US3455723A - Coating with silicon carbide by immersion reaction - Google Patents
Coating with silicon carbide by immersion reaction Download PDFInfo
- Publication number
- US3455723A US3455723A US598631A US3455723DA US3455723A US 3455723 A US3455723 A US 3455723A US 598631 A US598631 A US 598631A US 3455723D A US3455723D A US 3455723DA US 3455723 A US3455723 A US 3455723A
- Authority
- US
- United States
- Prior art keywords
- coating
- silicon carbide
- quenching
- group
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title description 27
- 239000011248 coating agent Substances 0.000 title description 23
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title description 16
- 229910010271 silicon carbide Inorganic materials 0.000 title description 16
- 238000006243 chemical reaction Methods 0.000 title description 6
- 238000007654 immersion Methods 0.000 title description 6
- 238000000034 method Methods 0.000 description 16
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 150000004756 silanes Chemical class 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- -1 alkyl chlorosilane Chemical compound 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- VNJCDDZVNHPVNM-UHFFFAOYSA-N chloro(ethyl)silane Chemical compound CC[SiH2]Cl VNJCDDZVNHPVNM-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000005053 propyltrichlorosilane Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- DOEHJNBEOVLHGL-UHFFFAOYSA-N trichloro(propyl)silane Chemical compound CCC[Si](Cl)(Cl)Cl DOEHJNBEOVLHGL-UHFFFAOYSA-N 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
Definitions
- a method of coating objects with silicon carbide consisting in heating the objects to at least 1150 C. and then quenching the object in a liquid bath consisting essentially of one or more members chosen from the group of silanes having the general formula DESCRIPTION OF THE PREFERRED EMBODIMENTS
- the process of the present invention may be performed on any substrate which retains its shape upon heating to at least 1150 C. and which is substantially non-reactive with respect to the quenching baths used in carrying out the invention.
- substrate materials in- 3,455,723 Patented July 15, 1969 elude, for example, carbon, various element metals such as molybdenum, tantalum and silicon, as well as alloys such as high temperature steels, among others.
- the object to be coated is first heated by any suitable means to a temperature at least 1150 C. and preferably below about 1350 C. While the method can be performed at higher temperatures, the reaction tends to become violent and in some cases the coating formed is irregular.
- the heating may be carried out, for example, by use of high frequency induction, electrical resistance, radiant heating, or electron beam heating.
- a liquid bath consisting essentially of one or morernembers chosen from the group of silanes having the general formula wherein each R is a member of the group consisting of chlorine, hydrogen and methyl, ethyl and propyl groups and R is a member of the group consisting of methyl, ethyl and propyl groups.
- a preferred quenching material is dimethyldichlorosilane, although other materials perform equally as well.
- the quenching liquid is preferably held in a cooled container such as, for example, a quartz, or stainless steel crucible placed in a bath consisting of acetone and Dry Ice.
- a cooled container such as, for example, a quartz, or stainless steel crucible placed in a bath consisting of acetone and Dry Ice.
- the cooling tends to prevent vaporization which with these materials occurs quite rapidly at room temperature.
- the coating technique obtained by the aforedescribed process varies with the temperature to which the object is heated and also is dependent to some extent upon the quenching liquid used. If an additional thickness of coating is required for a particular application, the coated object may be simply reheated and quenched repeatedly until the desired thickness is reached. The time during which the object is left in the quenching bath has no effect on the coating as long as the object is left in the bath sufficiently long for the object to be cooled to a temperature below about 1000 C. Due to the relatively high rate of cooling caused by the extremely cold quenching liquid and heat of reaction being removed, the maximum amount of coating is generally formed within about 3 minutes. Of course, this amount varies with the size of the object and the other factors heretofore mentioned.
- the process is considerably more rapid than the vapor deposition processes. Additionally, substantially uniform coatings are provided over the surface of the article and the quenching provides temper to objects which tend to lose their temper during heating. It has been found useful, for example, in coating steel-ball studs for use in automotive steering gear. The following examples are illustrative of the process.
- Example 1 A polished graphite block A" by 1%" by 2" was heated by high frequency induction to 1225 C. This was done in a large quartz tube having a quantity of dimethyldichlorosilane at the bottom thereof, the exterior of the tube bottom being placed in a bath of acetone and Dry Ice. A flow of argon was maintained into the tube and the tube was vented. After the block was heated, it was lowered into the silane and allowed to cool to the silane temperature before removal. The block was weighed and showed a weight gain of 0.11010 gram. A coating was visible on the block surface and upon analysis was determined to be silicon carbide.
- Example 3 A ball stud identical to that of Example 2 was coated in accordance with the steps given in Examplesl and 2 except that the temperature of the ball prior to immersion was 1100 C. Upon examination it was found that there was a uniform coating completely around the ball, and upon analysis it was found that the coating was silicon carbide.
- Example 4 A turbine blade of Inconel metal was processed in accordance with the steps set forth in Example 1. A silicon carbide coating was formed over its entire surface.
- Example 5 A graphite block similar to that described in Example 1 was coated in accordance with the process set forth in Example 1 and was found to have a weight gain of .02111 gram after immersion for 30 seconds. The block was then heated and immersed sequentially 5 more times and showed an over-all gain of approximately 0.02 gram per immersion. Upon analysis the coating was determined to be silicon carbide.
- Example 6 When methyltrichlorosilane, ethylmonochlorosilane, propyltrichlorosilane and trimethylrnonochlorosilane are each substituted for the dimethyldichlorosilane of Examples 1, 3, 4, and 5, similar results are obtainable.
- Example 7 When objects of molybdenum, tantalum, niobium and silicon are each used in the place of graphite in the process of Example 1, similar results to those of Example 1 are obtainable.
- a liquid bath consisting essentially of one or more members chosen from the group of silanes having the general formula wherein each R is a memberof the group consisting of chlorine, hydrogen and methyl, ethyl and propyl groups, and R is a member of the group consisting of methyl, ethyl, and propyl groups.
- each R is a member of the group consisting of chlorine, hydrogen and methyl, ethyl and propyl groups, and R is a member of the group consisting of methyl, ethyl, and propyl groups.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Vapour Deposition (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
United States Patent 3,455,723 COATING WITH SILICON CARBIDE BY IMMERSION REACTION Edward L. Kern, Midland, Mich, assignor to Dow Corning Corporation, Midland, Micl1., a corporation of Michigan No Drawing. Filed Dec. 2, 1966, Ser. No. 598,631 Int. Cl. B05c 3/02; C23c 9/10 US. Cl. 11747 3 Claims ABSTRACT OF THE DISCLOSURE The process of coating objects with homogeneous sili con carbide. Object is heated to at least 1150 C. and quenched in liquid alkyl chlorosilane such as dimethyldichlorosilane. Thicker coatings obtainable by sequential heating and quenching.
Background of the invention This application relates to the coating of objects with homogeneous layers of silicon carbide and more particularly to the forming of such layers in situ. The use of silicon carbide as a protective coating for various metallic and non-metallic substances is rapidly becoming routine for many applications. Silicon carbide is particularly suited as a protective coating because of its high melting point and extreme chemical inertness. Heretofore, homogeneous silicon carbide coatings have been formed by a vapor decomposition or vapor reaction such as those described in US. Patent No. 3,157,541 and Canadian Patent No. 657,304. A problem with the vapor deposition techniques described in the aforementioned patents is the time required to produce coatings of useable thickness. Since the process is time consuming, it is also inherently expensive. Furthermore, metals tend to lose their temper as they are heated for vapor deposition and do not regain it in further processing. Additionally, the coating tends to be nonuniform because of uneven flow patterns over the surface of the object being coated. It is toward these problems that the present invention is directed.
SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a method of coating objects with silicon carbide, said method consisting in heating the objects to at least 1150 C. and then quenching the object in a liquid bath consisting essentially of one or more members chosen from the group of silanes having the general formula DESCRIPTION OF THE PREFERRED EMBODIMENTS The process of the present invention ma be performed on any substrate which retains its shape upon heating to at least 1150 C. and which is substantially non-reactive with respect to the quenching baths used in carrying out the invention. Such substrate materials in- 3,455,723 Patented July 15, 1969 elude, for example, carbon, various element metals such as molybdenum, tantalum and silicon, as well as alloys such as high temperature steels, among others.
The object to be coated is first heated by any suitable means to a temperature at least 1150 C. and preferably below about 1350 C. While the method can be performed at higher temperatures, the reaction tends to become violent and in some cases the coating formed is irregular. The heating may be carried out, for example, by use of high frequency induction, electrical resistance, radiant heating, or electron beam heating.
After the object has been heated, it is lowered into a liquid bath consisting essentially of one or morernembers chosen from the group of silanes having the general formula wherein each R is a member of the group consisting of chlorine, hydrogen and methyl, ethyl and propyl groups and R is a member of the group consisting of methyl, ethyl and propyl groups. A preferred quenching material is dimethyldichlorosilane, although other materials perform equally as well.
The quenching liquid is preferably held in a cooled container such as, for example, a quartz, or stainless steel crucible placed in a bath consisting of acetone and Dry Ice. The cooling tends to prevent vaporization which with these materials occurs quite rapidly at room temperature. Additionally, it is desirable to utilize a closed system in which an atmosphere of inert gas such as argon is passed over a liquid bath to carry off vapors.
The coating technique obtained by the aforedescribed process varies with the temperature to which the object is heated and also is dependent to some extent upon the quenching liquid used. If an additional thickness of coating is required for a particular application, the coated object may be simply reheated and quenched repeatedly until the desired thickness is reached. The time during which the object is left in the quenching bath has no effect on the coating as long as the object is left in the bath sufficiently long for the object to be cooled to a temperature below about 1000 C. Due to the relatively high rate of cooling caused by the extremely cold quenching liquid and heat of reaction being removed, the maximum amount of coating is generally formed within about 3 minutes. Of course, this amount varies with the size of the object and the other factors heretofore mentioned. The process, however, is considerably more rapid than the vapor deposition processes. Additionally, substantially uniform coatings are provided over the surface of the article and the quenching provides temper to objects which tend to lose their temper during heating. It has been found useful, for example, in coating steel-ball studs for use in automotive steering gear. The following examples are illustrative of the process.
Example 1 A polished graphite block A" by 1%" by 2" was heated by high frequency induction to 1225 C. This was done in a large quartz tube having a quantity of dimethyldichlorosilane at the bottom thereof, the exterior of the tube bottom being placed in a bath of acetone and Dry Ice. A flow of argon was maintained into the tube and the tube was vented. After the block was heated, it was lowered into the silane and allowed to cool to the silane temperature before removal. The block was weighed and showed a weight gain of 0.11010 gram. A coating was visible on the block surface and upon analysis was determined to be silicon carbide.
Exa p e as A steel-ball stud was heated to 1350 C. in the apparatus of Example 1 and was immersed into the silane until red heat was no longer visible. The ball stud was then removed from the silane and upon examination itwas found that the ball had an irregular coating on its surface. Upon analysis the coating was found to be silicon carbide.
Example 3 A ball stud identical to that of Example 2 was coated in accordance with the steps given in Examplesl and 2 except that the temperature of the ball prior to immersion was 1100 C. Upon examination it Was found that there was a uniform coating completely around the ball, and upon analysis it was found that the coating was silicon carbide.
Example 4 A turbine blade of Inconel metal was processed in accordance with the steps set forth in Example 1. A silicon carbide coating was formed over its entire surface.
Example 5 A graphite block similar to that described in Example 1 was coated in accordance with the process set forth in Example 1 and was found to have a weight gain of .02111 gram after immersion for 30 seconds. The block was then heated and immersed sequentially 5 more times and showed an over-all gain of approximately 0.02 gram per immersion. Upon analysis the coating was determined to be silicon carbide.
Example 6 When methyltrichlorosilane, ethylmonochlorosilane, propyltrichlorosilane and trimethylrnonochlorosilane are each substituted for the dimethyldichlorosilane of Examples 1, 3, 4, and 5, similar results are obtainable.
Example 7 When objects of molybdenum, tantalum, niobium and silicon are each used in the place of graphite in the process of Example 1, similar results to those of Example 1 are obtainable.
That which is claimed is:
1. The method of coating an object with silicon carbide which consists of 4 i V t nasaid Obie-r 19. tr sa 115 and, t ir...
quenching said object in a liquid bath consisting essentially of one or more members chosen from the group of silanes having the general formula wherein each R is a memberof the group consisting of chlorine, hydrogen and methyl, ethyl and propyl groups, and R is a member of the group consisting of methyl, ethyl, and propyl groups.
2. The method as defined in claim l wherein the heating and quenching steps are sequentially repeated to achieve a desired coating thickness. l
3. The method of coating an object with silicon carbide which comprises:
heating said object to at least 1150" C. and
immersing said object in a liquid bath consisting es-' sentially of one or more members chosen from the group of silanes having the general formula wherein each R is a member of the group consisting of chlorine, hydrogen and methyl, ethyl and propyl groups, and R is a member of the group consisting of methyl, ethyl, and propyl groups.
References Cited UNITED STATES PATENTS 3,099,534 7/1963 Schweickert et a1 23 '20s 3,157,541 11/1964 Heywang et al. 117106 X 3,406,044 10/1968 Harris 117-106 X ALFRED L. LEAVITT, Primary Examiner THOMAS E. BOKAN, Assistant Examiner Disclaimer 3,455,728.Ldwa1"d L. Kern, Midland, Mich. COATING lVITH SILICON CARBIDE BY IMMERSION REACTION. Patent dated July 15,
1969. Disclaimer filed Oct. 18, 1972, by the assignee, Dow Uorm'ng Corporation.
Hereby enters this disclaimer to claims 1-3 of said patent.
[Ofiioial Gazette February 19, 1974.]
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US59863166A | 1966-12-02 | 1966-12-02 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3455723A true US3455723A (en) | 1969-07-15 |
Family
ID=24396338
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US598631A Expired - Lifetime US3455723A (en) | 1966-12-02 | 1966-12-02 | Coating with silicon carbide by immersion reaction |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3455723A (en) |
| DE (1) | DE1646497A1 (en) |
| FR (1) | FR1547890A (en) |
| GB (1) | GB1144412A (en) |
| SE (1) | SE317233B (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3850689A (en) * | 1966-07-18 | 1974-11-26 | United Aircraft Corp | Procedures for coating substrates with silicon carbide |
| US4871587A (en) * | 1982-06-22 | 1989-10-03 | Harry Levin | Process for coating an object with silicon carbide |
| US4900531A (en) * | 1982-06-22 | 1990-02-13 | Harry Levin | Converting a carbon preform object to a silicon carbide object |
| EP0482782A1 (en) * | 1990-10-25 | 1992-04-29 | Btg International Limited | Sol-gel method of making silicon carbide and of protecting a substrate |
| EP1468976A1 (en) * | 2003-03-11 | 2004-10-20 | ARC Seibersdorf research GmbH | Protective coatings on carbon-containing substrates and process of preparation thereof |
| US20070214834A1 (en) * | 2004-04-07 | 2007-09-20 | Heraeus Tenevo Gmbg | Method for Producing a Hollow Cylinder From Synthetic Quartz Glass, Using a Retaining Device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4923719A (en) * | 1988-08-22 | 1990-05-08 | Allied-Signal Inc. | Method of coating silicon carbide fibers |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3099534A (en) * | 1956-06-25 | 1963-07-30 | Siemens Ag | Method for production of high-purity semiconductor materials for electrical purposes |
| US3157541A (en) * | 1958-10-23 | 1964-11-17 | Siemens Ag | Precipitating highly pure compact silicon carbide upon carriers |
| US3406044A (en) * | 1965-01-04 | 1968-10-15 | Monsanto Co | Resistance heating elements and method of conditioning the heating surfaces thereof |
-
1966
- 1966-12-02 US US598631A patent/US3455723A/en not_active Expired - Lifetime
-
1967
- 1967-09-21 GB GB43047/67A patent/GB1144412A/en not_active Expired
- 1967-10-30 SE SE14857/67A patent/SE317233B/xx unknown
- 1967-12-01 FR FR130663A patent/FR1547890A/en not_active Expired
- 1967-12-01 DE DE19671646497 patent/DE1646497A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3099534A (en) * | 1956-06-25 | 1963-07-30 | Siemens Ag | Method for production of high-purity semiconductor materials for electrical purposes |
| US3157541A (en) * | 1958-10-23 | 1964-11-17 | Siemens Ag | Precipitating highly pure compact silicon carbide upon carriers |
| US3406044A (en) * | 1965-01-04 | 1968-10-15 | Monsanto Co | Resistance heating elements and method of conditioning the heating surfaces thereof |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3850689A (en) * | 1966-07-18 | 1974-11-26 | United Aircraft Corp | Procedures for coating substrates with silicon carbide |
| US4871587A (en) * | 1982-06-22 | 1989-10-03 | Harry Levin | Process for coating an object with silicon carbide |
| US4900531A (en) * | 1982-06-22 | 1990-02-13 | Harry Levin | Converting a carbon preform object to a silicon carbide object |
| EP0482782A1 (en) * | 1990-10-25 | 1992-04-29 | Btg International Limited | Sol-gel method of making silicon carbide and of protecting a substrate |
| US5256448A (en) * | 1990-10-25 | 1993-10-26 | British Technology Group Ltd. | Sol-gel method of making silicon carbide and of protecting a substrate |
| EP1468976A1 (en) * | 2003-03-11 | 2004-10-20 | ARC Seibersdorf research GmbH | Protective coatings on carbon-containing substrates and process of preparation thereof |
| US20070214834A1 (en) * | 2004-04-07 | 2007-09-20 | Heraeus Tenevo Gmbg | Method for Producing a Hollow Cylinder From Synthetic Quartz Glass, Using a Retaining Device |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1144412A (en) | 1969-03-05 |
| DE1646497A1 (en) | 1971-07-22 |
| SE317233B (en) | 1969-11-10 |
| FR1547890A (en) | 1968-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4714632A (en) | Method of producing silicon diffusion coatings on metal articles | |
| US3455723A (en) | Coating with silicon carbide by immersion reaction | |
| US2887407A (en) | Preparation of diffusion coatings on metals | |
| US3249462A (en) | Metal diffusion coating utilizing fluidized bed | |
| US3772058A (en) | Formation of refractory coatings on steel without loss of temper of steel | |
| US3321337A (en) | Process for preparing boron nitride coatings | |
| Riffard et al. | Yttrium sol–gel coating effects on the cyclic oxidation behaviour of 304 stainless steel | |
| US3554782A (en) | Method for depositing carbide compound | |
| US3131089A (en) | Carbon article coated with boron carbide and boron nitride, and process of making the same | |
| US3261712A (en) | Process for diffusion coating metals | |
| Miyake et al. | Chemical vapor deposition of niobium on graphite | |
| US3276903A (en) | Heat treatment of metals | |
| US3467545A (en) | Alloy diffusion coating process | |
| US2458655A (en) | Process of case-hardening metals | |
| US3184330A (en) | Diffusion process | |
| AU2002245282A1 (en) | Metallic diffusion process and improved article produced thereby | |
| EP1352102A2 (en) | Metallic diffusion process and improved article produced thereby | |
| GB2107360A (en) | Depositing silicon on metal | |
| US3620816A (en) | Method of diffusion coating metal substrates using molten lead as transport medium | |
| US2886469A (en) | Method of coating metallic bodies with aluminum utilizing vaporous sub-chlorides | |
| GB732101A (en) | Improvements in methods of and means for the heat treatment of solid bodies | |
| US3416951A (en) | Method for the pyrolytic deposition of silicon carbide | |
| US2484519A (en) | Method of coating surfaces with boron | |
| US3481769A (en) | Alloy diffusion coating process | |
| US3508977A (en) | Process for producing metal borides on the surface of metals |