyl C O CHzC ONH- N-methyl-N-([3-methyl-sulfonamidoethyl)-aniline, and 4- amino-3-methyl-N-ethyl-N-(B-hydroxy-ethyl)-aniline.
- said coupler is a member selected from the group consisting of 2-chloro-l-naphthol, 2,4-dichloroJ-naphthol, lhydroxy-N-butyl-2-naphthamide and l-hydroxy-N-t 2- acetamidophenethyl)-2-naphthamide.
- said diffusable magenta coupler is a member selected from the group consisting of open-chain methylene couplers and cyclic methylene couplers.
- said open-chain methylene coupler is a member selected from the group consisting of acylacetonitriles, 2- eyanoethylbenzofuran, and benzylacetonitrile and said cyclic methylene coupler being a member selected from the group consisting of l-phenyl-3-methyl-S-pyrazolone, l-phenyl-3-(4- chlorobenzamido)-5-pyrazolone, 1-phenyl-3-(3-nitrobenzoylamino)-5-pyrazolone, and l-(2,4,6-trichlorophenyl)-3-(4- nitroanilino)-5-pyrazolone.
- said coupler is a member selected from the group consisting of 2-acetanilide, 2-aceto-2,4-dichloroacetanilide, 2-benzoylacetanilide, 2-benzoyl-2'-methoxyacetanilide, and Z-benzoyl(4-p-toluene-sulfonamido) acetanilide.
- a process for the prevention of color mixing for a multilayer-type reversal photographic light-sensitive material of the type developed in color forming developers, each containing a coupler which comprises developing said multilayertype reversal photographic light-sensitive material having on a support,
- a blue-sensitive emulsion layer said developing being carried out with color.
- developers containing a diffusabie cyan, yellow and magenta couplers, respectively, said blue emulsion layer containing a ballasted yellow coupler of the formula wherein R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloulkyl group, a substituted cycloalkyl group, an unsubstituted dicycloilkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and
- X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during wherein R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during the coupling reaction, said ballasted yellow coupler being present in an amount of from 0.0005 to 0.5 mols 0 per mol of blue-sensitive silver halide
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
Abstract
The invention is directed to a method for preventing color mixing in multilayer-type color photographic light-sensitive materials developed by the coupler-in-developer process. The multilayer light-sensitive materials used herein comprise a film base coated with a red-sensitive emulsion layer, a greensensitive emulsion layer, and a blue-sensitive emulsion layer respectively. Cyan and magenta dye formation is prevented in the blue emulsion layer by addition thereto of a ballasted yellow coupler having the general formula WHEREIN R1 represents a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group or a substituted aryl group; R2 represents an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, or a substituted heterocyclic group; and X represents a hydrogen atom or a group capable of being split off during the coupling reaction.
Description
United States Patent Nagae et al.
[4 Feb. 8, 1972 [54] METHOD OF PREVENTING COLOR MIXING IN MULTILAYER-TYPE REVERSAL COLOR PHOTOGRAPHIC LIGHT-SENSITIVE MATERIALS [72] Inventors: Tadashi Nagae; Yasushi Oishi; Jun
Hayashi, all of Kanagawa, Japan [73] Assignee: Fnii Photo Film Co., Ltd., Kanagawa,
Japan [22] Filed: May 20, 1969 21 Appl. No.: 826,283
Primary Examiner-Norman G. Torchin Assistant Examiner-John L. Goodrow Attorney-Sughrue, Rothwell, Mion, Zinn & Macpeak [57] ABSTRACT The invention is directed to a method for preventing color mixing in multilayer-type color photographic light-sensitive materials developed by the coupler-indeveloper process. The multilayer light-sensitive materials used herein comprise a film base coated with a red-sensitive emulsion layer, a green-sensitive emulsion layer, and a blue-sensitive emulsion layer respectively. Cyan and magenta dye formation is prevented in the blue emulsion layer by addition thereto of a ballasted yellow coupler having the general formula wherein R represents a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group or a substituted aryl group; R represents an unsubstituted aryl group. a substituted aryl group, an unsubstituted heterocyclic group, or a substituted heterocyclic group; and X represents hydrogen atom or a group capable of being split off during the coupling reaction.
17 Claims, No Drawings METHOD OF PREVENTING COLOR MIXING IN MULTILAYER-TYPE REVERSAL COLOR PHOTOGRAPIIIC LIGHT-SENSITIVE MATERIALS The present invention relates to a method of preventing color mixing in a multilayer-type color photographic light-sensitive material.
As a multilayer-type color photographic light-sensitive material having on a support a red-sensitive emulsion layer, a green-sensitive emulsion layer, and a blue-sensitive emulsion layer, there are a type in which the photographic emulsion layers contain couplers capable of forming dyes by the reaction with the oxidation product of a silver halide and an aromatic amino developing agent and a type in which the photographic emulsion layers do not contain such couplers therein.
Since the latter-type color photographic lightsensitive material is, after exposure, processed in color-forming developers containing the coupler, the latter type of light-sensitive material is superior in image sharpness to the former type in which the photographic emulsion layers contain the couplers. However, in development, there is formed in the emulsion layer, besides a desired dye, other undesirable dyes, which cause color mixing and degrades the color reproduction of the color photographic light-sensitive material thus developed. For example, when, after light exposure, a reversal color photographic light-sensitive material of the latter type having on a support a red-sensitive emulsion layer, a greensensitive emulsion layer, and a blue-sensitive emulsion layer in this order is subjected to a black and white development, a cyan color-forming development, a yellow color-forming development and a magenta color-forming development (hereinafter, these procedures are called coupler-indeveloper-type reversal color process"), there is formed in the blue-sensitive emulsion layer, besides a yellow dye, a cyan dye or magenta dye, whereby the yellow image has a slight tinge of green or orange and hence a yellow color having a high color purity cannot be obtained.
There are various causes for the color mixing but the most important cause is a development fog, i.e., when an emulsion layer is subjected to a color-forming development, a silver halide grain in the unexposed portions of another emulsion layer is developed to produce an undesirable dye. Still another cause for the color mixing is that exposed silver halide grains having a latent image are not activated in a color-forming developer containing a coupler capable of giving a dye image, that is, left undeveloped and finally developed in a subsequent color-forming developer containing a coupler capable of giving another dye. For example, when the aforesaid reversal color photographic light-sensitive material is developed in the aforesaid order, the blue-sensitive layer to be developed in a yellow color-forming developer is brought into contact with a cyan color-forming developer before it is developed in the yellow color-formin g developer, which tends to cause the formation of cyan fog and then the formation of cyan color mixing. Moreover, since the blue-sensitive emulsion layer is, after the development in the yellow color-forming developer, brought into contact with a magenta color-forming developer, the silver halide grains in the blue-sensitive emulsion layer which have not completely been developed in the yellow color-forming developer are subjected to the magenta color-forming development in the magenta color-forming developer, which tends to cause magenta color mixing.
ln order to overcome these drawbacks, various solutions have been proposed. For example, to prevent the formation of cyan color mixing, it has been proposed to incorporate an antifoggant into the cyan color forming developer. However, according to the method, the cyan color forming development is also suppressed to increase the proportion of the undeveloped silver halide grains and these grains are developed in the subsequent yellow or magenta color forming developer to cause the yellow or magenta color mixing in the cyan image.
Moreover, a development accelerator may be added to the yellow color-forming developer for preventing the formation of magenta color mixing but when the yellow color-forming developer is activated by the addition of development accelerator, the grains to be coupled into magenta in the greensensitive emulsion layer tends to be fog-developed. which tends to cause yellow color mixing in the green-sensitive emulsion layer. Also, it is possible to incorporate such a stabilizer or development accelerator in emulsion layers, but since such additives generally give serious influences on other important properties of the photographic light-sensitive material, the use of such additives is restricted.
Accordingly it is very difficult to prevent the formation of cyan color mixing or magenta color mixing into the yellow color-forming emulsion layer in the coupler-in-developer type reversal color process without adversely influencing the photographic properties thereof.
Therefore, an object of the present invention is to provide a process for preventing the formation of cyan color mixing or magenta color mixing in the yellow color-forming emulsion layer after development by the coupler-in-developer-type reversal color process and providing a yellow dye image having a high color purity.
Another object of the present invention is to provide a multilayer color photographic light-sensitive material capable of forming a yellow dye image having a high color density after development by the coupler-in-developer-type reversal color process.
These objects can be attained by incorporating a diffusion resisting or ballasted yellow coupler in a blue-sensitive emulsion layer of a reversal color photographic light-sensitive material of a type to be developed in coupler-containing developer.
By the process of the present invention, even though fog development occurs on the silver halide grains in the blue-sensitive emulsion layer during cyan color-forming development, the oxidation product of the developing agent is surprisingly caused to react predominantly with the ballasted yellow coupler present in the blue-sensitive emulsion layer rather than with the cyan coupler supplied from the developer and hence the cyan color mixing is remarkably reduced. Furthermore, by the incorporation of the ballasted yellow coupler in the bluesensitive emulsion layer, the development in the yellow colorforming developer is markedly accelerated and no undeveloped silver halide grains are left, which results in reducing the formation of magenta color mixing in yellow.
The inventors have at the same time found that by incorporating the ballasted yellow coupler in the blue-sensitive emulsion layer, the density of the yellow dye image formed after development is increased. Therefore, by these effects, a desirable yellowimage having a high color density and less color mixing can be obtained.
The ballasted yellow coupler used in the present invention can be selected from yellow couplers having the general formula where R, is a tertiary alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted dicycloalkyl group, or an unsubstituted or substituted aryl group; R is an unsubstituted or substituted aryl or heterocyclic group; and X is a hydrogen atom or a group capable of being split off at coupling.
Examples of a suitable R group in general formula l are a tertiary alkyl group having from four to 32 carbon atoms such as an a-pivalyl group, a l,l-dimethylpropyl group, a l,l-dibutylheptadecyl group, a l,l-diisobutylheptadecyl group, a l,ldi-tert-butylheptadecyl group and the like; an unsubstituted cycloalkyl group or a cycloalkyl group substituted with an alkyl group, an alkoxy group, an alkoxyalkyl group, or an aryl group, in which the alkyl radical may have from one to l8 carbon atoms, such as, a cyclohexyl group, a l-methylcyclohexyl group, a l-butylcyclohexyl group, a l-oxadecylcyclohexyl group, a 2-ethylcyclohexyl group. a 3-ethylcyclohexyl group, a l-ethoxycyclohexyl group, a l-nonoxycyclohexyl group, a 2- butoxycyclohexyl group, a l-methoxyethylcyclohexyl group, a 3-methoxymethylcyclohexyl group, a l-phenylcyclohexyl group, a l-toluylcyclohexyl group, and the like; an unsaturated dicycloalkyl group or a dicycloalkyl group substituted with an alkyl group having one to 18 carbon atoms, an alkoxyl group, an alkoxyalkyl group, or an aryl group, such as, a 7,7- dimethylnorbornyl group, a 2-methyl-7,7-dimethylnorbornyl group, a 2-octadecyl-7,7-dimethylnorbornyl group, a 2-ethoxy-7,7-dimethylnorbornyl group, a 2-octadecoxy-7,7-dimethylnorbornyl group, a 2-octoxydecyl-7,7-dimethylnorbornyl group, a 2-phenyl-7,7-dimethylnorbornyl group, and the like; an unsubstituted aryl group or an aryl group substituted with an alkyl group, an alkoxyl group, an alkoxyalkyl group, in which the alkyl radical may have from one to 18 carbon atoms, a halogen atom, an amino group, a carboxylic acid amido group, a ureido group, a sulfamyl group, a sulfone group, or a carboxyl group, such as, a phenyl group, a 3- methylphenyl group, a 2-butylphenyl group, a 4-dodecylphenyl group, a 4-octadecylphenyl group, a 2-trifluoromethylphenyl group, a 2-methoxyphenyl group, a Z-butoxyphenyl group, a 2-octadecoxyphenyl group, a 4-methoxyethylphenyl group, a 2-chlorophenyl group, a 2,4-dichlorophenyl group, a 4- aminophenyl group, a 4-N-methyl-N-butylaminophenyl group, a 2-propylamidophenyl group, a 3-butylamidophenyl group, a 2-octadecylamidophenyl group, a 3-octadecylsuccinmonoamidophenyl group, a 4-octadecylsuccinmonoamidophenyl group, a 3-a(2,4-di-tert-amylphenoxy) butylamidophenyl group, a 'y (4-N-butyl-N-pentadecyloxycarbonylamino) propionamidophenyl group, a 4-phenylureido group, a 4-toluylsulfamylphenyl group, a 3-sulfophenyl group, a 3-carb0xyphenyl group, and the like,
Examples of a suitable R group in formula (1) are an unsubstituted aryl group or an aryl group substituted with a halogen atom, an alkyl group, an alkoxyl group, an aryloxyl group, an acyl group, an alkoxy-carbonyl group, in which the alkyl radical may have from one to 18 carbon atoms, an amino group, a carbonamido group, a sulfonamido group, a ureido group, a carbamyl group, a sulfamyl group, a carboxyl group or a sulfone group, such as, a phenyl group, a 2-chlorophenyl group, a 2,4-dichlorophenyl group, a 2,4,6-trichlor ophenyl group, a 2-bromophenyl group, a Z-fluorophenyl group, a 4- methylphenyl group, a 4-trifluoromethylphenyl group, a 2- methoxyphenyl group, a 4-[N-(7 -phenylpropyl)-N-(p-toluyl) carbamylmethoxy1-phenyl group, a Z-phenoxyphenyl group, a 2-chloro-S-octanoylphenyl group, a 2-methoxy-5-octadecanoylphenyl group, a Z-methoxy-S-tetradecyloxycarbon: ylphenyl group, a 3,5-dimethoxycarbonylphenyl group, a 3,5- didodecyloxycarbonylphenyl group, a 2-chloro5-[a-(2,4-ditert-amylphenoxy) acetamido] phenyl group, a Z-chloro-S-[a- (2,4-di-tert-amylphenoxy)butylamido] phenyl group, a 2- methoxy--[a-(2,4-di-tert-amylphenoxy)acetamido] phenyl group, a 2-chloro-5-[y-(N-butyl-N-hexadecanoylamino) propionamido] phenyl group, a 3-octadecylsuccinmonoamidophenyl group, a 2-chloro-5-(4-methylphenylsul- Coupler (1): 0 CH3 casi o-Q0 0 omo ONE-Q Coupler (2) Cg: 15 11 cam-Q-c 0 01120 ONH-Q Coupler (3):
CHI-1 C ONH- COOII C 0 0 II Coupler (4):
Coupler (5):
- CHM-QC 0 CHzCONH- CHzC O O H Coupler (6):
H20 0 OH O O CHzCONH- l O C H; Coupler (7):
fonamido) phenyl group, a 4-phenylureidophenyl group, a 2- (2,4-di-tert-amylphenoxy)-5-(3,5-dimethoxycarbonylphenylcarbamyl)-phenyl group, a 3,5-dicarbamylphenyl group, a 4- [N-(phenylethyl)-N-(p-toluyl)sulfamyl] phenyl group, a 4- carboxyphenyl group, a 3,5-dicarboxyphenyl group, a 2- methoxy-S-carboxyphenyl group, a 2-chloro-5-carboxyphenyl group, a 2-(N-methyl-N-octylamino)-5-carboxyphenyl group, a 2-sulfophenyl group, a Z-methoxy-S-sulfophenyl group, a 2- chloro-S-sulfophenyl group, and the like; or a heterocyclic group such as a 2-thiazole group, a 2-benzothiazole group, and the like,
Examples of a suitable X-group are a hydrogen atom or a group capable of being split off at coupling, such as, a halogen atom, e.g., a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, on SCN group, -OR group, --SR group, 0COR group, and -OSO R group (wherein R represents an alkyl group, an aryl group, or a heterocyclic group), a
HzCOOH COCII 'COCHzCONH- l O C H Coupler (8)1 NHCO CHzCHzN Qcoomoonu CH, l l.
Coupler 10): s omumm Q-c 0 011,0 ONH- COClsHai O 0 0 CuHu om-Goocrnoomr Coupler (13):
@ooomcoua Coupler (14):
C O O CtzHgs c 0 CHzC ONE-Q Coupler (15) a nm S O2N CzHa IIIHC O CH- Coupler (16):
o nu) The ballasted yellow couplers shown above may be prepared by well-known methods as disclosed in, for example, British Pat. Nos. 595,314; 800,108; 1,045,633 and l.052,488; U.S. Pat. No. 3,265,506; Belgian-Pat. 692,947; and Japanese Pat. application No. 3985/66.
The ballasted coupler used in this invention may be added to a photographic emulsion by such conventionally known methods. For example, the yellow coupler may be added directly to the photographic emulsion as an alkali solution thereof, or it may be dissolved in an organic solvent such as dibutyl phthalate or tricresyl phosphate and after dispersing the solution in an aqueous medium such as an aqueous gelatin solution, the resulting dispersion is added to a photographic emulsion (cf., e.g., C. F. K. Mees and T. H. James, The Theory of the Photographic Process, 3rd Ed., Macmillan Co., p. 393 1966)), or it may be first fused by heating and the fused coupler directly added to a photographic emulsion or an aqueous medium.
The ballasted yellow coupler may be incorporated in a photographic emulsion in any step before coating but is desirably added at a step between the end of post ripening and coating.
The amount of the yellow coupler depends on the properties of a photographic silver halide emulsion to be used but in general is suitably 00005-05 mole per mole of the silver halide emulsion in the blue-sensitive emulsion layer. However,
the amount of the coupler is not limited to the above range.
Furthermore, the ballasted yellow couplers mentioned above may be used alone or in combinations of two or more.
As the silver halide emulsion used for the blue-sensitive emulsion layer in this invention, a silver iodobromide emulsion is desirable but other silver halide emulsions such as a silver chloride emulsion, a silver chlorobromide emulsion, and a silver bromide emulsion can be employed.
The silver halide emulsion used in this invention may have been sensitized by well-known methods, e.g., with a compound containing an unstable sulfur such as ammonium thiosulfate or allylthiocarbamide, a gold compound such as a complex salt of monovalent gold and thiocyanic acid, a reducing agent such as stannous chloride, a polyalkylene oxide derivative, or a combination thereof. Also, the silver halide emulsion may contain a stabilizer such as benzimidazole, lphenyI-S-mercaptotetrazole, and the like; a hardening agent such as formaldehyde, much-bromic acid, and the like; and a wetting agent such as saponine.
Between the blue-sensitive emulsion layer and the greensensitive emulsion layer there may be inserted a yellow filter layer. The function of the yellow filter layer is to absorb remaining blue light which the blue-sensitive layer does not absorb.
The blue-sensitive emulsion layer containing the ballasted yellow coupler is desirably positioned at the uppermost position as silver halide emulsion layer, that is, it is desirable that the red-sensitive emulsion layer, the green-sensitive emulsion layer, the yellow filter layer, and the blue-sensitive emulsion layer containing the yellow coupler be formed on a support in that order. Moreover, the red-sensitive emulsion layer and the green-sensitive emulsion layer contain desirably no couplers in general but one of them may contain a ballasted cyan coupler and a ballasted magenta coupler respectively.
The multilayer color photographic light-sensitive material containing the yellow coupler in this invention is desirably processed by a usual coupler-in-developer-type reversal color process.
Each of the cyan, magenta and yellow color-forming developers contains at least a color-forming developing agent and a diffusible coupler coupling into a cyan, magenta or yellow dye respectively.
As the color-forming developing agent are employed wellknown p-phenylene diamine derivatives such as 4-amino-N,N- diethylaniline, 4-amino-3-methyl-N-methyl-N(fi-methylsulfonamidoethyl )-aniline, 4-amino-3-methyl-N-ethyl-N-( B- hydroxyethyl) aniline, and the like (of, e.g., C. F. K. Mees and T. H. James, The Theory of the Photographic Process," 3rd Ed., page 387).
As the diffusible cyan couplers there are employed generally known phenolic couplers such as 2-chloro-lnaphthol, 2,4-dichloro-l-naphthol, l-hydroxy-N-butyLZ- naphthamide, l-hydroxy-N-( Z-acetamidophenethyl )-2- naphthamide, etc. (cf. ibid, page 387). Also, as the diffusible magenta couplers, there are open-chain methylene couplers such as acylaceto-nitriles, 2-cyanoethylbenzofuran, benzylacetonitrile, and the like, cyclic methylene couplers such as l-phenyl-3-methyl-5-pyrazolone, l-phenyl-3-(4- chlorobenzamido)-5-pyrazolone. l-phenyl-3-(3-nitrobenzoylamino)-5-pyrazolone, l-(2,4,6-trichlorophenyl )-3( 4- nitroanilino )-5-pyrazolone, and the like. Moreover, as the diffusible yellow couplers, there are acylacetarnide-type openchain methylene couplers such as Z-acetanilide, 2-aceto-2',
4'-dichloroacetanilide, 2-benzoylacetanilide, 2-benzoyl-2'- methoxyacetanllide, 2-benzoyl(4'-p-toluene-sulfonamido) acetanilide, and the like (cf., ibid, page 389 and G. H. Broun et al., Journal of American Chemical Society," 79, 29l9- 2927 (1957)).
The invention will be explained more in detail by the following examples.
EXAMPLE I A highly sensitive gelatino silver iodobromide reversal color photographic emulsion subjected to a sulfur sensitization and a gold sensitization was melted by heating and divided into several parts. Each emulsion was mixed with an aqueous a1- kaline solution of the yellow coupler shown in table 1 and then the pH of the emulsion was adjusted to 7.0 with the addition of citric acid. To a cellulose triacetate film base were applied a red-sensitive reversal color photographic emulsion containing no coupler, a green-sensitive reversal color photographic emulsion containing no coupler, and a yellow filter layer in this order and the blue-sensitive reversal color photographic emulsion containing the yellow coupler prepared above, and the thus-coated film was dried. The proportion of the silver halide in the blue-sensitive layer was 16.5 mg./100 emf. The dried sample was uniformly subjected to yellow exposure by means of a NSG ll-type sensitometer and then subjected to the following reversal color processing at 27 C.:
1. Prehardening 3 min. 2. Washing 4 min. 3. Negative development 7 min. 4. Washing 2 min. 5. Reversal red flash exposure 6. Cyan color development min. 7. Washing 2 min. 8. Reversal blue flash exposure 9. Yellow color development 5 min. 10. Washing 2 min. 1 l. Reversal white light exposure l2. Magenta color development 5 min. 1 Washing 2 min. 14. Silver bleaching 5 min. 15. Fixing 3 min. 16. Washing and drying The compositions of the processing baths used in the above processings were as follows:
Prehardening solution:
Sodium pyrophosphate 20 g. Sodium sulfate 50 g. 37% Formaldehyde 17 ml. Aqueous NaOH solution 1 ml. Water to make l liter Negative developer:
N-Methyl-p-amininophenol sulfate 1 g. Sodium sult'ite (anhydrous) 60 g. Hydroquinone 10 g. Sodium carbonate (mono-hydrate) 40 g. Potassium bromide S g. Potassium thiocyanate 1.5 g. 0.1% Aq.soln. of potassium iodide 5 ml. Sodium hydroxide 2 g. Water to make 1 liter Cyan color developer:
Potassium bromide 2.0 g. 0.1% Aq.so1n. of potassium iodide m1. Potassium thiocyanate 3 g. Sodium sulfite (anhydrous) 10 g. Sodium carbonate (mono-hydrate) 30 g. Sodium hydroxide 2 g. 5Nitrohenzimidazole nitrate 0.5 g. 2,4Dichloro-l-naphthol 2.0 g. 4-Amino-3-methyl-N,N- diethylaniline hydrochloride 3.0 g. Water to make 1 liter Yellow color developer:
Sodium sulfitc 5.0 g. N,N-Diethyl-p-phenylenediamine hydrochloride 1.2 g. Sodium carbonate (mono-hydrate) 20.0 g. 0.1% Aqsoln. of potassium iodide 2.0 ml. Potassium bromide 0.3 g. 2-Benloyl-(4'-p toluenesull'onamido) acetunilide 1.0 g. Sodium hydroxide 4.0 g. Water to make 1 liter Magenta color developer:
Sodium sulfite 5.0 g. 4-Amino3 methyl-N.N-diethyl aniline hydrochloride 2.0 g. Potassium br mide 02 g l llie tyl-3-(S-nitrobenmylaminol- 5- pyru/olone l1 Smluun hydroxide 2.5 g. n liutvlumlue .1 ml. Willtl tn malte- 1 liter Fixing solution:
Sodium thiosulfate 1011 g. Sodium sulfite 15 g. Water to make 1 liter The density of the yellow dye image after development was measured using blue, green and red filters each, the results of which are shown in table 1.
As shown in table 1, the yellow density was increased and the cyan density and the magenta density were remarkably reduced. This shows that by the practice of the present invention, the formation of cyan color mixing and magenta color mixing are markedly reduced and the yellow density is increased.
TABLE 1 yellow amount mole/ yellow cyan magenta coupler Ag x 1 mole density density density none (control 1.90 0.30 0.30 coupler 1) 0.0005 1.90 0.25 0.23 coupler l) 0.005 1.92 0.18 0.19 coupler l) 0.05 1.98 0.15 0.18 coupler l) 0.5 2.21 0.15 0.111 coupler (2) 0.05 2.04 0.15 0.19 coupler (2) 0.1 2.13 0.14 0.18 coupler (3) 0.05 2.02 0.15 0.19 coupler (3) 0.1 2.21 0.15 0.17 coupler (4) 0.05 1.99 0.15 0.18 coupler (4) 0.1 2.12 0.14 0.18 coupler (5) 0.05 1.95 0.16 0.19 coupler (5) 0.1 2.18 0.14 0.18 coupler (6) 0.05 2.00 0.15 0.18 coupler (6) 0.1 2.17 0.15 0.17 coupler (7) 0.05 1.96 0.16 0.18 coupler (7) 0.1 2.12 0.15 0.18
EXAMPLE 2 The gelatino silver iodobromide reversal color photographic emulsion same as in example 1 was melted by heating and divided into several parts. Five grams of the coupler shown in table 2 was dissolved in a mixed solution of 10 g. of dibutyl phthalate and 10 g. of ethyl acetate, the solution was dispersed in 50 g. of an aqueous 10 percent gelatin solution together with a surface active agent, the dispersion of the coupler thus obtained was added to the aforesaid silver halide emulsion in an amount shown in table 2, and the pH of the resulting emulsion was adjusted to 7.0.
As in example 1, the blue-sensitive reversal color photographic emulsion containing the aforesaid coupler was applied to a photographic film having on a cellulose triacetate film a red-sensitive reversal color photographic emulsion layer, a green-sensitive reversal color photographic emulsion layer, a yellow filter layer, and a blue-sensitive emulsion layer such that the amount of Ag was 16.5 g./l00 cm. in the blue-sensitive layer and dried. The sample thus dried was exposed and processed as in example 1 and the density was measured as in the example, the results shown in table 2. The results show that the yellow density was increased and the cyan density and the magenta density were extremely reduced.
TABLE 2 Amount; couplerdispersion Density material, Yellow coupler g-./Ag 1 mole Yellow Cyan Magenta None (control) 1.90 0. 30 O. 30 Coupler (8).. 10 1.91 0.21 0. 24 Do 50 1. 00 0.18 0.18 1)o 2.07 0.16 0.18 D0. 200 2. 22 (l. 15 0. 17 D0 500 2. 32 (J. 15 l). 17 (louplt'l (i1) 50 1.112 0, l7 0. lt'l l)o 100 2.011 0. ll; (1. l7 (lollplor (l0). fill 1.1111 0.18 11.17 10.. mu 2. ()14 0.111 0.17 (fourth-.1 (I I). 611 1.116 (1.17 (1.18 (to 100 2. (m 0.15 0.17 (fmiplur (l2) (10 11.00 t). 111 0 11! TABLE 2 Continued Amount couplerdlspersion Density material, Yellow coupler g./AgX1 mole Yellow Cyan Magenta lloupler (14)."... 50 1 98 0.16 0 18 100 2. 15 0. l6 0 18 (,ouplcr (15) 50 2. 02 0. 17 0 18 D0. 100 2. 0. 16 0 17 Coupler 50 2. 01 0. 17 17 EXAMPLE 3 The same highly sensitive gelatino silver iodobromide reversal color photographic emulsion as in example 1 was melted 15 color photographic emulsion containing the aforesaid yellow coupler was applied to a photographic film having on a polyethylene terephthalate base a red-sensitive reversal color photographic emulsion layer containing no coupler, a greensensitive reversal color photographic emulsion layer containing no coupler, a yellow filter layer and a blue-sensitive cmul- 3O sion layer such that the amount of silver became 16.5 mg./1OO cm. in the blue-sensitive layer, followed by drying. The dried sample was exposed and developed as in example i except that different kinds of diffusuble couplers were used in the cyan, yellow, and magenta color developers respectively and 3 5 the density of each dye image was measured, the results of which are shown in table 3 together with the diffusable couplers used. The values in table 3 are the differences in yellow density, cyan density and magenta density between the case of adding the diffusible yellow coupler to the emulsion and the case of adding no such yellow coupler to the emulsion. When the value was plus it means that the density was increased by the addition of the ballasted yellow coupler to the emulsion layer, while minus value means that the density was reduced by the addition thereof. Thus, as shown in table 3, in the case of practicing the process of this invention, when the color photographic light-sensitive material of this invention is developed in color-forming developers containing diffusible couplers, the yellow density is increased and the cyan and magenta densities are extremely reduced as compared with the case of adding no ballasted yellow coupler to the silver halide emulsion layer.
Almost the same results were obtained when other ballasted yellow couplers were used. Also, in the case of employing other coupler-in-developer-typc reversal color processes than the color process described in the examples. the same results were obtained.
What is claimed is:
l. A process for the prevention of color mixing for a multilayer-type reversal photographic light-sensitive material of the type developed in color-forming developers, each containing a coupler, which comprises developing said multilayertype reversal photographic light-sensitive material having on a support,
a. a red-sensitive emulsion layer,
b. a green-sensitive emulsion layer, and
c. a blue-sensitive emulsion layer, said developing being carried out with color developers containing a diffusable cyan, yellow and magenta couplers, respectively, said blue emulsion layer containing a ballasted yellow coupler of the formula 0 .l Ri- (3IIC-NH-R:
wherein R, represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted -dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during the coupling reaction.
2. A multilayer-type reversal color photographic material of the type to be developed in color developers containing couplers, which comprises a support having thereon,
a. a red-sensitive emulsion layer,
b. a green-sensitive emulsion layer, and
c. a blue-sensitive emulsion layer, said blue-sensitive emulsion layer containing a ballasted yellow coupler of the formula where R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl TABLE 3 Difiusible coupler used in the color developer Difference in density of yellow images 4 Yellow Cyan Magenta Experiment No. Cyan coupler (g./l.) Yellow coupler (g./l.) Magenta coupler (g./l.) density density density 2-4-diehloro-1-naphthol (2). 2-benzoylacetanllide (1.8) 1-phenyl-3-(4-ch1orobenzamldo)-5- +0. 15 0. 12 0. 10
pyrazolone (1.7). ydr0 y- -bu y do +0.14 -0,12 11 naphthamide (2). 3 hyd 0 y-N-( d "do +0.12 o 12 aeetamldophenethyD-2- naphtharnide (1.8). .do Z-aeetarulrde (1.3) do 13 14 0'10 do... 2-aceto-2,4-dich1oroacetdo +0 13 0 anillde (1.8). 6 ..do 2'benz0y1-2-methoxyacet- .d0 +0 15 .4110
anilide (1.5). 7.- "do "d Z-(cyanoaeetyD-benzoturan (1.5) +o 1 8.. 10 .11 1-(2,4,6-trichlorophenyl)-3-(4- +0, 14 1 nltroaniline)-5-pyrazol0ne (1.7) 9 1-hydroxy-N-(2- 2- nzpy1-T-meth01 yacetr 1-(2,4,-6triehlorophenyl)-3-(4- 44 ,2
aeetarnldophenethyD-2- anllide (0.6). nltroanlline)-5-pyrazolone (0.9). naphthamida (0.9). 10 1-hydroxy-N-(2- 2- n 0yl-T-m thoxyacet- 1-(2,4,6-trieh10rophenyl)-3-(4- acetarnldophenethyl)-2- anillde (2.0).
naphthamide (2.4)
anilide (0.6);
nltroanillne)-5-pyrazolone (2.1).
ll 1L group, a substituted cycloalkyl group, an unsubstituted dicyclpl r 0C H salkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R represents NHCOCHzCHzN a member selected from the group consisting of an unsub- 5 G 4 stituted aryl group, a substituted aryl group, an unsubstituted a 2 hctcrocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during Coupler (9):
the coupling reaction. 10
3. The color mixing preventing process as claimed in claim QOCHZOONH S0 NCH@ 1 wherein the proportion of the ballasted yellow coupler is 0.0005-0.5 mole per mole of said blue-sensitive silver halide H2) Q emulsion. 3
4. The color mixing preventing process as claimed in claim Coupler (10): 1 wherein said blue-sensitive silver halide emulsion containing S OZNHOIIID the ballasted yellow coupler is a gelatino silver iodobromide emulsion. Q-COCHzCONH- 5. The multilayer-type reversal color photographic material of claim 2, wherein the amount of said ballasted yellow cou- 0 N I r r 0 0005 0 5 1 pler lS present in an amount 0 rom to mo s per CH3 mol of said blue-sensitive silver halide emulsion. Coupler (11):
6. The multilayer-type reversal color photographic material C O O 012E125 of claim 2, wherein said ballasted yellow coupler is a member selected from the group consisting of C O CHQC QNH- CH; Coupler (1):
0 CH3 Coupler (12): 0 O CuHzo C H 0-COCHzCONH I CH -COCHQCONH S 0311 OCHa Cou ler 2): i
P CH3 CIEH Coupler 1s 0 o 0 012m,
N Goocmc ONH cam-Q-oo (murmur-Q C1 Coupler 14 a. 40 r t C H OCH-CONH Coupler (3): (E0011 0 5 U Q 5 1110) O17H35CONH- COCHzCONH- 00011 4 COCHzCONH- Coupler (4):
O CH; C17H35C ONH-- 0 CH3 Coupler (15): s mn) 0 CHzCONH- i @oocmoorm-Qs 0:- 303K Coupler (5): s um CHzC O OH H aHim) .h. r H
CH3 7. The process for the prevention of color mixing of claim 1, Coupler (7):
wherein said color forming developing agent is a p-phen- CmH CH=CH(|3HC ONE-Q ylenediamine derivative.
CHZC O OH 8. The process for the prevention of color mixing of claim 7,
COCH wherein said derivative 15 a member selected from the group consisting of 4-amino-N,N-diethylaniline, 4-amino-3-methyl C O CHzC ONH- N-methyl-N-([3-methyl-sulfonamidoethyl)-aniline, and 4- amino-3-methyl-N-ethyl-N-(B-hydroxy-ethyl)-aniline.
m w My 7 9. The process for the prevention of color mixing of claim 1,
C O CHzC ONH- wherein said diffusible cyan coupler is a phenolic coupler.
10, The process for the prevention of color mixing of claim 9, wherein said coupler is a member selected from the group consisting of 2-chloro-l-naphthol, 2,4-dichloroJ-naphthol, lhydroxy-N-butyl-2-naphthamide and l-hydroxy-N-t 2- acetamidophenethyl)-2-naphthamide.
11. The process for the prevention of color mixing of claim 1, wherein said diffusable magenta coupler is a member selected from the group consisting of open-chain methylene couplers and cyclic methylene couplers.
12. The process for the prevention of color mixing of claim ll, wherein said open-chain methylene coupler is a member selected from the group consisting of acylacetonitriles, 2- eyanoethylbenzofuran, and benzylacetonitrile and said cyclic methylene coupler being a member selected from the group consisting of l-phenyl-3-methyl-S-pyrazolone, l-phenyl-3-(4- chlorobenzamido)-5-pyrazolone, 1-phenyl-3-(3-nitrobenzoylamino)-5-pyrazolone, and l-(2,4,6-trichlorophenyl)-3-(4- nitroanilino)-5-pyrazolone.
13. The process for the prevention of color mixing of claim 1, wherein said yellow coupler is an acylacetamide type openchain methylene coupler.
14. The process for the prevention of color mixing of claim 13, wherein said coupler is a member selected from the group consisting of 2-acetanilide, 2-aceto-2,4-dichloroacetanilide, 2-benzoylacetanilide, 2-benzoyl-2'-methoxyacetanilide, and Z-benzoyl(4-p-toluene-sulfonamido) acetanilide.
15. A process for the prevention of color mixing for a multilayer-type reversal photographic light-sensitive material of the type developed in color forming developers, each containing a coupler, which comprises developing said multilayertype reversal photographic light-sensitive material having on a support,
a. a red-sensitive emulsion layer,
b. a green-sensitive emulsion layer, and
c. a blue-sensitive emulsion layer, said developing being carried out with color. developers containing a diffusabie cyan, yellow and magenta couplers, respectively, said blue emulsion layer containing a ballasted yellow coupler of the formula wherein R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloulkyl group, a substituted cycloalkyl group, an unsubstituted dicycloilkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and
X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during wherein R represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during the coupling reaction, said ballasted yellow coupler being present in an amount of from 0.0005 to 0.5 mols 0 per mol of blue-sensitive silver halide emulsion.
Claims (16)
- 2. A multilayer-type reversal color photographic material of the type to be developed in color developers containing couplers, which comprises a support having thereon, a. a red-sensitive emulsion layer, b. a green-sensitive emulsion layer, and c. a blue-sensitive emulsion layer, said blue-sensitive emulsion layer containing a ballasted yellow coupler of the formula wherein R1 represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R2 represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during the coupling reaction.
- 3. The color mixing preventing process as claimed in claim 1 wherein the proportion of the ballasted yellow coupler is 0.0005-0.5 mole per mole of said blue-sensitive silver halide emulsion.
- 4. The color mixing preventing process as claimed in claim 1 wherein said blue-sensitive silver halide emulsion containing the ballasted yellow coupler is a gelatino silver iodobromide emulsion.
- 5. The multilayer-type reversal color photographic material of claim 2, wherein the amount of said ballasted yellow coupler is present in an amount of from 0.0005 to 0.5 mols per mol of said blue-sensitive silver halide emulsion.
- 6. The multilayer-type reversal color photographic material of claim 2, wherein said ballasted yellow coupler is a member selected from the group consisting of
- 7. The process for the prevention of color mixing of claim 1, wherein said color forming developing agent is a p-phenylenediamine derivative.
- 8. The process for the prevention of color mixing of claim 7, wherein said derivative is a member selected from the group consisting of 4-amino-N,N-diethylaniline, 4-amino-3-methyl-N-methyl-N-( Beta -methyl-sulfonamidoethyl)-aniline, and 4-amino-3-methyl-N-ethyl-N-( Beta -hydroxy-ethyl)-aniline.
- 9. The process for the prevention of color mixing of claim 1, wherein said diffusible cyan coupler is a phenolic coupler.
- 10. The process for the prevention of color mixing of claim 9, wherein said coupler is a member selected from the group consistIng of 2-chloro-1-naphthol, 2,4-dichloro-1-naphthol, 1-hydroxy-N-butyl-2-naphthamide and 1-hydroxy-N-(2-acetamidophenethyl)-2-naphthamide.
- 11. The process for the prevention of color mixing of claim 1, wherein said diffusable magenta coupler is a member selected from the group consisting of open-chain methylene couplers and cyclic methylene couplers.
- 12. The process for the prevention of color mixing of claim 11, wherein said open-chain methylene coupler is a member selected from the group consisting of acylacetonitriles, 2-cyanoethylbenzofuran, and benzylacetonitrile and said cyclic methylene coupler being a member selected from the group consisting of 1-phenyl-3-methyl-5-pyrazolone, 1-phenyl-3-(4-chlorobenzamido)-5-pyrazolone, 1-phenyl-3-(3-nitrobenzoyl-amino)-5-pyrazolone, and 1-(2,4,6-trichlorophenyl)-3-(4-nitroanilino)-5-pyrazolone.
- 13. The process for the prevention of color mixing of claim 1, wherein said yellow coupler is an acylacetamide type open-chain methylene coupler.
- 14. The process for the prevention of color mixing of claim 13, wherein said coupler is a member selected from the group consisting of 2-acetanilide, 2-aceto-2'',4''-dichloroacetanilide, 2-benzoylacetanilide, 2-benzoyl-2''-methoxyacetanilide, and 2-benzoyl(4''-p-toluene-sulfonamido) acetanilide.
- 15. A process for the prevention of color mixing for a multilayer-type reversal photographic light-sensitive material of the type developed in color forming developers, each containing a coupler, which comprises developing said multilayer-type reversal photographic light-sensitive material having on a support, a. a red-sensitive emulsion layer, b. a green-sensitive emulsion layer, and c. a blue-sensitive emulsion layer, said developing being carried out with color developers containing a diffusable cyan, yellow and magenta couplers, respectively, said blue emulsion layer containing a ballasted yellow coupler of the formula wherein R1 represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R2 represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split off during the coupling reaction, said ballasted yellow coupler being present in an amount of from 0.0005 to 0.5 mols per mol of said blue-sensitive silver halide emulsion.
- 16. A multilayer-type reversal color photographic material of the type to be developed in color developers containing couplers, which comprises a support having thereon, a. a red-sensitive emulsion layer, b. a green-sensitive emulsion layer, and c. a blue-sensitive emulsion layer, said blue-sensitive emulsion layer containing a ballasted yellow coupler of the formula wherein R1 represents a member selected from the group consisting of a tertiary alkyl group, an unsubstituted cycloalkyl group, a substituted cycloalkyl group, an unsubstituted dicycloalkyl group, a substituted dicycloalkyl group, an unsubstituted aryl group and a substituted aryl group; R2 represents a member selected from the group consisting of an unsubstituted aryl group, a substituted aryl group, an unsubstituted heterocyclic group, and a substituted heterocyclic group; and X represents a member selected from the group consisting of a hydrogen atom and a group capable of being split ofF during the coupling reaction, said ballasted yellow coupler being present in an amount of from 0.0005 to 0.5 mols per mol of blue-sensitive silver halide emulsion.
- 17. The multilayer-type reversal color photographic material of claim 2, wherein said blue-sensitive silver halide emulsion containing a ballasted yellow coupler is a gelatino silver iodobromide emulsion.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP43033874A JPS4818256B1 (en) | 1968-05-20 | 1968-05-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3640716A true US3640716A (en) | 1972-02-08 |
Family
ID=12398643
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US826283A Expired - Lifetime US3640716A (en) | 1968-05-20 | 1969-05-20 | Method of preventing color mixing in multilayer-type reversal color photographic light-sensitive materials |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3640716A (en) |
| JP (1) | JPS4818256B1 (en) |
| BE (1) | BE733260A (en) |
| FR (1) | FR2009919A1 (en) |
| GB (1) | GB1247786A (en) |
| NL (1) | NL6907727A (en) |
| SE (1) | SE358484B (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4015988A (en) * | 1974-03-04 | 1977-04-05 | Fuji Photo Film Co., Ltd. | Multilayer color photographic light-sensitive material |
| US9045524B2 (en) | 2009-05-21 | 2015-06-02 | Novagenesis Foundation | Selective caspase inhibitors and uses thereof |
| US9562069B2 (en) | 2008-05-21 | 2017-02-07 | Genesis Technologies Limited | Selective caspase inhibitors and uses thereof |
| US9944674B2 (en) | 2011-04-15 | 2018-04-17 | Genesis Technologies Limited | Selective cysteine protease inhibitors and uses thereof |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3114559A1 (en) | 2020-09-29 | 2022-04-01 | Psa Automobiles Sa | DEVICE FOR CONTROLLING THE RESTART OF A COMBUSTION ENGINE OF A HYBRID VEHICLE |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3180734A (en) * | 1959-11-05 | 1965-04-27 | Gevaert Photo Prod Nv | Light sensitive photographic color element |
| US3265506A (en) * | 1964-05-04 | 1966-08-09 | Eastman Kodak Co | Yellow forming couplers |
-
1968
- 1968-05-20 JP JP43033874A patent/JPS4818256B1/ja active Pending
-
1969
- 1969-05-19 BE BE733260D patent/BE733260A/xx unknown
- 1969-05-19 SE SE07020/69A patent/SE358484B/xx unknown
- 1969-05-20 NL NL6907727A patent/NL6907727A/xx unknown
- 1969-05-20 GB GB25619/69A patent/GB1247786A/en not_active Expired
- 1969-05-20 US US826283A patent/US3640716A/en not_active Expired - Lifetime
- 1969-05-20 FR FR6916221A patent/FR2009919A1/fr not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3180734A (en) * | 1959-11-05 | 1965-04-27 | Gevaert Photo Prod Nv | Light sensitive photographic color element |
| US3265506A (en) * | 1964-05-04 | 1966-08-09 | Eastman Kodak Co | Yellow forming couplers |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4015988A (en) * | 1974-03-04 | 1977-04-05 | Fuji Photo Film Co., Ltd. | Multilayer color photographic light-sensitive material |
| US9562069B2 (en) | 2008-05-21 | 2017-02-07 | Genesis Technologies Limited | Selective caspase inhibitors and uses thereof |
| EP2288615B1 (en) * | 2008-05-21 | 2017-06-21 | Genesis Technologies Limited | Selective caspase inhibitors and uses thereof |
| US10167313B2 (en) | 2008-05-21 | 2019-01-01 | Genesis Technologies Limited | Selective caspase inhibitors and uses thereof |
| US9045524B2 (en) | 2009-05-21 | 2015-06-02 | Novagenesis Foundation | Selective caspase inhibitors and uses thereof |
| US9944674B2 (en) | 2011-04-15 | 2018-04-17 | Genesis Technologies Limited | Selective cysteine protease inhibitors and uses thereof |
| US10975119B2 (en) | 2011-04-15 | 2021-04-13 | Genesis Technologies Limited | Selective cysteine protease inhibitors and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS4818256B1 (en) | 1973-06-05 |
| SE358484B (en) | 1973-07-30 |
| NL6907727A (en) | 1969-11-24 |
| FR2009919A1 (en) | 1970-02-13 |
| DE1925391B2 (en) | 1976-06-10 |
| BE733260A (en) | 1969-11-03 |
| GB1247786A (en) | 1971-09-29 |
| DE1925391A1 (en) | 1969-12-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3703375A (en) | Photographic processes and materials | |
| JPH0327103B2 (en) | ||
| US4015988A (en) | Multilayer color photographic light-sensitive material | |
| US3640716A (en) | Method of preventing color mixing in multilayer-type reversal color photographic light-sensitive materials | |
| US3547640A (en) | Multicolor photographic elements | |
| JPS61246749A (en) | Silver halide photographic sensitive material | |
| US3706556A (en) | Method for preventing color mixing in multiple layer-type reversal color photographic light-sensitive materials | |
| JPH0234372B2 (en) | HAROGENKAGINKARAASHASHINKANKOZAIRYO | |
| US4409321A (en) | Method for the reproduction of color image | |
| US3615499A (en) | Photographic processes | |
| JPH0416939A (en) | Silver halide color photographic sensitive material | |
| EP1055964B1 (en) | Silver bromoiodide core-shell grain emulsion | |
| JPS6224250A (en) | Silver halide color photographic sensitive material | |
| US3940271A (en) | Color photographic light-sensitive material | |
| JPH01145656A (en) | Color photosensitive material | |
| US4021238A (en) | Process of forming color photographic images | |
| US3844784A (en) | Reversal multi-layer color photographic materials | |
| JP2927374B2 (en) | Silver halide color photographic materials | |
| US3393071A (en) | Photographic color material and process utilizing 5-pyrazolone color couplers | |
| US3859095A (en) | Color-photographic material with improved color reproduction | |
| JPS589938B2 (en) | Photosensitive silver halide multilayer color photographic material | |
| JP2729690B2 (en) | Silver halide color photographic materials | |
| JPH07122740B2 (en) | Silver halide color photographic light-sensitive material | |
| JP2914797B2 (en) | Silver halide color photographic materials | |
| JPH0640208B2 (en) | Multi-layer color photographic material |