US3450569A - Primary cell - Google Patents
Primary cell Download PDFInfo
- Publication number
- US3450569A US3450569A US548369A US3450569DA US3450569A US 3450569 A US3450569 A US 3450569A US 548369 A US548369 A US 548369A US 3450569D A US3450569D A US 3450569DA US 3450569 A US3450569 A US 3450569A
- Authority
- US
- United States
- Prior art keywords
- cell
- anode
- magnesium
- primary cell
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 8
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- JWOZORSLWHFOEI-UHFFFAOYSA-N [O--].[O--].[Mg++].[Mn++] Chemical compound [O--].[O--].[Mg++].[Mn++] JWOZORSLWHFOEI-UHFFFAOYSA-N 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 235000019482 Palm oil Nutrition 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 4
- 239000002540 palm oil Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QFFVPLLCYGOFPU-UHFFFAOYSA-N barium chromate Chemical compound [Ba+2].[O-][Cr]([O-])(=O)=O QFFVPLLCYGOFPU-UHFFFAOYSA-N 0.000 description 2
- 229940083898 barium chromate Drugs 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- JQVALDCWTQRVQE-UHFFFAOYSA-N dilithium;dioxido(dioxo)chromium Chemical compound [Li+].[Li+].[O-][Cr]([O-])(=O)=O JQVALDCWTQRVQE-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
Definitions
- An improved magnesium-manganese dioxide primary cell is provided by applying an ultra thin film on the order of 1000 angstroms in thickness of palm oil to the inner surface of a magnesium base alloy can or anode.
- the cell uses a 4 to 5 normal aqueous solution of magnesium perchlorate as the electrolyte.
- This invention relates to primary cells, and more particularly to a primary cell including a magnesium base alloy as the anode, an aqueous solution of magnesium perchlorate as the electrolyte, and a cathode comprising manganese dioxide.
- Such a primary cell is known in the art, as for example, as taught in U.S. Patent No. 2,993,946.
- the system is desirable in that cells with a magnesium base alloy as the anode yield considerable electrical energy per unit of cell volume and weight. This makes them valuable as a portable power supply in new and more sophisticated communication equipment that require more input power in smaller packages.
- a difficulty encountered with such primary cells is their relatively large delayed action.
- the delayed action is defined as the time required for a cell to reach an equipment dictated useable voltage level when it passes from the open circuit or no load condition to closed circuit conditions.
- the general object of this invention is to materially shorten the delayed action of the magnesium-manganese dioxide cell systems.
- a particular object of this invention is to provide a magnesium-manganese dioxide cell system characterized by a minimum delayed action, good storageability, operation over a wide temperature range, mechanical ruggedness, good voltage regulation, and low cost.
- a dry cell of conventional design may be prepared as follows: a metallic anode 11 is provided in the form of a can of a standard N size, or other standard size.
- the anode 11 has the approximate composition 96.75% magnesium, 2% aluminum, 1% zinc, 0.15% calcium, and 0.10% manganese. This alloy composition is sometimes designated AZ21A.
- anode coating solution of one part by weight of palm oil to 17 parts by weight of benzene is then applied to the inner surface of the anode 11 at a temperature of 110 F. for 30 seconds.
- the anode 11 is then drained and air dried.
- An ultra thin film 12 of the order of 1000 angstroms in thickness is thus deposited on the inner surface of anode 11.
- the anode 11 hearing the film 12 is then lined with a separator 13 comprising an absorbent kraft paper about 3.5 mils in thickness.
- a cathode mixture 14 of materials comprising a cathode depolarizer, an ingredient for increasing the conductivity of the composition, an electrolyte, and a corrosion inhibitor.
- the separator 13 keeps the anode 11 and cathode 14 apart while providing therebetween a low resistance path to the fiow of ions during the electrochemical process.
- the mixture 14 including the cathode material and electrolyte, and referred to as the cathode mix, is prepared of the following constituents in the proportions indicated:
- cathode mix Approximately 3.2 grams of the cathode mix is formed as a cylindrical slug or bobbin and inserted in the coated and paper lined anode 13 to form the cathode with sufficient pressure to attain contact among the anode, separator, and cathode mix.
- unsealed cell is stored for periods ranging from 4 to 20 hours in an atmosphere humidified to saturation over 5 normal magnesium perchlorate.
- a carbon rod 15 is then inserted into the mix 14 with the application of pressure to provide electrical connection thereto.
- An insulating top washer 16 is mounted on the carbon rod 15 providing an air space 19 between the washer 16 and the cathode mix 14.
- a metal contact cap 18 of brass is placed on carbon rod 15.
- a molten sealant is then poured onto the top washer which on cooling forms a hard wax layer 17 which seals the cell against moisture loss.
- the anode and cathode are connected through an external load of 10 ohms for 2 minutes, and then through open circuit for 28 minutes, the cell is found to deliver milliamperes per square inch of anode area.
- Cells made according to the example also provide a battery that has at 70 F., 30 hours of service with a maximum delayed action of less than 0.5 seconds occurring at some time within the first 1O discharge cycles; at 10 F., the battery provides about 10 hours of service with a delay ranging from 1 to 5 seconds on the first discharge cycle. No delayed action is detected on subsequent discharges at 10 F.
- Prior magnesium-manganese dioxide cells show a delay time of about 30 seconds at 70 F.
- the discharge reaction of the cell of the example is controlled by the film formed on the magnesium base alloy anode.
- the modified fabrication technique in the foregoing example apparently allows the hydrogen gas generated during the protecting film form ing process to escape without significantly affecting the cell moisture content.
- the application of pressure to the cell following storage corrects the component interface disturbances, and removes pockets or voids created by the etfervescence of the hydrogen gas.
- a primary cell comprising a magnesium base alloy as the anode, a 4 to 5 normal aqueous solution of magnesium perchlorate as the electrolyte, and a cathode material comprising manganese dioxide, the inner surface of the anode having thereon a thin film coating of palm oil on the order of 1000 angstroms in thickness.
- a primary cell according to claim 1 wherein the magnesium base alloy consists in parts by weight of 96.75 parts magnesium, 2.0 parts aluminum, 1 part zinc, 0.15 part calcium, and 0.10 part manganese.
- a primary cell according to claim 1 wherein the cathode material consists in parts by weight of 86.4 parts manganese dioxide, 9.1 parts carbon black, 3.5 parts barium chromate, and 1.0 part magnesium hydroxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
Description
June 17, 1969 R. E. DUMAS ET AL PRIMARY CELL Filed May 5. 1966 he J/M/ RNEYS B J 05$ o T D T NMAO T EUHO WD W ama WLD O M RN AAO RHD United States Patent US. Cl. 136-100 3 Claims ABSTRACT OF THE DISCLOSURE An improved magnesium-manganese dioxide primary cell is provided by applying an ultra thin film on the order of 1000 angstroms in thickness of palm oil to the inner surface of a magnesium base alloy can or anode. The cell uses a 4 to 5 normal aqueous solution of magnesium perchlorate as the electrolyte.
This invention relates to primary cells, and more particularly to a primary cell including a magnesium base alloy as the anode, an aqueous solution of magnesium perchlorate as the electrolyte, and a cathode comprising manganese dioxide.
Such a primary cell is known in the art, as for example, as taught in U.S. Patent No. 2,993,946. The system is desirable in that cells with a magnesium base alloy as the anode yield considerable electrical energy per unit of cell volume and weight. This makes them valuable as a portable power supply in new and more sophisticated communication equipment that require more input power in smaller packages. A difficulty encountered with such primary cells, however, is their relatively large delayed action. The delayed action is defined as the time required for a cell to reach an equipment dictated useable voltage level when it passes from the open circuit or no load condition to closed circuit conditions.
The general object of this invention is to materially shorten the delayed action of the magnesium-manganese dioxide cell systems. A particular object of this invention is to provide a magnesium-manganese dioxide cell system characterized by a minimum delayed action, good storageability, operation over a wide temperature range, mechanical ruggedness, good voltage regulation, and low cost.
It has now been found that the aforementioned objects can be attained by using a 4 to 5 normal aqueous solution of magnesium perchlorate as the electrolyte in the magnesium-manganese dioxide cell system; and by applying a thin film of palm oil, lanolin, or other compounds containing fatty acids, or esters of fatty acids to the inner surface of the magnesium base alloy can or anode. Additionally, in fabricating the primary cell where the cell is consolidated in accordance with normal procedures, it has been found advantageous to store the cell for periods ranging from 4 to 20 hours in an atmosphere humidified to saturation over 5 normal magnesium perchlorate. The cell is then reconsolidated and then sealed in conventional manner.
The invention can best be illustrated by the following example and accompanying drawing wherein is shown an enlarged cross sectional view of a magnesium-manganese dioxide cell according to the invention.
EXAMPLE Referring to the drawing, a dry cell of conventional design may be prepared as follows: a metallic anode 11 is provided in the form of a can of a standard N size, or other standard size. The anode 11 has the approximate composition 96.75% magnesium, 2% aluminum, 1% zinc, 0.15% calcium, and 0.10% manganese. This alloy composition is sometimes designated AZ21A. An
anode coating solution of one part by weight of palm oil to 17 parts by weight of benzene is then applied to the inner surface of the anode 11 at a temperature of 110 F. for 30 seconds. The anode 11 is then drained and air dried. An ultra thin film 12 of the order of 1000 angstroms in thickness is thus deposited on the inner surface of anode 11. The anode 11 hearing the film 12 is then lined with a separator 13 comprising an absorbent kraft paper about 3.5 mils in thickness. Within the compartment, of which the separator 13 now forms the outer wall, is a cathode mixture 14 of materials comprising a cathode depolarizer, an ingredient for increasing the conductivity of the composition, an electrolyte, and a corrosion inhibitor. The separator 13 keeps the anode 11 and cathode 14 apart while providing therebetween a low resistance path to the fiow of ions during the electrochemical process.
The mixture 14 including the cathode material and electrolyte, and referred to as the cathode mix, is prepared of the following constituents in the proportions indicated:
Electrolyte Normal magnesium perchlorate 4.4 Grams per liter lithium chromate 0.20
Cathode material Percent Manganese dioxide 86.4 Carbon black 9.1 Barium chromate 3.5 Magnesium hydroxide 1.0
Approximately 3.2 grams of the cathode mix is formed as a cylindrical slug or bobbin and inserted in the coated and paper lined anode 13 to form the cathode with sufficient pressure to attain contact among the anode, separator, and cathode mix. At this point in the fabrication process, the unsealed cell is stored for periods ranging from 4 to 20 hours in an atmosphere humidified to saturation over 5 normal magnesium perchlorate. A carbon rod 15 is then inserted into the mix 14 with the application of pressure to provide electrical connection thereto. An insulating top washer 16 is mounted on the carbon rod 15 providing an air space 19 between the washer 16 and the cathode mix 14. A metal contact cap 18 of brass is placed on carbon rod 15. A molten sealant is then poured onto the top washer which on cooling forms a hard wax layer 17 which seals the cell against moisture loss. When the anode and cathode are connected through an external load of 10 ohms for 2 minutes, and then through open circuit for 28 minutes, the cell is found to deliver milliamperes per square inch of anode area.
Cells made according to the example also provide a battery that has at 70 F., 30 hours of service with a maximum delayed action of less than 0.5 seconds occurring at some time within the first 1O discharge cycles; at 10 F., the battery provides about 10 hours of service with a delay ranging from 1 to 5 seconds on the first discharge cycle. No delayed action is detected on subsequent discharges at 10 F. Prior magnesium-manganese dioxide cells show a delay time of about 30 seconds at 70 F.
It is believed that the discharge reaction of the cell of the example is controlled by the film formed on the magnesium base alloy anode. The modified fabrication technique in the foregoing example apparently allows the hydrogen gas generated during the protecting film form ing process to escape without significantly affecting the cell moisture content. The application of pressure to the cell following storage corrects the component interface disturbances, and removes pockets or voids created by the etfervescence of the hydrogen gas.
The foregoing description is to be considered merely as illustrative of the invention and not in limitation thereof.
What is claimed is:
1. A primary cell comprising a magnesium base alloy as the anode, a 4 to 5 normal aqueous solution of magnesium perchlorate as the electrolyte, and a cathode material comprising manganese dioxide, the inner surface of the anode having thereon a thin film coating of palm oil on the order of 1000 angstroms in thickness.
2. A primary cell according to claim 1 wherein the magnesium base alloy consists in parts by weight of 96.75 parts magnesium, 2.0 parts aluminum, 1 part zinc, 0.15 part calcium, and 0.10 part manganese.
3. A primary cell according to claim 1 wherein the cathode material consists in parts by weight of 86.4 parts manganese dioxide, 9.1 parts carbon black, 3.5 parts barium chromate, and 1.0 part magnesium hydroxide.
References Cited UNITED STATES PATENTS 10 WINSTON A. DOUGLAS, Primary Examiner.
R. T. ROSENBURG,
Assistant Examiner.
US. Cl. X.R.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US54836966A | 1966-05-05 | 1966-05-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3450569A true US3450569A (en) | 1969-06-17 |
Family
ID=24188567
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US548369A Expired - Lifetime US3450569A (en) | 1966-05-05 | 1966-05-05 | Primary cell |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3450569A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3902921A (en) * | 1971-12-02 | 1975-09-02 | Anvar | Electric cells of the Leclanche type |
| US3926677A (en) * | 1972-02-25 | 1975-12-16 | Anvar Agence National De Vaoli | Electric primary cells |
| US3996068A (en) * | 1973-08-27 | 1976-12-07 | Union Carbide Corporation | Primary dry cell |
| US4048404A (en) * | 1970-08-19 | 1977-09-13 | P. R. Mallory & Co. Inc. | Electrophysichemical device |
| FR2465789A1 (en) * | 1979-09-19 | 1981-03-27 | Magnesium Elektron Ltd | MAGNESIUM ALLOYS AND THEIR USE IN ELECTROLYTIC CELLS SUCH AS BATTERY BATTERIES |
| US4869980A (en) * | 1988-04-14 | 1989-09-26 | The United States Of America As Represented By The Secretary Of The Army | Magnesium/manganese dioxide electrochemical cell |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US350297A (en) * | 1886-10-05 | Helmike desruelles | ||
| US1425163A (en) * | 1921-09-17 | 1922-08-08 | Hidro Metalurgica Soc | Electric storage battery |
| US1484783A (en) * | 1922-02-02 | 1924-02-26 | Union Carbide & Carbon Res Lab | Goated primary-cell electrode |
| US2936327A (en) * | 1954-02-18 | 1960-05-10 | John P Schrodt | Deferred activation battery |
| US2993946A (en) * | 1957-09-27 | 1961-07-25 | Rca Corp | Primary cells |
| US3258367A (en) * | 1963-05-20 | 1966-06-28 | Dow Chemical Co | Magnesium primary battery having aqueous carboxylic acid salt-inorganic perchlorate salt electrolyte |
-
1966
- 1966-05-05 US US548369A patent/US3450569A/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US350297A (en) * | 1886-10-05 | Helmike desruelles | ||
| US1425163A (en) * | 1921-09-17 | 1922-08-08 | Hidro Metalurgica Soc | Electric storage battery |
| US1484783A (en) * | 1922-02-02 | 1924-02-26 | Union Carbide & Carbon Res Lab | Goated primary-cell electrode |
| US2936327A (en) * | 1954-02-18 | 1960-05-10 | John P Schrodt | Deferred activation battery |
| US2993946A (en) * | 1957-09-27 | 1961-07-25 | Rca Corp | Primary cells |
| US3258367A (en) * | 1963-05-20 | 1966-06-28 | Dow Chemical Co | Magnesium primary battery having aqueous carboxylic acid salt-inorganic perchlorate salt electrolyte |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4048404A (en) * | 1970-08-19 | 1977-09-13 | P. R. Mallory & Co. Inc. | Electrophysichemical device |
| US3902921A (en) * | 1971-12-02 | 1975-09-02 | Anvar | Electric cells of the Leclanche type |
| US3926677A (en) * | 1972-02-25 | 1975-12-16 | Anvar Agence National De Vaoli | Electric primary cells |
| US3996068A (en) * | 1973-08-27 | 1976-12-07 | Union Carbide Corporation | Primary dry cell |
| FR2465789A1 (en) * | 1979-09-19 | 1981-03-27 | Magnesium Elektron Ltd | MAGNESIUM ALLOYS AND THEIR USE IN ELECTROLYTIC CELLS SUCH AS BATTERY BATTERIES |
| US4869980A (en) * | 1988-04-14 | 1989-09-26 | The United States Of America As Represented By The Secretary Of The Army | Magnesium/manganese dioxide electrochemical cell |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2463565A (en) | Dry primary cell | |
| US5166011A (en) | Process for forming an argentic oxide containing bipolar electrode and product produced thereby and deferred actuated battery assembly employing same | |
| JP6007447B2 (en) | Secondary battery | |
| US4009056A (en) | Primary alkaline cell having a stable divalent silver oxide depolarizer mix | |
| US4048405A (en) | High drain rate, primary alkaline cell having a divalent silver oxide/monovalent silver oxide depolarizer blend coated with a layer of silver | |
| US2942050A (en) | Electro-chemical sources of current of long shelf life and making the same | |
| US2422046A (en) | Alkaline dry cell | |
| KR20070086111A (en) | Lithium Primary Battery and Manufacturing Method | |
| US3306776A (en) | Galvanic primary cell | |
| US2829189A (en) | Alkaline dry cell | |
| US3954504A (en) | Fused electrolyte cell and method of making the same | |
| JP2000021386A (en) | Battery | |
| US3450569A (en) | Primary cell | |
| KR20160040018A (en) | Corrosion resistance tube for secondary battery and secondary battery comprising the same | |
| KR101685871B1 (en) | Washer with corrosion resistance and secondary battery comprising the same | |
| JPS61500242A (en) | battery | |
| US3644145A (en) | Incorporation of valve metals into current-producing cell constructions | |
| JPH0388271A (en) | Covering anode collector for alkaline battery | |
| US2543106A (en) | Deferred action primary battery | |
| US2482514A (en) | Primary cell with mercury absorbent | |
| US2473546A (en) | Alkaline primary cell | |
| US2481539A (en) | Method of making depolarizer units for alkaline primary cells | |
| US3083252A (en) | Current-producing cell and method of generating current with same | |
| US3368924A (en) | Battery with zinc anode coated with alkali metal getter | |
| US2759986A (en) | Primary cell |