US3458749A - Dispenser cathode made of tungsten powder having a grain size of less than three microns - Google Patents
Dispenser cathode made of tungsten powder having a grain size of less than three microns Download PDFInfo
- Publication number
- US3458749A US3458749A US644003A US3458749DA US3458749A US 3458749 A US3458749 A US 3458749A US 644003 A US644003 A US 644003A US 3458749D A US3458749D A US 3458749DA US 3458749 A US3458749 A US 3458749A
- Authority
- US
- United States
- Prior art keywords
- mixture
- cathode
- tungsten
- less
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title description 26
- 239000000203 mixture Substances 0.000 description 28
- 229910052721 tungsten Inorganic materials 0.000 description 13
- 239000010937 tungsten Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 9
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 229910052788 barium Inorganic materials 0.000 description 7
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 150000004645 aluminates Chemical class 0.000 description 5
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 150000001722 carbon compounds Chemical class 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- FQNGWRSKYZLJDK-UHFFFAOYSA-N [Ca].[Ba] Chemical compound [Ca].[Ba] FQNGWRSKYZLJDK-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/20—Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
- H01J1/28—Dispenser-type cathodes, e.g. L-cathode
Definitions
- pressed dispenser cathodes may be manufactured from a mixture of powdery tungsten and powdery tribariumaluminate, which preferably contains, in addition, calcium oxide, pressed by a high pressure (11,000 kg./cm. into a cathode body, and heated in vacuum or in a hydrogen atmosphere at 1800 to 1900 C. at which the aluminate melts and the gases are expelled from the cathode. Owing to the use of aluminates the cathode can be preserved in air only to a restricted extent.
- cathodes exhibited a high rate of barium evaporation and had a short lifetime.
- the active metal in this cathode was tungsten.
- An alloy of tungsten and molybdenum was used afterwards for reducing the evaporation of barium from the cathode. It appeared to be necessary to use an alloy of about 75% of Mo and 25% of W, but this reduced the emission as compared with the use of pure tungsten powder.
- the metal powders employed were mixtures of grains having a size lying between about 4 and 1212.
- the electron emission obtained is equivalent to that of the so-called L-cathode, in which the active barium oxide is accommodated in a cavity beneath a porous tungsten body.
- An advantage of the inventive cathode is that degassing and activation thereof takes considerably less time than in the case of an L-cathode.
- the pressure of 25,000 l g./cm. required for compressing a cathode according to the invention is more than twice ice that required for the known pressed cathodes using tungsten powders of a grain size lying between 4 and 12;/., but technically this involves no particular difliculties. The higher the pressure, the less the evaporation. Pressures below 20,000 kg./cm. are unsuitable because the Ba evaporation becomes too high.
- the cathode according to the invention has the same properties as the L-cathode, owing to the absence of molybdenum, but it can be manufactured at much lower cost.
- the cathode shown comprises a pressed emissive body 1, accommodated in a cylindrical molybdenum foil 2.
- the cylinder 2 is provided with strips 3 for securing same in the electrode system of the usual electron t-ube, e.g., a cathode-ray tube.
- the cylinder 2 accommodates a heating element 4 and a partition 5 of molybdenum in order to avoid emission from the body 1 to the heater 4.
- the body 1 consists of a powdery coprecipitated mixture of barium carbonate, calcium carbonate, and aluminum oxide in a molecular ratio of 5:312 (SBaCO 3CaCO 2Al O nH O), and tungsten powder having a grain size of less than 0.5 ,u.
- Such fine tungsten powder cannot be obtained by grinding, but is obtainable for example by the reduction of gaseous tungsten chloride (WCI with hydrogen, which is known as such.
- WCI with hydrogen gaseous tungsten chloride
- the mixture contains furthermore a small supply of carbon, preferably in the form of a soluble carbon compound such as sugar (C H O since this ensures a homogeneous distribution of the carbon in the mixture.
- the ratio in weight of the powder mixture to be compressed is: 93% of tungsten, 6.8% of coprecipitated barium-calcium-aluminate compound, and 0.2% of sugar.
- the mixture is introduced into a mold comprising the molybdenum cylinder 2 and the partition 5 and it is compressed with a pressure of 25,000 kg./cm. while the upper rim of the cylinder 2 is slightly pressed inwardly, so that the cathode body 1 is firmly held in place. Then the supporting strips 3 are welded to the cylinder 2 and the heating body 4 is slipped into it.
- the body 1 may be compressed to form a pellet which is subsequently fastened in a holder.
- a representative example of one manufacturing method is as follows:
- a thermionic dispenser cathode comprising a pressed and sintered mixture of barium-calcium aluminate powder and tungsten powder, said tungsten powder having a maximum grain size of less than 3 microns, said aluminate being formed in the pressed cathode-body by conversion of coprecipitated barium carbonate, calcium carbonate and aluminum oxide in a hydrogen atmosphere.
- a cathode as set forth in claim 2 wherein the coprecipitated mixture comprises barium oxide, calcium oxide and aluminum oxide in a mole ratio of about 523:2.
- a method of manufacturing a pressed tungsten dispenser cathode comprising the steps of coprecipitating barium carbonate, calcium carbonate, and aluminum oxide to form a homogeneous mixture thereof, drying the mixture, adding a solution of a carbon containing compound thereto to form a slurry, drying the carboncontaining slurry and grinding the resulting carbon-containing mixture, mixing said mixture with fine tungsten powder having a maximum grain size below 3 microns, subjecting the mixture to a pressing operation at a pressure of at least 25,000 kg./cm. and then heating the mixture to remove gases, to convert the coprecipitated mixture into aluminuates and to sinter the mixture.
Landscapes
- Solid Thermionic Cathode (AREA)
- Powder Metallurgy (AREA)
Description
y 1969 A. J. A. VAN STRATUM ET AL 3,458,749 DISPENSER CATHODE MADE OF TUNGSTEN POWDER HAVING A GRAIN SIZE OF LESS THAN THREE MICRONS Filed June 6, 1967 AGE United States Patent US. Cl. 313-346 5 Claims ABSTRACT OF THE DISCLOSURE A pressure dispenser cathode of tungsten and barium aluminate using tungsten powder with a grain size less than 3 microns to reduce the barium evaporation rate.
The invention relates to a dispenser cathode comprising a pressed mixture of tungsten power and barium aluminate-containing powder.
From publications of Hughes and Coppola, see US. Patent 2,929,133, and in particular part II of the article in Philips Technical Review, vol. 19, No. 6, pp. 177190 (1957-8), whose contents are hereby incorporated and made a part hereof, it is known that pressed dispenser cathodes may be manufactured from a mixture of powdery tungsten and powdery tribariumaluminate, which preferably contains, in addition, calcium oxide, pressed by a high pressure (11,000 kg./cm. into a cathode body, and heated in vacuum or in a hydrogen atmosphere at 1800 to 1900 C. at which the aluminate melts and the gases are expelled from the cathode. Owing to the use of aluminates the cathode can be preserved in air only to a restricted extent.
These cathodes exhibited a high rate of barium evaporation and had a short lifetime. The active metal in this cathode was tungsten. An alloy of tungsten and molybdenum was used afterwards for reducing the evaporation of barium from the cathode. It appeared to be necessary to use an alloy of about 75% of Mo and 25% of W, but this reduced the emission as compared with the use of pure tungsten powder. The metal powders employed were mixtures of grains having a size lying between about 4 and 1212.
The disadvantage of excess evaporation of barium involved in the use of pure tungsten powder is found to be almost completely avoidable in accordance with the present invention by using metal powders, the particles of which have maximum granular size of less than 3 preferably less than 0.5a, and using a powdery mixture obtained from coprecipitated barium carbonate, calcuim carbonate and aluminum oxide. The tungsten and carbonate and oxide powders are thoroughly mixed and compressed at a pressure of at least 25,000 kg./cm. It was a surprise to find that the evaporation of barium from such a cathode is even considerably lower than in the known molybdenum-containing pressed cathodes in spite of the use of pure tungsten without the molybdenum diluent. The electron emission obtained is equivalent to that of the so-called L-cathode, in which the active barium oxide is accommodated in a cavity beneath a porous tungsten body. An advantage of the inventive cathode is that degassing and activation thereof takes considerably less time than in the case of an L-cathode. The pressure of 25,000 l g./cm. required for compressing a cathode according to the invention is more than twice ice that required for the known pressed cathodes using tungsten powders of a grain size lying between 4 and 12;/., but technically this involves no particular difliculties. The higher the pressure, the less the evaporation. Pressures below 20,000 kg./cm. are unsuitable because the Ba evaporation becomes too high.
It is found that in spite of the very fine pores produced in the complete cathode structure, degassing and activation do not take more time than the known pressed cathodes. The cathode according to the invention has the same properties as the L-cathode, owing to the absence of molybdenum, but it can be manufactured at much lower cost.
The invention will now be described more fully with reference to the accompanying drawing, the sole figure of which is a cross-sectional view of one form of a cathode according to the invention.
The cathode shown comprises a pressed emissive body 1, accommodated in a cylindrical molybdenum foil 2. The cylinder 2 is provided with strips 3 for securing same in the electrode system of the usual electron t-ube, e.g., a cathode-ray tube. The cylinder 2 accommodates a heating element 4 and a partition 5 of molybdenum in order to avoid emission from the body 1 to the heater 4.
The body 1 consists of a powdery coprecipitated mixture of barium carbonate, calcium carbonate, and aluminum oxide in a molecular ratio of 5:312 (SBaCO 3CaCO 2Al O nH O), and tungsten powder having a grain size of less than 0.5 ,u. Such fine tungsten powder cannot be obtained by grinding, but is obtainable for example by the reduction of gaseous tungsten chloride (WCI with hydrogen, which is known as such. The mixture contains furthermore a small supply of carbon, preferably in the form of a soluble carbon compound such as sugar (C H O since this ensures a homogeneous distribution of the carbon in the mixture. The ratio in weight of the powder mixture to be compressed is: 93% of tungsten, 6.8% of coprecipitated barium-calcium-aluminate compound, and 0.2% of sugar. The mixture is introduced into a mold comprising the molybdenum cylinder 2 and the partition 5 and it is compressed with a pressure of 25,000 kg./cm. while the upper rim of the cylinder 2 is slightly pressed inwardly, so that the cathode body 1 is firmly held in place. Then the supporting strips 3 are welded to the cylinder 2 and the heating body 4 is slipped into it.
As an alternative, the body 1 may be compressed to form a pellet which is subsequently fastened in a holder.
It appears that in spite of the very fine pores of the body 1, the degassing and the formation of the aluminates, from the carbonate and oxide mixture, which aluminates are partly converted into barium oxide which reacts with the tungsten to form free barium, are performed quite rapidly. The evaporation of barium in operation appears to be even smaller than in the known pressed cathodes using a tungsten-molybdenum alloy.
A representative example of one manufacturing method is as follows:
The coprecipitated mixture is formed as follows: Dissolve 52.3 g. Ba(NO in 500 ml. H 0; 60 g.
Al(NO -3.9H O
in 500 ml. H 0 and 28.3 g. Ca(NO 3:4H O in 500 ml. H O. Mix these solutions thoroughly and add it under vigorous stirring to a solution of 65 g. (NH CO in 500 ml. H O. Thereby a thorough mixture of BaOOg, CaCO, and Al O -nH O in the above mentioned ratio is precipitated. The precipitate is filtered and washed with H 0 and ethanol, dried at 120 C. during 1 hour. g. of this mixture powder is mixed with a solution of 3 g.- of sugar (C H O) in 50 ml. distilled H O to form a slurry, which is dried at 120 C. during 1 hour and ground. This powder mixture is then mixed with fine tungsten powder and the resultant powder mixture compressed as described. The cathode-bodies can now be stored in air for a long time. Afterwards before building the cathode body into a vacuum-tube, the mixture is heated during an hour at about 850 C. to remove the CO from the carbonates and then gradually heated to 1650 C. to complete the aluminate-conversion, reduces any tungsten-oxide and sinter the mixture. This heating must be done in a hydrogen-atmosphere. Thereafter the bodies can be mounted into a discharge tube where activation takes place in ordinary way. This activation is carried out at about 1200 C. and the operating temperature is between 1000 C. and 1-150 C. The technique just described is not critical. Other methods for coprecipitating the carbonate and oxide constituents, which as such are well known, can be substituted for the method described. The proportions of the barium carbonate, calcium carbonate and aluminum oxide can be varied over the wide range described in U.S. Patent 3,201,639. That is to say, the mole ratio of BaO:Al O should exceed 1:1, with the CaO addition present in the ratio exceeding 0.1 mole. The preferred ratios is 5:223 or 3:1:1 of BaO'A1 O -CaO. The carbon compound can be varied over a fairly wide range. The amount does not appear too critical. Amounts in excess of 6% should preferably not be used to avoid carburization of the tungsten, which reduces emission. Generally, at least about 0.1% is needed to increase the emission. While sugar is preferred, as convenient and inexpensive, other carbon containing compounds soluble in suitable solvents and not completely evaporating during heating, are usable, such as solutions in benzol of stearic acid, glycerol in H 0 poly-alcoholic solvents, and even carbon-suspensions such as aquadag. For completeness sake, it is noted that the n in the formula Al O -nH O refers to the fact that the aluminum oxide contains water of crystallization whose content is uncertain. Any water of course is evolved during the subsequent firing.
While we have described our invention in connection with specific embodiments and applications, other modi fications thereof will be readily apparent to those skilled in this art without departing from the spirit and scope of the invention as defined in the appended claims.
What is claimed is:
1. A thermionic dispenser cathode comprising a pressed and sintered mixture of barium-calcium aluminate powder and tungsten powder, said tungsten powder having a maximum grain size of less than 3 microns, said aluminate being formed in the pressed cathode-body by conversion of coprecipitated barium carbonate, calcium carbonate and aluminum oxide in a hydrogen atmosphere.
2. A cathode as set forth in claim 1 wherein the tungsten powder maximum grain size is less than 0.5 micron.
3. A cathode as set forth in claim 2 wherein the coprecipitated mixture comprises barium oxide, calcium oxide and aluminum oxide in a mole ratio of about 523:2.
4. A method of manufacturing a pressed tungsten dispenser cathode, comprising the steps of coprecipitating barium carbonate, calcium carbonate, and aluminum oxide to form a homogeneous mixture thereof, drying the mixture, adding a solution of a carbon containing compound thereto to form a slurry, drying the carboncontaining slurry and grinding the resulting carbon-containing mixture, mixing said mixture with fine tungsten powder having a maximum grain size below 3 microns, subjecting the mixture to a pressing operation at a pressure of at least 25,000 kg./cm. and then heating the mixture to remove gases, to convert the coprecipitated mixture into aluminuates and to sinter the mixture.
5. A method as set forth in claim 4 wherein the tungsten powder grain size is less than 0.5 micron, the coprecipitated constituents are present in a mole ratio of about 5 :3 :2 of barium carbonate to calcium carbonate to aluminum oxide, and the proportions by weight of the powder mix is about 93% tungsten, 6.8% coprecipitated mixture and 0.2% of sugar as the carbon compound.
References Cited UNITED STATES PATENTS 2,912,611 11/1959 Beck et al 3l3-346 2,975,320 4/1961 Knauer 313346 X 3,076,916 2/ 1961 Koppius 3 l 3-346 JOHN W. HUCKERT, Primary Examiner A. J. JAMES, Assistant Examiner U.S. Cl. X.R. 313-345
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL6608782A NL6608782A (en) | 1966-06-24 | 1966-06-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3458749A true US3458749A (en) | 1969-07-29 |
Family
ID=19796967
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US644003A Expired - Lifetime US3458749A (en) | 1966-06-24 | 1967-06-06 | Dispenser cathode made of tungsten powder having a grain size of less than three microns |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US3458749A (en) |
| AT (1) | AT270820B (en) |
| BE (1) | BE700464A (en) |
| CH (1) | CH489111A (en) |
| ES (2) | ES342176A1 (en) |
| GB (1) | GB1131586A (en) |
| NL (1) | NL6608782A (en) |
| SE (1) | SE318031B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3534455A (en) * | 1968-05-03 | 1970-10-20 | Us Army | Method of making thermionic cathodes |
| US3656020A (en) * | 1970-11-18 | 1972-04-11 | Spectra Mat Inc | Thermionic cathode comprising mixture of barium oxide, calcium oxide and lithium oxide |
| US3760218A (en) * | 1972-04-10 | 1973-09-18 | Spectramat Inc | Thermionic cathode |
| JPS5046058U (en) * | 1973-08-27 | 1975-05-08 | ||
| JPS5150955U (en) * | 1974-10-16 | 1976-04-17 | ||
| WO1989009480A1 (en) * | 1988-03-28 | 1989-10-05 | Hughes Aircraft Company | Expandable dispenser cathode |
| US5092805A (en) * | 1988-11-11 | 1992-03-03 | Samsung Electron Devices Co., Ltd. | Manufacturing method for dispenser code |
| US20050047801A1 (en) * | 2003-08-27 | 2005-03-03 | Karl Schrodinger | Optical receiver circuit |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR930014673A (en) * | 1991-12-20 | 1993-07-23 | 김정배 | Impregnated Cathode Structure and Manufacturing Method Thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2912611A (en) * | 1953-08-14 | 1959-11-10 | Int Standard Electric Corp | Thermionic cathodes |
| US2975320A (en) * | 1958-12-03 | 1961-03-14 | Rca Corp | Low-temperature plasma source |
| US3076916A (en) * | 1959-01-21 | 1963-02-05 | Semicon Associates Inc | Impregnated tungsten cathode structures and methods for fabricating same |
-
1966
- 1966-06-24 NL NL6608782A patent/NL6608782A/xx unknown
-
1967
- 1967-06-06 US US644003A patent/US3458749A/en not_active Expired - Lifetime
- 1967-06-21 SE SE8869/67A patent/SE318031B/xx unknown
- 1967-06-21 CH CH879567A patent/CH489111A/en not_active IP Right Cessation
- 1967-06-21 AT AT577467A patent/AT270820B/en active
- 1967-06-22 ES ES342176A patent/ES342176A1/en not_active Expired
- 1967-06-23 BE BE700464D patent/BE700464A/xx unknown
- 1967-06-26 GB GB29360/67A patent/GB1131586A/en not_active Expired
-
1968
- 1968-05-14 ES ES353888A patent/ES353888A1/en not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2912611A (en) * | 1953-08-14 | 1959-11-10 | Int Standard Electric Corp | Thermionic cathodes |
| US2975320A (en) * | 1958-12-03 | 1961-03-14 | Rca Corp | Low-temperature plasma source |
| US3076916A (en) * | 1959-01-21 | 1963-02-05 | Semicon Associates Inc | Impregnated tungsten cathode structures and methods for fabricating same |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3534455A (en) * | 1968-05-03 | 1970-10-20 | Us Army | Method of making thermionic cathodes |
| US3656020A (en) * | 1970-11-18 | 1972-04-11 | Spectra Mat Inc | Thermionic cathode comprising mixture of barium oxide, calcium oxide and lithium oxide |
| US3760218A (en) * | 1972-04-10 | 1973-09-18 | Spectramat Inc | Thermionic cathode |
| JPS5046058U (en) * | 1973-08-27 | 1975-05-08 | ||
| JPS5150955U (en) * | 1974-10-16 | 1976-04-17 | ||
| WO1989009480A1 (en) * | 1988-03-28 | 1989-10-05 | Hughes Aircraft Company | Expandable dispenser cathode |
| US5092805A (en) * | 1988-11-11 | 1992-03-03 | Samsung Electron Devices Co., Ltd. | Manufacturing method for dispenser code |
| US20050047801A1 (en) * | 2003-08-27 | 2005-03-03 | Karl Schrodinger | Optical receiver circuit |
Also Published As
| Publication number | Publication date |
|---|---|
| DE1614256A1 (en) | 1970-05-27 |
| BE700464A (en) | 1967-12-27 |
| ES353888A1 (en) | 1969-10-01 |
| DE1614256B2 (en) | 1975-09-11 |
| GB1131586A (en) | 1968-10-23 |
| ES342176A1 (en) | 1968-10-01 |
| SE318031B (en) | 1969-12-01 |
| CH489111A (en) | 1970-04-15 |
| AT270820B (en) | 1969-05-12 |
| NL6608782A (en) | 1967-12-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2700118A (en) | Incandescible cathode | |
| US4594220A (en) | Method of manufacturing a scandate dispenser cathode and dispenser cathode manufactured by means of the method | |
| US3458749A (en) | Dispenser cathode made of tungsten powder having a grain size of less than three microns | |
| US3582702A (en) | Thermionic electron-emissive electrode with a gas-binding material | |
| US4083811A (en) | Lanthanated thermionic cathodes | |
| US2716716A (en) | Cathode containing a supply of an electron-emissive material | |
| US2173259A (en) | Active metal compounds for vacuum tubes | |
| US2173258A (en) | Active metal compound for vacuum tubes | |
| US3148056A (en) | Cathode | |
| JPS6191822A (en) | Manufacture of scandium dispensor cathode and dispensor cathode manufactured thereby | |
| JPH02186525A (en) | Storage type dispenser cathode and manufacture thereof | |
| US2929133A (en) | Dispenser cathode | |
| US2914402A (en) | Method of making sintered cathodes | |
| EP0390269B1 (en) | Scandate cathode | |
| Coppola et al. | A new pressed dispenser cathode | |
| US2175696A (en) | Electron emitter | |
| US2917415A (en) | Method of making thermionic dispenser cathode and cathode made by said method | |
| JPH0765694A (en) | Cathode for electron tube | |
| US3088851A (en) | Method of manufacturing oxide cathodes and cathodes manufactured by such methods | |
| US3201639A (en) | Thermionic dispenser cathode | |
| US4735591A (en) | Method of making a long life high current density cathode from tungsten and iridium powders using a barium iridiate as the impregnant | |
| US3269804A (en) | Dispenser cathode and method for the production thereof | |
| US5982083A (en) | Cathode for electron tube | |
| US1552310A (en) | Electrode for discharge tubes | |
| US2737607A (en) | Incandescible cathode |