US3312750A - Hydrodesulfurization of crude alpha-pinene - Google Patents
Hydrodesulfurization of crude alpha-pinene Download PDFInfo
- Publication number
- US3312750A US3312750A US317806A US31780663A US3312750A US 3312750 A US3312750 A US 3312750A US 317806 A US317806 A US 317806A US 31780663 A US31780663 A US 31780663A US 3312750 A US3312750 A US 3312750A
- Authority
- US
- United States
- Prior art keywords
- pinene
- crude
- sulfur
- alpha
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 title claims description 38
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 title claims description 19
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 title claims description 19
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 18
- 239000003054 catalyst Substances 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 14
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 150000003464 sulfur compounds Chemical class 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 24
- 229910052717 sulfur Inorganic materials 0.000 description 24
- 239000011593 sulfur Substances 0.000 description 24
- 241000779819 Syncarpia glomulifera Species 0.000 description 13
- 239000001739 pinus spp. Substances 0.000 description 13
- 229940036248 turpentine Drugs 0.000 description 13
- 238000011084 recovery Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 6
- 238000006477 desulfuration reaction Methods 0.000 description 6
- 230000023556 desulfurization Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002655 kraft paper Substances 0.000 description 5
- 235000019645 odor Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229940065278 sulfur compound Drugs 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- XOKSLPVRUOBDEW-UHFFFAOYSA-N pinane Chemical compound CC1CCC2C(C)(C)C1C2 XOKSLPVRUOBDEW-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 150000002898 organic sulfur compounds Chemical class 0.000 description 3
- 238000004537 pulping Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229930006728 pinane Natural products 0.000 description 2
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000001416 Pseudotsuga menziesii Species 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
- C07C7/163—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/929—Special chemical considerations
- Y10S585/947—Terpene manufacture or recovery
Definitions
- This invention relates to the hydrodesulfurizationof crude alpha-pinene, and more particularly, to a process for removing sulfur compounds from crude alpha-pinene by means of a catalytic hydrogenation.
- the furnace flue gases generally contain a relatively small concentration of the malodorous'substances; however, the total volume of discharge is so great that a considerable nuisance may result.
- Condensates from the multiple-effect evaporator on the black liquor recovery system may contain a consider'able amount of the foul-smelling compounds, thus giving rise to a secondary nuisance.
- the gases liberated in relieving and blowing the digesters are a major source for the foul odors associated with the kraft mill.
- crude sulfate turpentine If the gases evolved from the digester relief valve are condensed, the material obtained is called crude sulfate turpentine.
- the crude sulfate turpentine has a foul odor due to the sulfur-compounds present.
- Mass spectrometerexamination of the volatile components in the condensate from the kraft pulp digester blow gas has confirmed the presence of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide, and has shown that corresponding ethyl compounds and other sulfur-containing derivatives are not present in substantial concentrations.
- the amount of loss of volatile organic sulfur compounds associatedwith the digester relief and blow as reported by Bergstrom and Trobeck is approximately two pounds of sulfur per ton of pulp produced. 'Pulping of Douglas fir produces one to five pounds of sulfur per ton of pulp produced of the same type of organic sulfur compounds, depending upon the pulping conditions. The most-critical factor in fixing the amount of this material produced is the cooking temperature. More sulfur compounds are produced at the higher temperatures. Due to the high vapor pressure of these compounds, they readily escapeinto the atmosphere during relief from the digester. Some of the materials are partially condensed with the steam and appear in the digester relief condensate (crude sulfate turpentine).
- this invention has as an object the provision of an improved hydrogenation' process which will selectively convert the sulfur compounds in the crudev alpha-pinene to hydrogen sulfide while not appreciably alfecting'the unsaturated character of the alpha-pinene.
- a further object of this invention is to provide a catalyst which will carry out the selective hydrogenation of the crude alpha-pinene without itselfbeingappreciably destroyed or inactivated.
- the hydrogenation conditions include a temperature range of 300 F. to 500 F., pressures from 0 to 500 pounds per square inch, liquidjh'ourly space velocities of 1;25to 20 hour and hydrogen'rates of 1000 to 20,000 standard cubic feet per 42-gallon barrel of liquid feed.
- the process is characterized by liquid yields in excess of percent and the effluent liquid will contain 20 percent or less of its original sulfur content.
- the preferred catalyst consists of A" to pellets of alumina containing approximately 3% cobalt oxide and 15% molybdenum' oxide. 3 a
- the activity of catalyst is enhanced by pre-sulfiding. This is accomplished by passing a gaseous mixture containing 80 volume percent hydrogen, 20 volume percent hydrogen sulfide over the catalyst at 400F. for about three hours.
- the catalyst is rugged in this reaction. If it is used in the range of conditions designat'ed,it will operate for at least 600 volumes of oil per volume of catalyst with no deactivation.
- Example 1 A feed comprising the alpha-pinene fraction from crude sulfate pulp liquor obtained from Springfield, Oregon, was passed over a catalyst comprising /8 pellets of Houdry Series C cobalt molybdate. ,This feed contained 510 p.p.m. of sulfur. Operating conditions comprised pressure, 25 p.s.i.g.; hydrogen rate, 5000 s.c.f./bbl.; temperature, 400 F.; liquid space velocity, 2.5 hour- The liquid yield was 95+% and the effluent liquid product contained 55 p.p.m. of sulfur.
- Example 2 The crude alpha-pinene fraction from Springfield, Oregon, sulfate pulp mill liquor was passed over cobalt molybdate catalyst in the presence of hydrogen under the following conditions: pressure, 25 p.s.i.g.; temperature, 500 F.; hydrogen rate, 5000 s.c.f./bbl.; liquid space velocity, 10 hour- The sulfur content of the feed was 510 p.p.m.; the product contained 140 p.p.m. The yieldof liquid product exceeded 96%.
- Example 3 The crude'alpha-pinene fraction from Springfield, Oregon, sulfate pulp mill liquor was passed over cobalt molybdate catalyst in the presence of hydrogen under the following conditions: pressure, 25 p.s.i.g.; temperature, 450 F.; hydrogen rate, 5000 s.c.f./bbl.; liquid space'velocity, hour ment, the sulfur content of the feed was reduced from 510 p.p.m. to 95 p.p.m. The yield of liquid was 97%.
- Example 6 The following'ta-ble shows the'eifect of temperature on sulfur removal using the cobalt molybdate catalyst: Feedstock: Crude alpha-pinene from Springfield, Oregon sulfate pulp mill liquor. Sulfur Content of Feedstock: 510 p.p.m.
- Feedstock Crude alpha-pinene from Springfield, Oregon sulfate pulp r. vSulfur Content of Feedstockf 510 p.p.m.
- Reactor Temperature 40 Reactor Pressure: 25 p.s.i.g. Hydrogen Rate: 5000 s.c.f./bbl.
- Example 5 The following table shows the effect of Hydrogen Rate: 5000 s.c.f./bbl.
- liquid useful as a paint thinner, solvent, and raw mate rial for further syntheses.
- a method for reducing the amount of sulfur compounds in the alpha-pinene fraction of sulfate pulp mill liquor which comprises passing said fraction over a cobalt molybdate catalyst at temperatures in the range of 300 F. to 500 F., pressures from 0 to 500 pounds per square inch gage, liquid hourly space velocities in the range of 1.25 to 20 hourand hydrogen rates in the range of 1000 to 20,000 standard cubic feet per 42-gallon barrel of liquor feed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Description
states ate't 3,3 12,75 Patented Apr. 4, 1967 ffice This invention relates to the hydrodesulfurizationof crude alpha-pinene, and more particularly, to a process for removing sulfur compounds from crude alpha-pinene by means of a catalytic hydrogenation.
The problem of controlling and reducing water and atmospheric pollution in the United States is becoming increasingly important. Eflluents from sulfate (or kraft) pulp mills are major contributors to the pollution problem. The release of foul odors has been a major defect of the kraft pulping process ever since its development in Germany more than 70 years ago. The odors are liberated at several points in the process which are usually widely separated in the mill, thus making the problem of containing and controlling. these odors difficult.
The furnace flue gases generally contain a relatively small concentration of the malodorous'substances; however, the total volume of discharge is so great that a considerable nuisance may result.
Condensates from the multiple-effect evaporator on the black liquor recovery system may contain a consider'able amount of the foul-smelling compounds, thus giving rise to a secondary nuisance.
The gases liberated in relieving and blowing the digesters are a major source for the foul odors associated with the kraft mill. The major offenders-are organic sulfur compounds, the principal malodorous substances being hydrogen sulfide, methyl mercaptan, dimethylsulfide, and dimethyl disulfide. Control of these gases is particularly difficult because their rate of release is 'subject to large fluctuations inherent from the batch digestion process.
If the gases evolved from the digester relief valve are condensed, the material obtained is called crude sulfate turpentine. The crude sulfate turpentine has a foul odor due to the sulfur-compounds present.
Mass spectrometerexamination of the volatile components in the condensate from the kraft pulp digester blow gas has confirmed the presence of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide, and has shown that corresponding ethyl compounds and other sulfur-containing derivatives are not present in substantial concentrations. Thesame sulfur compounds-have been reported present in the-crude sulfate turpentine by Efishev, Prokhorov, and Matyushkina; also by Enkvist.
The amount of loss of volatile organic sulfur compounds associatedwith the digester relief and blow as reported by Bergstrom and Trobeck is approximately two pounds of sulfur per ton of pulp produced. 'Pulping of Douglas fir produces one to five pounds of sulfur per ton of pulp produced of the same type of organic sulfur compounds, depending upon the pulping conditions. The most-critical factor in fixing the amount of this material produced is the cooking temperature. More sulfur compounds are produced at the higher temperatures. Due to the high vapor pressure of these compounds, they readily escapeinto the atmosphere during relief from the digester. Some of the materials are partially condensed with the steam and appear in the digester relief condensate (crude sulfate turpentine).
Some sulfur analyses of samples of digester relief gases by Felicetta, Peniston, and McCarthy have shown the following distribution:
His omen cunts cunts,
Sample 1 131 5, 240 7, 350 4; 095 Sample 2 138 4, 880 7, 000 3, 870
Concentrations in parts per million by volume.
Most southern kraft mills obtain some reduction in the emission of odorous compounds from the digester gases through the recovery of the crude sulfate turpentine. The woods used by the southern mills yield up to four gallons of crude sulfate turpentine per ton of pulp produced and make the recovery of this material for refinement economically favorable. The yield of turpentine obtained from the northern and western mills is somewhat lower, approximately 1;5 gallons per tonof pulp produced, and recovery for refinement is seldom practiced. The type of trees processed, the operating conditions, and the efficiency of the recovery operation determine the yield of the turpentine obtained.
Current practices of recovery and disposal of crude sulfate turpentine from western pulp mills vary with different locations and with different mills. Burning as a partial fuel requirement is practiced in some mills. Others have dumped this material into the ocean where location permits. Repeated vaporization into the atmosphere has been tried, as Well as disposing intosettling ponds. In one case, no recovery system is used and all relief gases and turpentine emittedfforn the digest'ers'are dis-charged into the atmosphere.
Recovery of the crude sulfate turpentine is becoming of greater importance as a stable market for the material has developed, and also as pollution restrictions are tightened. An interest'in individual pure terpene1hydro carbons has also developed in the last few years and new sources of the basic terpenes are being sought. p
Once the crude sulfate turpentine has been recovered; the problem then becomes that of desulfurization'and purification to provide a product that will meet withpublic acceptance and also have the same desirable chemical and physical properties associated with pure gum spirits of turpentine. Many methods have been employed to accomplish these tasks with steam distillation and/or chemical treatment. Treating withhypo'chlorite or ethylene-diamine to further reduce the sulfur content appear to be the most common. Accordingly, this invention has as an object the provision of an improved hydrogenation' process which will selectively convert the sulfur compounds in the crudev alpha-pinene to hydrogen sulfide while not appreciably alfecting'the unsaturated character of the alpha-pinene.
A further object of this invention is to provide a catalyst which will carry out the selective hydrogenation of the crude alpha-pinene without itselfbeingappreciably destroyed or inactivated.
These objects are accomplished by the present invention wherein the crude alpha-pinene and gaseous hydrogen are passed over a cobalt-molybdate catalyst.
More specifically, the hydrogenation conditions include a temperature range of 300 F. to 500 F., pressures from 0 to 500 pounds per square inch, liquidjh'ourly space velocities of 1;25to 20 hour and hydrogen'rates of 1000 to 20,000 standard cubic feet per 42-gallon barrel of liquid feed.
The process is characterized by liquid yields in excess of percent and the effluent liquid will contain 20 percent or less of its original sulfur content. The preferred catalyst consists of A" to pellets of alumina containing approximately 3% cobalt oxide and 15% molybdenum' oxide. 3 a
The activity of catalyst is enhanced by pre-sulfiding. This is accomplished by passing a gaseous mixture containing 80 volume percent hydrogen, 20 volume percent hydrogen sulfide over the catalyst at 400F. for about three hours.
The catalyst is rugged in this reaction. If it is used in the range of conditions designat'ed,it will operate for at least 600 volumes of oil per volume of catalyst with no deactivation.
The following examples illustrate the remarkable results obtained in accordance with our invention on crude alpha-pinene obtained from widely scattered sources: 1 Example 1.-A feed comprising the alpha-pinene fraction from crude sulfate pulp liquor obtained from Springfield, Oregon, was passed over a catalyst comprising /8 pellets of Houdry Series C cobalt molybdate. ,This feed contained 510 p.p.m. of sulfur. Operating conditions comprised pressure, 25 p.s.i.g.; hydrogen rate, 5000 s.c.f./bbl.; temperature, 400 F.; liquid space velocity, 2.5 hour- The liquid yield was 95+% and the effluent liquid product contained 55 p.p.m. of sulfur.
Under identical operating conditions and the same catalyst, crude alpha-pinches from the following sources and sulfur content were treated and yielded the following final sulfur content.
, Example 2.-The crude alpha-pinene fraction from Springfield, Oregon, sulfate pulp mill liquor was passed over cobalt molybdate catalyst in the presence of hydrogen under the following conditions: pressure, 25 p.s.i.g.; temperature, 500 F.; hydrogen rate, 5000 s.c.f./bbl.; liquid space velocity, 10 hour- The sulfur content of the feed was 510 p.p.m.; the product contained 140 p.p.m. The yieldof liquid product exceeded 96%. Example 3.-The crude'alpha-pinene fraction from Springfield, Oregon, sulfate pulp mill liquor was passed over cobalt molybdate catalyst in the presence of hydrogen under the following conditions: pressure, 25 p.s.i.g.; temperature, 450 F.; hydrogen rate, 5000 s.c.f./bbl.; liquid space'velocity, hour ment, the sulfur content of the feed was reduced from 510 p.p.m. to 95 p.p.m. The yield of liquid was 97%. Example 4.-The following table shows the effect of space velocity on sulfur removal using the cobalt molybdate catalyst:
As a result of this treat-' reactor pressure on sulfur removal using the cobalt moly-bdate catalyst: V
Sulfur Content of Product, p.p.m. Average Reactor Pressure Conversion Trial 1 Trial 2 Average 70 75 72. 5 v 85.8 105 95 100.0 80.5 125 105 115.0 77. 5 145 135 140. 0 72. 6 500 42% pinane These data indicate'that increased pressure reduces somewhat the amount of desulfurization. The 500 p.s.i.g. run gave a 42% of pinane indicating that at this pressure, hydrogen adds, across the double bond in the alphapinene to drastically reduce the yield of the alpha-pinene. Example 6.The following'ta-ble shows the'eifect of temperature on sulfur removal using the cobalt molybdate catalyst: Feedstock: Crude alpha-pinene from Springfield, Oregon sulfate pulp mill liquor. Sulfur Content of Feedstock: 510 p.p.m.
' Reactor Pressure: 25 p.s.i.g
Feedstock: Crude alpha-pinene from Springfield, Oregon sulfate pulp r. vSulfur Content of Feedstockf 510 p.p.m.
Reactor Temperature: 40 Reactor Pressure: 25 p.s.i.g. Hydrogen Rate: 5000 s.c.f./bbl.
These data show that when other conditions are held constant, the lower the space velocity, the greater is the desulfurization.
Example 5.-The following table shows the effect of Hydrogen Rate: 5000 s.c.f./bbl.
, Sulfur Content of Average Space Product, p.p.m. Conver- Reactor Temp., F. Velocity sion,
hr.- Percent Trial 1' Trial 2 These data show the greatest desulfurization is obtained is about 400 F. and a liquid space velocity of 2.5 hrr Example 7.-The following table shows the effect of hydrogen rate'on sulfur removal using the cobalt molybdate catalyst:
mill liquor. Sulfur Content of Feedstock: 510 p.p.m. Reactor Temperature: 40 F. Reactor Pressure: 250 p.s.i.g. Liquid Space Velocity: 5 hour- Feedstock: Crude alpharpinene from Springfield, Oregon sulfate pulp Hydrogen Rate, Sulfur Content of Percent Conversion s.c.f./bbl. Product, p.p.m.
These data show that approximately 5000 s.c.f./bbl. of
hydrogen are required to obtain good desulfurization and that rates higher than this give little benefit.
The examples presented above show the effect of the variables temperature, pressure, space velocity, and hydrogen rate on the desulfurization of crude alpha-pinene. We have shown that by proper control of these variables, 60 to 90 percent sulfur removal can be accomplished with the cobalt molybdate catalyst.
Our invention has great economic advantages. The crude alpha-pinene containing 150 p.p.m. or more of sulfur is a malodorous liquid having little economic use other than a cheap fuel. After treatment by our process,
liquid, useful as a paint thinner, solvent, and raw mate rial for further syntheses.
1. A method for reducing the amount of sulfur compounds in the alpha-pinene fraction of sulfate pulp mill liquor which comprises passing said fraction over a cobalt molybdate catalyst at temperatures in the range of 300 F. to 500 F., pressures from 0 to 500 pounds per square inch gage, liquid hourly space velocities in the range of 1.25 to 20 hourand hydrogen rates in the range of 1000 to 20,000 standard cubic feet per 42-gallon barrel of liquor feed.
2. A method as defined in claim 1 in which the temperature is maintained at about 400 F. and the pressure at about 25 p.s.i.g.
References Cited by the Examiner UNITED STATES PATENTS DELBERT E. GANTZ, Primary Examiner. C. R. DAVIS. Assistant Examiner.
Claims (1)
1. A METHOD FOR REDUCING THE AMOUNT OF SULFUR COMPOUNDS IN THE ALPHA-PINENE FRACTION OF SULFATE PULP MILL LIQUOR WHICH COMPRISES PASSING SAID FRACTION OVER A COBALT MOLYBDATE CATALYST AT TEMPERATURE IN THE RANGE OF 300*F. TO 500*F., PRESSURES FROM 0 TO 500 POUNDS PER SQUARE INCH GAGE, LIQUID HOURLY SPACE VELOCITIES IN THE RANGE OF 1.25 TO 20 HOUR-1, AND HYDROGEN RATES IN THE RANGE OF 1000 TO 20,000 STANDARD CUBIC FEET PER 42-GALLON BARREL OF LIQUOR FEED.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US317806A US3312750A (en) | 1963-10-21 | 1963-10-21 | Hydrodesulfurization of crude alpha-pinene |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US317806A US3312750A (en) | 1963-10-21 | 1963-10-21 | Hydrodesulfurization of crude alpha-pinene |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3312750A true US3312750A (en) | 1967-04-04 |
Family
ID=23235342
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US317806A Expired - Lifetime US3312750A (en) | 1963-10-21 | 1963-10-21 | Hydrodesulfurization of crude alpha-pinene |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3312750A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3359342A (en) * | 1967-01-16 | 1967-12-19 | Glidden Co | Pretreating and isomerizing alpha-pinene |
| US3360581A (en) * | 1967-01-16 | 1967-12-26 | Glidden Co | Pretreating and isomerizing alpha-pinene |
| FR2597495A1 (en) * | 1986-04-18 | 1987-10-23 | Elf Aquitaine | PROCESS AND CATALYST FOR DESULFURIZING TERPENIC ESSENCES |
| FR2605900A1 (en) * | 1986-10-29 | 1988-05-06 | Elf Aquitaine | IMPROVEMENT TO THE PROCESS OF DESULFURING TERPENIC ESSENCES |
| WO2011004065A3 (en) * | 2009-07-07 | 2011-02-24 | Upm-Kymmene Corporation | Process for producing hydrocarbons by hydrodesulphurizing a crude turpentine feed |
| WO2013029663A1 (en) * | 2011-08-30 | 2013-03-07 | Upm-Kymmene Corporation | Method for hydroisomerising renewable hydrocarbons |
| US20130072730A1 (en) * | 2010-05-25 | 2013-03-21 | Upm-Kymmene Corporation | Process and apparatus for producing hydrocarbons from feed-stocks comprising tall oil and terpene-compounds |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2976336A (en) * | 1956-07-11 | 1961-03-21 | British Petroleum Co | Purification of benzene |
| US3125509A (en) * | 1959-10-26 | 1964-03-17 | Process for the treatment of petroleum | |
| US3152091A (en) * | 1959-02-24 | 1964-10-06 | Sinclair Research Inc | Process for preparing alumina-based catalysts |
| US3183180A (en) * | 1964-02-18 | 1965-05-11 | Hydrocarbon Research Inc | Hydrogenation of oils |
-
1963
- 1963-10-21 US US317806A patent/US3312750A/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2976336A (en) * | 1956-07-11 | 1961-03-21 | British Petroleum Co | Purification of benzene |
| US3152091A (en) * | 1959-02-24 | 1964-10-06 | Sinclair Research Inc | Process for preparing alumina-based catalysts |
| US3125509A (en) * | 1959-10-26 | 1964-03-17 | Process for the treatment of petroleum | |
| US3183180A (en) * | 1964-02-18 | 1965-05-11 | Hydrocarbon Research Inc | Hydrogenation of oils |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3359342A (en) * | 1967-01-16 | 1967-12-19 | Glidden Co | Pretreating and isomerizing alpha-pinene |
| US3360581A (en) * | 1967-01-16 | 1967-12-26 | Glidden Co | Pretreating and isomerizing alpha-pinene |
| FR2597495A1 (en) * | 1986-04-18 | 1987-10-23 | Elf Aquitaine | PROCESS AND CATALYST FOR DESULFURIZING TERPENIC ESSENCES |
| EP0243238A1 (en) * | 1986-04-18 | 1987-10-28 | Societe Nationale Elf Aquitaine (Production) | Process and catalyst for the desulfurization of terpenic oils |
| FR2605900A1 (en) * | 1986-10-29 | 1988-05-06 | Elf Aquitaine | IMPROVEMENT TO THE PROCESS OF DESULFURING TERPENIC ESSENCES |
| EP0267833A1 (en) * | 1986-10-29 | 1988-05-18 | Societe Nationale Elf Aquitaine (Production) | Process for the desulfurization of ternic oils |
| WO2011004065A3 (en) * | 2009-07-07 | 2011-02-24 | Upm-Kymmene Corporation | Process for producing hydrocarbons by hydrodesulphurizing a crude turpentine feed |
| US20120108675A1 (en) * | 2009-07-07 | 2012-05-03 | Upm-Kymmene Corporation | Process and apparatus for producing hydrocarbons by hydrogenating a terpene feed |
| US9677011B2 (en) * | 2009-07-07 | 2017-06-13 | Upm-Kymmene Corporation | Process and apparatus for producing hydrocarbons by hydrogenating a terpene feed |
| EP2454343B1 (en) * | 2009-07-07 | 2018-09-05 | UPM-Kymmene Corporation | Process for producing hydrocarbons by hydrogenating a terpene feed |
| US20130072730A1 (en) * | 2010-05-25 | 2013-03-21 | Upm-Kymmene Corporation | Process and apparatus for producing hydrocarbons from feed-stocks comprising tall oil and terpene-compounds |
| US9382483B2 (en) * | 2010-05-25 | 2016-07-05 | Upm-Kymmene Corporation | Process and apparatus for producing hydrocarbons from feed-stocks comprising tall oil and terpene-compounds |
| WO2013029663A1 (en) * | 2011-08-30 | 2013-03-07 | Upm-Kymmene Corporation | Method for hydroisomerising renewable hydrocarbons |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE68905319T2 (en) | Production of hydrogen from hydrocarbons. | |
| KR970006463A (en) | Desulfurization method of catalytic cracking gasoline | |
| US4391677A (en) | Process for producing substantially sulphur-free butene-1 | |
| US3312750A (en) | Hydrodesulfurization of crude alpha-pinene | |
| EP0221689A1 (en) | Process for waste treatment | |
| EP3010877A1 (en) | Method for producing bio-methanol at pulp mills | |
| US2574445A (en) | Catalytic desulfurization of kerosene and white spirits | |
| US2692226A (en) | Shale oil refining process | |
| US4059504A (en) | Hydrotreating of pyrolysis gasoline | |
| GB960440A (en) | An improved process for purifying a gas oil | |
| US3234298A (en) | Selective hydrogenation | |
| US1840269A (en) | Method of refining distillates | |
| US3413216A (en) | Process for selectively desulfurizing mercaptans | |
| US2697682A (en) | Catalytic desulfurization of petroleum hydrocarbons | |
| US4153671A (en) | Catalytic gas purification process | |
| US3456029A (en) | Process for the purification of lower olefin gases | |
| US2672433A (en) | Catalytic desulfurization of petroleum hydrocarbons | |
| US3160580A (en) | Process for desulfurizing and deodorizing hydrocarbons | |
| JPS5670090A (en) | Hydrotreating method of mineral oil | |
| NO141829B (en) | GENERATOR FOR STERILY, WASHABLE RADIOACTIVE MATERIAL | |
| US2574447A (en) | Catalytic desulfurization of petroleum hydrocarbons | |
| US2574446A (en) | Catalytic desulfurization of gas oilkerosene mixtures | |
| RU2436760C1 (en) | Method to process carbon-bearing gases and vapours | |
| US4741822A (en) | Procedure for hydrogenation of coal by means of liquid phase and fixed-bed catalyst hydrogenation | |
| US2171009A (en) | Oil refining process |