US3497437A - Method of electrophoresis - Google Patents
Method of electrophoresis Download PDFInfo
- Publication number
- US3497437A US3497437A US647592A US3497437DA US3497437A US 3497437 A US3497437 A US 3497437A US 647592 A US647592 A US 647592A US 3497437D A US3497437D A US 3497437DA US 3497437 A US3497437 A US 3497437A
- Authority
- US
- United States
- Prior art keywords
- gel
- agar
- electrophoresis
- polyethylene glycol
- dried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001962 electrophoresis Methods 0.000 title description 18
- 238000000034 method Methods 0.000 title description 12
- 239000000499 gel Substances 0.000 description 30
- 229920001817 Agar Polymers 0.000 description 27
- 229920001223 polyethylene glycol Polymers 0.000 description 20
- 239000002202 Polyethylene glycol Substances 0.000 description 19
- 235000010419 agar Nutrition 0.000 description 13
- 239000008272 agar Substances 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 239000012528 membrane Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000002791 soaking Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 239000000337 buffer salt Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 108010025899 gelatin film Proteins 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- JUGIMJPUWBIDPN-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O JUGIMJPUWBIDPN-UHFFFAOYSA-N 0.000 description 1
- VLEIUWBSEKKKFX-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O VLEIUWBSEKKKFX-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- FZIPCQLKPTZZIM-UHFFFAOYSA-N 2-oxidanylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FZIPCQLKPTZZIM-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229960002319 barbital Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229940113116 polyethylene glycol 1000 Drugs 0.000 description 1
- 229940057838 polyethylene glycol 4000 Drugs 0.000 description 1
- 229940093429 polyethylene glycol 6000 Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44747—Composition of gel or of carrier mixture
Definitions
- This invention relates to a method of electrophoresis and, more particularly, to a method of electrophoresis employing an agar gel medium.
- Electrophoresis is the movement in an electric field of charged particles in any medium, such as, for example, inorganic ions, proteins such as albumin, enzymes, hemoglobin, carbohydrates, blood serum, and the like. These charged particles, as constituents of particular mixtures, will migrate with different mobilities when the mixture in solution is placed in an electric field. While the current is flowing, the charged particles will move continuously at different speeds and separate into different groups, and thus provide an effective means for resolving the components of certain mixtures.
- any medium such as, for example, inorganic ions, proteins such as albumin, enzymes, hemoglobin, carbohydrates, blood serum, and the like.
- electrophoresis Various methods of electrophoresis are known, for example, the classical moving boundary method of Tiselius, paper electrophoresis, and methods employing liquid or solid buifer systems.
- the present invention contemplates the use of an agar gel medium for the electrophoretic movement of charged particles.
- agar gel media for the electrophoretic movement of charged particles.
- the general use of agar gel media in electrophoresis is known, as can be seen, for example, from U.S. Patents 2,843,540 and 3,062,731.
- Agar is a dried hydrophilic colloid substance extracted from seaweed such as red algae (Class Rhodobhyceae) and purified by various known means. It is capable of forming solid or semi-solid transparent gels of predetermined rigidity upon being cooled from the liquid solution form, which makes it useful as a medium for electrophoresis. In combination with various buffers, agar forms a relatively inert medium which has negligible harmful effect upon proteins, enzymes, and the like components of the mixtures to be analyzed.
- agar gel media for electrophoresis
- the substance to be resolved into its components is placed in a slit in an agar gel film on a slide or other supporting means.
- a suitable voltage gradient to the gel medium, the respective charged particles in the substance will migrate.
- the gel is then stained biochemically, soaked for about 6 to 12 hours and dried, or first fixed and then soaked for about '6 to 12 hours, stained and dried.
- the dried gel membrane can then be optically analyzed, as, for example, with a colorimeter or a scanning densitometer.
- good separation of components is dependent upon the ability to close the sample slits completely. It closure is incomplete, current does not pass through the area of sample application.
- the texture of the agar gel has been such that the slits could not be closed, resulting in a distortion in the migration of the charged particles from the slit.
- the film when dried for analytical purposes would not admit of easy removal from the slide tray and tended to crack.
- the long soaking period of 6 to 12 hours is time consuming and undersirable. But without using this Ion-g soaking period of conventional practice, the buffer and substrate salts would form crystal patterns in the dried membrane, rendering the membrane useless for quantitation by densitometry.
- an agar gel is improved for use in electrophoresis by incorporating in the gel medium from about 0.5% to about 5%, by weight of the medium, of polyethylene glycol having a molecular weight of from about 200 to about 20,000.
- Polyethylene glycols are high molecular weight polymers which are generally produced by reacting ethylene oxide with ethylene glycol or water and have the following structure:
- n represents the average number of oxyethylene groups.
- PEG 4000 which is a polyethylene glycol product having an average molecular weight of 4,000, is the preferred product of this group.
- the agar gel medium of this invention also generally employs a buffer system to maintain an essentially con stant hydrogen ion concentration or pH.
- a buffer system to maintain an essentially con stant hydrogen ion concentration or pH.
- Any conventional butler system can be employed, for example, phosphate and/ or phosphoric acid, citrate-citric acid, acetate, borate, tris-glycine, tris-EDTA (ethylenediaminetetraacetic acid)-boric acid, barbital-barbituric, and the like butter systems.
- Agar gels containing about 2% by weight polyethylene glycol for serum protein electrophoresis are prepared by adding 1.2 gm. of Special Agar Noble, 2.0 gm. of PEG 4000, and ml. of barbital butler (sodiu-rn barbital-barbituric acid at pH 8.6, ionic strength 0.040) to a 500 ml. Erlenmeyer flask. The mixture is heated in a boiling water bath until a clear agar solution results. The temperature of the mixture is retained at the boiling temperature of water for 5 to 10 minutes to insure solution of the agar.
- the agar solution is cooled from 100 C. to about 80 C. before pouring twenty-five milliliters of the solution into each of several trays. Gelling occurs below 50 C.
- the agar gels are then nested in groups of 10, sealed in plastic bags, and a portion are stored at room temperature and anotoher portion at 5 C.
- the bufier constituent can contain sodium azide to prevent the growth of contaminates in the gel.
- slits are cut in the agar and buffer is absorbed out with filter paper strips. Open wells result which each accommodate approximately 5 microliters of blood serum or other sample to be tested.
- a blood serum sample is applied and allowed to perfuse into the surrounding gel for 2 minutes.
- the slits are then closed to re-establish a continuous path in the gel for the flow of current; and open slit constitutes an undesirably break in the continuity of the gel.
- Closing the slits is accomplished by gently pulling the agar loose form one end of the gel plate. By means of this gentle pulling, the slits immediately close permanently. In an identical gel but without the polyethylene glycol, it has been found virtually impossible to close the slits.
- the excess sample is blotted up and the gel is placed on the base unit.
- a current of milliamperes (approxi mately 90 V.) passed through the gel for 80 minutes.
- the proteins are fixed by immersing the gel in an aqueous 7 /2% acetic acid solution. Fixation continues for 20 minutes, during which times the buffer salts are partially eluted from the gel.
- Equivalent amounts of other fixatives for example, trichloroacetic acid and low molecular weight alkanols such as methanol, ethanol and isopropanol can be used in place of the acetic acid with comparable results.
- EXAMPLE 2 When one gram of polyethylene glycol 6000 and /2 gram of polyethylene glycol 1000, respectively, are substituted for the polyethylene glycol 4000 in Example 1, substantially equivalent excellent agar gels for use in electrophoresis are obtained.
- EXAMPLE 3 Hemoglobin and LDH (lacticdehydrogenase) isozyme samples are electrophoretically analyzed with agar gels containing 0.5% to 5% by weight polyethylene glycol in the same manner as the blood serum in Example 1 with excellent results.
- LDH lacticdehydrogenase
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
United States Patent 3,497,437 METHOD OF ELECTROPHORESIS Allan L. Louderback, Temple City, Martin C. Natland,
Glendale, and Edward Shanbrom, Santa Ana, Califi, assignors to Baxter Laboratories, Inc., Morton Grove, III., a corporation of Delaware No Drawing. Filed June 21, 1967, Ser. No. 647,592 Int. Cl. Blllk /00 U.S. Cl. 204180 2 Claims ABSTRACT OF THE DISCLOSURE A method of improving techniques of agar gel electrophoresis which consists of employing in the agar gel medium from about 0.5% to about 5% by weight polyethylene glycol.
This invention relates to a method of electrophoresis and, more particularly, to a method of electrophoresis employing an agar gel medium.
Electrophoresis is the movement in an electric field of charged particles in any medium, such as, for example, inorganic ions, proteins such as albumin, enzymes, hemoglobin, carbohydrates, blood serum, and the like. These charged particles, as constituents of particular mixtures, will migrate with different mobilities when the mixture in solution is placed in an electric field. While the current is flowing, the charged particles will move continuously at different speeds and separate into different groups, and thus provide an effective means for resolving the components of certain mixtures.
Various methods of electrophoresis are known, for example, the classical moving boundary method of Tiselius, paper electrophoresis, and methods employing liquid or solid buifer systems.
The present invention contemplates the use of an agar gel medium for the electrophoretic movement of charged particles. The general use of agar gel media in electrophoresis is known, as can be seen, for example, from U.S. Patents 2,843,540 and 3,062,731.
Agar is a dried hydrophilic colloid substance extracted from seaweed such as red algae (Class Rhodobhyceae) and purified by various known means. It is capable of forming solid or semi-solid transparent gels of predetermined rigidity upon being cooled from the liquid solution form, which makes it useful as a medium for electrophoresis. In combination with various buffers, agar forms a relatively inert medium which has negligible harmful effect upon proteins, enzymes, and the like components of the mixtures to be analyzed.
In the conventional use of agar gel media for electrophoresis, the substance to be resolved into its components is placed in a slit in an agar gel film on a slide or other supporting means. By application of a suitable voltage gradient to the gel medium, the respective charged particles in the substance will migrate. After a predetermined period of time the various components are separated. The gel is then stained biochemically, soaked for about 6 to 12 hours and dried, or first fixed and then soaked for about '6 to 12 hours, stained and dried. The dried gel membrane can then be optically analyzed, as, for example, with a colorimeter or a scanning densitometer. In this method of electrophoresis, good separation of components is dependent upon the ability to close the sample slits completely. It closure is incomplete, current does not pass through the area of sample application.
In previous practice, the texture of the agar gel has been such that the slits could not be closed, resulting in a distortion in the migration of the charged particles from the slit. Moreover, the film when dried for analytical purposes would not admit of easy removal from the slide tray and tended to crack. In addition, the long soaking period of 6 to 12 hours is time consuming and undersirable. But without using this Ion-g soaking period of conventional practice, the buffer and substrate salts would form crystal patterns in the dried membrane, rendering the membrane useless for quantitation by densitometry.
Accordingly, it is an object of the present invention to provide an improved agar gel medium for use in electrophoresis and the like.
In accordance with the present invention, an agar gel is improved for use in electrophoresis by incorporating in the gel medium from about 0.5% to about 5%, by weight of the medium, of polyethylene glycol having a molecular weight of from about 200 to about 20,000.
Polyethylene glycols are high molecular weight polymers which are generally produced by reacting ethylene oxide with ethylene glycol or water and have the following structure:
in which n represents the average number of oxyethylene groups. PEG 4000, which is a polyethylene glycol product having an average molecular weight of 4,000, is the preferred product of this group.
It has been found that the employment of polyethylene glycol in the hereinbefore stated concentration in agar gel media for electrophoresis substantially improves the texture of the gel such that after sample application the slits can be adequately closed. In addition, the substrate and buffer salts are rapidly eluted from the gel in the short fixing period, or in about a 5 to 10 minute soak in water instead of the usual 6 to 12 hour soak. The incorporation of polyethylene glycol in the agar gel makes the gel porous, allowing rapid elution of the buffer salts from the medium. Furthermore, the dried gel film can be readily removed from the slide without cracking, and the dried gel film remains soft and pliable for convenient use in subsequent analytical treatment.
Although it has been known to employ polyethylene glycol in agar used for culture media for the growth of fungi, as can be seen from U.S. Patent 2,437,766, it has not heretofore been known to employ polyethylene glycol to improve the texture of agar gel for electrophoresis such that sample application, elution of incorporated salts (buffer or substrate), and drying of the gel to a pliable transparent film are made practical.
The agar gel medium of this invention also generally employs a buffer system to maintain an essentially con stant hydrogen ion concentration or pH. Any conventional butler system can be employed, for example, phosphate and/ or phosphoric acid, citrate-citric acid, acetate, borate, tris-glycine, tris-EDTA (ethylenediaminetetraacetic acid)-boric acid, barbital-barbituric, and the like butter systems.
The following examples will illustrate the invention in further detail although the invention is not limited to these specific examples. All percentages are by weight unless otherwise stated.
EXAMPLE 1 Agar gels containing about 2% by weight polyethylene glycol for serum protein electrophoresis are prepared by adding 1.2 gm. of Special Agar Noble, 2.0 gm. of PEG 4000, and ml. of barbital butler (sodiu-rn barbital-barbituric acid at pH 8.6, ionic strength 0.040) to a 500 ml. Erlenmeyer flask. The mixture is heated in a boiling water bath until a clear agar solution results. The temperature of the mixture is retained at the boiling temperature of water for 5 to 10 minutes to insure solution of the agar.
The agar solution is cooled from 100 C. to about 80 C. before pouring twenty-five milliliters of the solution into each of several trays. Gelling occurs below 50 C. The agar gels are then nested in groups of 10, sealed in plastic bags, and a portion are stored at room temperature and anotoher portion at 5 C. If desired, the bufier constituent can contain sodium azide to prevent the growth of contaminates in the gel.
' After gelling, slits are cut in the agar and buffer is absorbed out with filter paper strips. Open wells result which each accommodate approximately 5 microliters of blood serum or other sample to be tested. In this example, a blood serum sample is applied and allowed to perfuse into the surrounding gel for 2 minutes.
The slits are then closed to re-establish a continuous path in the gel for the flow of current; and open slit constitutes an undesirably break in the continuity of the gel. Closing the slits is accomplished by gently pulling the agar loose form one end of the gel plate. By means of this gentle pulling, the slits immediately close permanently. In an identical gel but without the polyethylene glycol, it has been found virtually impossible to close the slits.
The excess sample is blotted up and the gel is placed on the base unit. A current of milliamperes (approxi mately 90 V.) passed through the gel for 80 minutes.
At the end of the electrophoresis the proteins are fixed by immersing the gel in an aqueous 7 /2% acetic acid solution. Fixation continues for 20 minutes, during which times the buffer salts are partially eluted from the gel. Equivalent amounts of other fixatives, for example, trichloroacetic acid and low molecular weight alkanols such as methanol, ethanol and isopropanol can be used in place of the acetic acid with comparable results.
After fixation the get is allowed to imbibe in water for about 5 minutes. Then it is dried to a smooth, clear pliable film. These gels are optically scanned on a thinfllm densitorneter with excellent results. On identical gels but without the polyethylene glycol, a 6 to 12 hour soaking must follow the fixation process to yield suitable membranes. When these gels without the polyethylene glycol are not subjected to the extended 6 to 12 hour soaking, the resulting dried membrane contains a dense precipitation of buffer salt crystals. Attempts to dissolve these crystals from the dried membrane were unsuccessful; hence, these membranes were not suitable for quantitation in a transmission densitomer.
A substantial and significant difference has been found between dried gel films made from agars with polyethylene glycol and those without polyethylene glycol; Polyethylene glycol gels dry smooth, flat, and pliable; whereas, gels without polyethylene glycol, even after a 12 hour soaking, dry to a badly wrinkled, very fragile membrane. Gels without polyethylene glycol also are generally difiicult to remove from the tray after they have dried to a thin film whereas those with polyethlene glycol are easily removed from the tray.
EXAMPLE 2 When one gram of polyethylene glycol 6000 and /2 gram of polyethylene glycol 1000, respectively, are substituted for the polyethylene glycol 4000 in Example 1, substantially equivalent excellent agar gels for use in electrophoresis are obtained.
EXAMPLE 3 EXAMPLE 4 Hemoglobin and LDH (lacticdehydrogenase) isozyme samples are electrophoretically analyzed with agar gels containing 0.5% to 5% by weight polyethylene glycol in the same manner as the blood serum in Example 1 with excellent results.
As will be readily apparent to those skilled in the art, other examples of the herein-defined invention can be devised after reading the foregoing specification and claims appended hereto by various modifications and 3 polyethylene glycol having a molecular weight of from about 200 to about 20,000.
2. The method of claim 1 in which the polyethylene glycol has an average molecular weight of about 4,000.
References Cited v UNITED STATES PATENTS 3,378,481 4/1968 Saravis et al 204299 3,384,564 5/1968 Ornstein et al 204l 3,407,133 10/1968 Oliva et al. 204--299 JOHN H. MACK, Primary Evaminer A. C. PRESCOTT, Assistant Examiner U.S. Cl. X.R. 204-299
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US64759267A | 1967-06-21 | 1967-06-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3497437A true US3497437A (en) | 1970-02-24 |
Family
ID=24597564
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US647592A Expired - Lifetime US3497437A (en) | 1967-06-21 | 1967-06-21 | Method of electrophoresis |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3497437A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3857778A (en) * | 1970-11-04 | 1974-12-31 | Fuji Photo Film Co Ltd | Method of rendering electrophoresis membrane transparent |
| US4209373A (en) * | 1979-06-01 | 1980-06-24 | Corning Glass Works | Acidic agar gel electrochromatography of hemoglobins |
| US4209372A (en) * | 1979-06-01 | 1980-06-24 | Corning Glass Works | Alkaline agarosse gel electrophoresis of hemoglobins |
| US4222836A (en) * | 1979-06-01 | 1980-09-16 | Corning Glass Works | Acidic agar gel electrochromatography of glycohemoglobins |
| US4275196A (en) * | 1979-03-23 | 1981-06-23 | The Cleveland Clinic Foundation | Glyoxal agarose |
| WO1982002500A1 (en) * | 1981-01-19 | 1982-08-05 | Instruments Inc Beckman | Improved electrophoretic gel for separating isoenzymes |
| US4559120A (en) * | 1983-03-23 | 1985-12-17 | Rush-Presbyterian-St. Luke's Medical Center | Agarose gel electrophoresis technique for the determination of amylase isoenzymes |
| US4695354A (en) * | 1985-09-18 | 1987-09-22 | Fuji Photo Film Co., Ltd. | Medium for electrophoresis |
| WO1990007978A1 (en) * | 1989-01-13 | 1990-07-26 | Fmc Corporation | Polysaccharide resolving gels and gel systems for stacking electrophoresis |
| US4963243A (en) * | 1983-01-08 | 1990-10-16 | Director Of The Finance Division Minister's Secretariat Science And Technology Agency | Medium for electrophoresis |
| US5753094A (en) * | 1995-09-20 | 1998-05-19 | Beckman Instruments, Inc. | Borate storage buffer and sample diluent |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3378481A (en) * | 1966-01-03 | 1968-04-16 | Calvin A. Saravis | Biochemical test plate |
| US3384564A (en) * | 1962-11-21 | 1968-05-21 | Mount Sinai Hospital Res Found | Electrophoretic process for simultaneously spearating and concentrating particles |
| US3407133A (en) * | 1965-06-18 | 1968-10-22 | Baxter Laboratories Inc | Expendable electrophoresis apparatus |
-
1967
- 1967-06-21 US US647592A patent/US3497437A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3384564A (en) * | 1962-11-21 | 1968-05-21 | Mount Sinai Hospital Res Found | Electrophoretic process for simultaneously spearating and concentrating particles |
| US3407133A (en) * | 1965-06-18 | 1968-10-22 | Baxter Laboratories Inc | Expendable electrophoresis apparatus |
| US3378481A (en) * | 1966-01-03 | 1968-04-16 | Calvin A. Saravis | Biochemical test plate |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3857778A (en) * | 1970-11-04 | 1974-12-31 | Fuji Photo Film Co Ltd | Method of rendering electrophoresis membrane transparent |
| US4275196A (en) * | 1979-03-23 | 1981-06-23 | The Cleveland Clinic Foundation | Glyoxal agarose |
| US4209373A (en) * | 1979-06-01 | 1980-06-24 | Corning Glass Works | Acidic agar gel electrochromatography of hemoglobins |
| US4209372A (en) * | 1979-06-01 | 1980-06-24 | Corning Glass Works | Alkaline agarosse gel electrophoresis of hemoglobins |
| US4222836A (en) * | 1979-06-01 | 1980-09-16 | Corning Glass Works | Acidic agar gel electrochromatography of glycohemoglobins |
| FR2458071A1 (en) * | 1979-06-01 | 1980-12-26 | Corning Glass Works | |
| WO1982002500A1 (en) * | 1981-01-19 | 1982-08-05 | Instruments Inc Beckman | Improved electrophoretic gel for separating isoenzymes |
| US4963243A (en) * | 1983-01-08 | 1990-10-16 | Director Of The Finance Division Minister's Secretariat Science And Technology Agency | Medium for electrophoresis |
| US4559120A (en) * | 1983-03-23 | 1985-12-17 | Rush-Presbyterian-St. Luke's Medical Center | Agarose gel electrophoresis technique for the determination of amylase isoenzymes |
| US4695354A (en) * | 1985-09-18 | 1987-09-22 | Fuji Photo Film Co., Ltd. | Medium for electrophoresis |
| WO1990007978A1 (en) * | 1989-01-13 | 1990-07-26 | Fmc Corporation | Polysaccharide resolving gels and gel systems for stacking electrophoresis |
| JPH0786501B2 (en) * | 1989-01-13 | 1995-09-20 | エフ エム シー コーポレーション | Polysaccharide splitting gel and gel system for stacking electrophoresis |
| US5753094A (en) * | 1995-09-20 | 1998-05-19 | Beckman Instruments, Inc. | Borate storage buffer and sample diluent |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Huneeus et al. | Fibrillar proteins from squid axons: I. Neurofilament protein | |
| Raymond et al. | Preparation and properties of acrylamide gel for use in electrophoresis | |
| Wake et al. | Analysis of casein fractions by zone electrophoresis in concentrated urea | |
| Tiselius | Electrophoresis of serum globulin: Electrophoretic analysis of normal and immune sera | |
| Rosén et al. | Agarose isoelectric focusing of native human immunoglobulin M and α2-macroglobulin | |
| Grant et al. | The proteins of normal urine | |
| US3497437A (en) | Method of electrophoresis | |
| Pierce et al. | α-1 Antitrypsin phenotypes determined by isoelectric focusing of the cysteine-antitrypsin mixed disulfide in serum | |
| WO1993015395A1 (en) | Capillary column containing a dynamically cross-linked composition and method of use | |
| CA2060314C (en) | Low electroendosmosis agarose | |
| EP0174990B2 (en) | Immunofixation electrophoresis process | |
| Barnett | The staining of lactic dehydrogenase isoenzymes after electrophoretic separation on cellulose acetate | |
| US4857163A (en) | High resolution electrophoretic gel and method for separating serum proteins | |
| Tyler | Physico-chemical properties of the fertilizins of the sea urchin Arbacia punctulata and the sand dollar Echinarachnius parma | |
| Kedersha et al. | Preparative agarose gel electrophoresis for the purification of small organelles and particles | |
| US3062731A (en) | Agar-agar system and additive | |
| Goldberg | A discontinuous buffer system for paper electrophoresis of human hemoglobins | |
| Skude et al. | Thin layer electrofocusing followed by electrophoresis in antibody containing gel | |
| EP0127841B1 (en) | Silver staining method | |
| Borton et al. | EFFECTS OF FOUR SPECIES OF BACTERIA ON PORCINE MUSCLE 2. Electrophoretic Patterns of Extracts of Salt‐Soluble Protein | |
| Kopp et al. | Separation of iron-containing ferritin from horse-spleen into three distinct fractions by starch-gel electrophoresis | |
| Richards et al. | An investigation of soluble ribonucleic acid by zone electrophoresis | |
| Merz et al. | Segregation of membrane components using isoelectric focusing in polyacrylamide gels | |
| Hjertén et al. | Polyacrylamide gel electrophoresis: Recovery of non-stained and stained proteins from gel slices | |
| Brackenridge et al. | The effects of some variables on protein separation by polyacrylamide gel electrophoresis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: COOPER LABORATORES, INC., 3145 PORTER DRIVE, PALO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DE;REEL/FRAME:004067/0785 Effective date: 19820917 |