[go: up one dir, main page]

US3391181A - Preparation of methylolated carbamates - Google Patents

Preparation of methylolated carbamates Download PDF

Info

Publication number
US3391181A
US3391181A US440938A US44093865A US3391181A US 3391181 A US3391181 A US 3391181A US 440938 A US440938 A US 440938A US 44093865 A US44093865 A US 44093865A US 3391181 A US3391181 A US 3391181A
Authority
US
United States
Prior art keywords
carbamate
reaction
formaldehyde
carbamates
grams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US440938A
Inventor
Donald R Scheuerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JP Stevens and Co Inc
Original Assignee
JP Stevens and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JP Stevens and Co Inc filed Critical JP Stevens and Co Inc
Priority to US440938A priority Critical patent/US3391181A/en
Application granted granted Critical
Publication of US3391181A publication Critical patent/US3391181A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins

Definitions

  • ABSTRACT OF THE DISCLOSURE A method of preparing dimethylolated aliphatic carbomates in improved yield and substantially free from both monomethylolated contaminant and formaldehyde, comprising the steps of (l) Admixing an essentially anhydrous reaction mixture of alkyl carbamate containing at least two methylolatable amido hydrogens selected from the group consisting of monoalkyl carbamates and alkylene bis-carbamates, paraformaldehyde in an amount corresponding to from about 0.9 to about 1.1 equivalent weight of paraformaldehyde for each amido hydrogen atom in said carbamates, and sufiicient basic catalyst to maintain the pH from about 8.0 to about 11.0 during the reaction, and
  • This invention relates to an improved method for preparing finishing agents for cellulosic textile fabrics. More particularly, it relates to the preparation of methylol carbomates.
  • Cellulosic textile fabrics can be treated with cross-linking agents in order to impart to such fabrics enhanced wrinkle resistance and improved smooth drying after laundering.
  • cross-linking agents which have been demonstrated to be effective are methylolated carbamates which are usually prepared by reacting an organic carbamate with aqueous formaldehyde in an alkaline medium. In this methylolation reaction, the amido hydrogen atoms of the carbamate are replaced by methylol groups.
  • the methylolated carbamates contain two or more reactive mcthylol groups.
  • reaction product ratio is expressed as the number of moles of bound formaldehyde per mole of carbamate nitrogen, a CH O/ N ratio of 2.0 corresponds to complete conversion to N, N-dimethylol alkyl carbamate, and a CHQO/ N ratio of 1.0 represents N-methylol alkyl carbamate.
  • Another object of this invention is to provide a safe, economical, and effective method for preparing N-methylolated carbamates, said carbamates subsequently being used in the cross-linking of cellulosic textiles.
  • a further object of this invention is to provide a reaction for preparing mixtures of N-methylol and N, N- dimethylol carbamates wherein a major amount of N- methylol carbamate is converted to N, N-dimethylol carbamate.
  • an alkyl carbamate is reacted with paraforrnaldehyde under basic conditions to yield the corresponding N-methylolated carbamate.
  • This reaction may be carried out under essentially anhydrous conditions, and thereby circumvents the undesirable features characteristic of prior art methods utilizing aqueous formaldehyde treatment.
  • R is hydrogen
  • R may be hydrogen, straight or branched chain-lower alkyl having from 1 to 4 carbon atoms
  • Z may the hydrogen, halogen, alkoxy
  • R and R are as defined above.
  • biscarbamates of primary diamines represented by the formula if t t i R3OCN-X-N-CO-Rs wherein R is a straight or branched chain-lower alkyl group having from 1 to 4 carbon atoms and X is as defined above.
  • the methylolation reaction of this invention is carried out under basic conditions which may be attained by use or" such basic catalysts as the hydroxides of the alkali and alkaline earth metals, and preferably sodium hydroxide. Sufiicient amounts of catalyst are used to maintain the pH of the reaction from about 8 to about 11, with the preferred range being from 9.5 to 10.5.
  • the temperature at which the reaction proceeds may vary within a wide range, e.g., from about C. to about 100 C. It is preferred, however, to maintain the reaction temperature from 50 C. to 85 C. in order to minimize side reactions and achieve rapid reaction.
  • the duration of heating is not critical and can vary within wide limits, e.g., from 10 minutes to 10 hours. The preferred reaction time, however, is about 2 hours.
  • the amount of paraforrnaldehyde to be employed in the process of this invention will be determined by the degree of conversion desired, as well as by the number of amide hydrogen atoms present in the earbamate. It is preferred to employ one equivalent weight of paraformaldehyde for each amide hydrogen present in the earbamate, although the ratio of paraformaldehyde to amide hydrogen may range from about 0.9 to about 1.1.
  • the use of stoichiometric quantities of paraformaldehyde in this invention will give a substantial yield of dimethylol carbamate, so that an excess amount of paraforrnaldehyde serves no purpose.
  • anhydrous conditions or essentially anhydrous conditions can be used.
  • the dry ingredients are charged to a suitable reactor, the catalyst added, and the mixture is heated.
  • the mixture becomes fluid and stirrable at a temperature of from to C. and is thereafter stirred at the desired elevated temperature for from about 2 to about 4 hours. If less than substantially complete conversion is desired, the time of heating may be reduced accordingly.
  • a low melting carbamate e.g., ethyl carbamate (melting point C.) may be melted hefore addition thereto of paraformaldehyde and the basic catalyst.
  • the mixture remains fluid after addition of the paraformaldehyde and catalyst and may be stirred.
  • small amounts of water may be added to assist in fluidizing the reaction mixture.
  • the process of this invention eliminates the necessity of using even slight amounts of water in the reaction and consequently avoids the disadvantages inherent in such usage.
  • N,N-dimethylolated alkyl carbamates produced by the process of this invention are stable indefinitely. These carbamates may also be used directly after preparation or the reaction mixture may be neutralized with an acid to a pH of from about 6.5 to about 7.5 and subsequently stored.
  • methylolated carbamates of this invention may be applied to cellulosic textiles by any of the conventional means known to the practitioner. Using these carbamates, cross-linked textiles are obtained which exhibit enhanced smooth drying after laundering and good resistance to wrinkling.
  • the process of this invention enables carbamates to be methylolated without the use of aqueous formaldehyde solutions. Accordingly, the hazards, as well as the expense, of employing these aqueous solutions have been effectively circumvented. At the same time, the process of this invention yields carbamates having an increased degree of methylolation. As was mentioned previously, these carbamates find widespread application in the cross-linking of cellulosic textiles.
  • Example 2 N,N-dimethylol ethyl carbamate was prepared by melting 1780 grams ethyl carbamate (20 moles) and adding to this at 53 C. 1200 grams of paraformaldehyde (40 moles). To this fluid slurry were charged 10 grams aque ous 50% sodium hydroxide. An immediate temperature increase was observed from 5367 C. in 3 minutes. The reaction mixture was held at 6466 C. for 3 hours and a portion neutralized to pH 7.1 with concentrated 37% hydrochloric acid. The pH of the mixture before neutralization was about 10.1. The neutralized product was found to contain 4.56% free formaldehyde, which corresponds to a CH O/N ratio of 1.77. The remaining portion of the reaction was found to contain 4.2% free formaldehyde after standing for 3 days which corresponds to a CH O/N ratio of 1.79.
  • Example 3 N,N-dimethylol methyl carbamate was prepared by reaction of grams methyl carbamate (2 moles) with 120 grams of paraformaldehyde (4 moles) using 1.0 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly starting at 26 C. When the temperature reached 33 C., a fluid slurry was obtained which was clear at 68 C. The reaction mixture was held at 60-68 C. for 3 hours and then cooled. Neutralization to a pH of 7.12 was carried out using 1 gram of 37% hydrochloric acid. The pH of the mixture before neutralization was about 10. The product was found to contain 7.3% free formaldehyde, which corresponds to a CH O/N ratio of 1.67.
  • Example 4 N,N-din1ethylo1 methylene bis (ethyl carbamate) was prepared by reaction of grams of methylene bis (ethyl carbamate) (1 mole) with 60 grams of paraformaldehyde (2 moles) using 1.0 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly starting at 25 C. When the temperature reached 48 C., a fluid slurry was obtained which became clear at 65 C. The reaction mixture was held at 65-73 C. for 3 hours, after which time the pH of the mixture was about 9.5. The reaction was allowed to cool overnight and Was found to contain 4.9% free formaldehyde, which corresponds to a CH O/N ratio of 1.59.
  • Example 5 This example illustrates the superior results obtained when the process of the present invention is employed rather than a prior art process.
  • the product of the present invention contains a significantly higher proportion of the dimethylolatcd compound.
  • N,N-dimethylol allyl carbamate was prepared by reaction of 50.5 grams of allyl carbamate (0.5 mole) with 30 grams of paraformaldehyde (1 mole) using 0.25 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly, starting at 24 C. The temperature rose exothermically to 33 C., and the mixture was heated to 60 C. at which point it cleared. It was held at 60 C. for two hours, and was found to contain 7.45% free formaldehyde. The reaction mixture was cooled and filtered to yield a clear water-white viscous liquid. The CH O/N ratio based on free formaldehyde analysis was 1.60.
  • Example 7 N,N-dimethylol 2-ethylhexyl carbamate was prepared by reaction of 52 grams of Z-ethylhexyl carbamate (0.3 mole) with 18 grams of paraformaldehyde (0.6 mole) using 0.25 grams of 50% aqueous sodium hydroxide as catalyst. The mixture was heated to 80 C. and was clear at this temperature. The reaction mixture was held at 6070 C. for two hours and cooled, whereupon a viscous oil was obtained which showed 3.6% fere formaldehyde, corresponding to a CH O/ N ratio of 1.72.
  • N,N-dimethylol cetyl stearyl carbamate (this carbamate is actually an equimolar mixture of cetyl carbamate and stearyl carbamate) was prepared by reaction of 60 grams of cetyl stearyl carbamate with 12 grams of paraformaldehyde, using 0.25 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was initially heated to 60 C. and, on further heating to 80 C., gave a clear liquid. The reaction mixture was held for two hours at 80 C. and cooled. A solid white product was obtained which showed 3.3% free formaldehyde, corresponding to a CH O/N ratio of 1.60.
  • N,N-dimethylol 2-chloroethyl carbamate was prepared by the reaction of 49.2 grams of 2-chloroethyl carbamate (0.4 mole) with 24.0 grams of paraformaldehyde (0.8 mole) using 0.2 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was heated to 50 C. with stirring. It was held at this temperature for one hour where- 6 upon a product having a CH O/N ratio of 1.70 was obtained.
  • N,N-dimethylol 2-methoxyethyl carbamate was prepared by reaction of 143.0 grams of Z-methoxyethyl carbamate (1.2 moles) with 72 grams of paraformaldehyde (2.4 moles) using 0.25 gram of aqueous sodium hydroxide as catalyst. The mixture was agitated and heated for one hour at -65 C. The reaction mixture was cooled to room temperature and found to contain 5.85% free formaldehyde. The CH O/N ratio of the product based on free formaldehyde analysis was 1.66.
  • a method of preparing dimethylolated aliphatic carbamates in improved yield and substantially free from both monomethylolated contaminant and formaldehyde comprising the steps of (1) admixing an essentially anhydrous reaction mixture of alkyl carbamate containing at least two methylolatable amido hydrogens selected from the group consisting of monoalkyl carbamates and alkylene biscarbarnates, paraformaldehyde in an amount corresponding to from about 0.9 to about 1.1 equivalent weight of paraformaldehyde for each amido hydrogen atom in said carbamates, and sufiicient basic catalyst to maintain the pH from about 8.0 to about 11.0 during the reaction, and
  • said basic catalyst is selected from the group consisting of alkali metal hy droxides and alkaline earth metal hydroxides, the pH is maintained between about 9.5 and 10.5, and the reaction time varies between about 2 to about 5 hours.
  • the monoalkyl carbamate is selected from the group consisting of ethyl carbamate, methyl carbamate, Z-ethylhexyl carbamate, cetyl stearyl carbamate, 2-chloroethyl carbamate, Z-methoxyethyl carbamate and 'alkyl carbamate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

United States Patent ice 3,391,181 PREPARATION OF METHYLOLATED CARBAMATES Donald R. Schenerl, Franklin Lakes, N.J., assignor to .l'. P. Stevens 81 Co., Inc., New York, N.Y., a corporation of Delaware No Drawing. Filed Mar. 13, 1965, Ser. No. 440,938 5 Claims. (Cl. 260-482) ABSTRACT OF THE DISCLOSURE A method of preparing dimethylolated aliphatic carbomates in improved yield and substantially free from both monomethylolated contaminant and formaldehyde, comprising the steps of (l) Admixing an essentially anhydrous reaction mixture of alkyl carbamate containing at least two methylolatable amido hydrogens selected from the group consisting of monoalkyl carbamates and alkylene bis-carbamates, paraformaldehyde in an amount corresponding to from about 0.9 to about 1.1 equivalent weight of paraformaldehyde for each amido hydrogen atom in said carbamates, and sufiicient basic catalyst to maintain the pH from about 8.0 to about 11.0 during the reaction, and
(2) Heating the reaction mixture between about 50 C.to about 85 C. until a substantial quantity of dirnethylolated product is produced and isolating the product contained therein.
This invention relates to an improved method for preparing finishing agents for cellulosic textile fabrics. More particularly, it relates to the preparation of methylol carbomates.
Cellulosic textile fabrics can be treated with cross-linking agents in order to impart to such fabrics enhanced wrinkle resistance and improved smooth drying after laundering. Among the cross-linking agents which have been demonstrated to be effective are methylolated carbamates which are usually prepared by reacting an organic carbamate with aqueous formaldehyde in an alkaline medium. In this methylolation reaction, the amido hydrogen atoms of the carbamate are replaced by methylol groups. In order to obtain cross-linking of the cellulosic fabric treated with the carbamate, it is necessary that the methylolated carbamates contain two or more reactive mcthylol groups. It has been found, however, that the preparation of dimethylolated carbamates by aqueous formaldehyde treatment is usually unsatisfactory in that the yield of the dimethylol compound is lowered by the incomplete conversion of the monomethylol compound to the dimethylol carbamate, with the result that mixtures of the monomethylol and dimethylol compounds are obtained. It has been necessary, consequently, to react excess formaldehyde with the carbamate in order to drive the methylolation reaction further to completion.
The use of excess formaldehyde in methylolation reactions presents serious processing shortcomings. The presence of free (i.e., unbound) formaldehyde, a serious irritant, in the reaction mixture presents a safety hazard not only to the personnel running the reaction, but also to personnel subsequently using the reaction product in the treatment of textile materials. Moreover, t .e use of large amounts of formaldehyde inevitably results in waste of the reagent. Further, the presence of free formaldehyde may cause variations in the properties of treated cellulosic textiles due to undesirable side reactions between the formaldehyde and cellulose. Lastly, the utilization of aqueous reaction mixtures increases the cost of preparing, handling, and shipping the methylolated materials.
In addition to the failings outlined above, methods em- 3,391,181 Patented July 2, 1968 ploying aqueous formaldehyde solutions exhibit a further disadvantage. Even though excess equivalents of formaldehyde are used in the reaction, the conversion of a carbamate to a dimethylolated compound is seldom substantially complete. If the reaction product ratio is expressed as the number of moles of bound formaldehyde per mole of carbamate nitrogen, a CH O/ N ratio of 2.0 corresponds to complete conversion to N, N-dimethylol alkyl carbamate, and a CHQO/ N ratio of 1.0 represents N-methylol alkyl carbamate. It has been found that use of exactly 2 moles of formaldehyde solution (the stoichiometric amount) in the methylolation reactions hitherto used yields a product having a CH O/N ratio of from 1.3 to 1.5, rather than the theoretical value of 2.0.
It is an object of this invention to provide a method for the essentially anhydrous preparation of N-methyh olated carbamates.
Another object of this invention is to provide a safe, economical, and effective method for preparing N-methylolated carbamates, said carbamates subsequently being used in the cross-linking of cellulosic textiles.
A further object of this invention is to provide a reaction for preparing mixtures of N-methylol and N, N- dimethylol carbamates wherein a major amount of N- methylol carbamate is converted to N, N-dimethylol carbamate.
Other objects and the advantages of this invention will be apparent from the description that follows hereinafter.
In accordance with this invention, an alkyl carbamate is reacted with paraforrnaldehyde under basic conditions to yield the corresponding N-methylolated carbamate. This reaction may be carried out under essentially anhydrous conditions, and thereby circumvents the undesirable features characteristic of prior art methods utilizing aqueous formaldehyde treatment.
Exemplary of the carbarnates which may be used in the process of this invention are those compounds represented by the formula wherein R is hydrogen; R may be hydrogen, straight or branched chain-lower alkyl having from 1 to 4 carbon atoms; X may be alkylene having up to 20 carbon or an ethylenically unsaturated group having from 3 to 6 carbon atoms, such as, e.g., CH=CH-CH or the residue of a branched chain alkyl group having up to 20 carbon atoms; and Z may the hydrogen, halogen, alkoxy,
i -o- N\ where R and R are as defined above. Also suitable for use in this invention are biscarbamates of primary diamines represented by the formula if t t i R3OCN-X-N-CO-Rs wherein R is a straight or branched chain-lower alkyl group having from 1 to 4 carbon atoms and X is as defined above.
As was mentioned previously, the methylolation reaction of this invention is carried out under basic conditions which may be attained by use or" such basic catalysts as the hydroxides of the alkali and alkaline earth metals, and preferably sodium hydroxide. Sufiicient amounts of catalyst are used to maintain the pH of the reaction from about 8 to about 11, with the preferred range being from 9.5 to 10.5.
The temperature at which the reaction proceeds may vary within a wide range, e.g., from about C. to about 100 C. It is preferred, however, to maintain the reaction temperature from 50 C. to 85 C. in order to minimize side reactions and achieve rapid reaction. The duration of heating is not critical and can vary within wide limits, e.g., from 10 minutes to 10 hours. The preferred reaction time, however, is about 2 hours.
The amount of paraforrnaldehyde to be employed in the process of this invention will be determined by the degree of conversion desired, as well as by the number of amide hydrogen atoms present in the earbamate. It is preferred to employ one equivalent weight of paraformaldehyde for each amide hydrogen present in the earbamate, although the ratio of paraformaldehyde to amide hydrogen may range from about 0.9 to about 1.1. The use of stoichiometric quantities of paraformaldehyde in this invention will give a substantial yield of dimethylol carbamate, so that an excess amount of paraforrnaldehyde serves no purpose.
In carrying out the process of this invention, anhydrous conditions or essentially anhydrous conditions can be used. In one embodiment of the process, the dry ingredients are charged to a suitable reactor, the catalyst added, and the mixture is heated. The mixture becomes fluid and stirrable at a temperature of from to C. and is thereafter stirred at the desired elevated temperature for from about 2 to about 4 hours. If less than substantially complete conversion is desired, the time of heating may be reduced accordingly. In another embodiment of this invention, a low melting carbamate, e.g., ethyl carbamate (melting point C.) may be melted hefore addition thereto of paraformaldehyde and the basic catalyst. The mixture remains fluid after addition of the paraformaldehyde and catalyst and may be stirred. Alternatively, small amounts of water may be added to assist in fluidizing the reaction mixture. However, the process of this invention eliminates the necessity of using even slight amounts of water in the reaction and consequently avoids the disadvantages inherent in such usage.
The N,N-dimethylolated alkyl carbamates produced by the process of this invention are stable indefinitely. These carbamates may also be used directly after preparation or the reaction mixture may be neutralized with an acid to a pH of from about 6.5 to about 7.5 and subsequently stored.
The methylolated carbamates of this invention may be applied to cellulosic textiles by any of the conventional means known to the practitioner. Using these carbamates, cross-linked textiles are obtained which exhibit enhanced smooth drying after laundering and good resistance to wrinkling.
In summary, then, the process of this invention enables carbamates to be methylolated without the use of aqueous formaldehyde solutions. Accordingly, the hazards, as well as the expense, of employing these aqueous solutions have been effectively circumvented. At the same time, the process of this invention yields carbamates having an increased degree of methylolation. As was mentioned previously, these carbamates find widespread application in the cross-linking of cellulosic textiles.
The following examples will further illustrate the embodiments of this invention. All parts given are by weight unless otherwise indicated.
Example 1 N,N-dimethylol ethyl carbamate was prepared by reaction of 178 grams ethyl carbamate (2 moles) with grams paraformaldehyde (4 moles) using 1 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly starting at 25 C. When the temperature reached 27 C. a fiuid slurry was ob tained which cleared at 65 C. The reaction mixture was held at 6570 C. for 5 hours, after which time the pH thereof was about 10.2. On standing overnight the product was found to contain 4.8% free formaldehyde and 40.06% total formaldehyde (theoretical=40.1% representing a CH O/N ratio of 1.76.
Example 2 N,N-dimethylol ethyl carbamate was prepared by melting 1780 grams ethyl carbamate (20 moles) and adding to this at 53 C. 1200 grams of paraformaldehyde (40 moles). To this fluid slurry were charged 10 grams aque ous 50% sodium hydroxide. An immediate temperature increase was observed from 5367 C. in 3 minutes. The reaction mixture was held at 6466 C. for 3 hours and a portion neutralized to pH 7.1 with concentrated 37% hydrochloric acid. The pH of the mixture before neutralization was about 10.1. The neutralized product was found to contain 4.56% free formaldehyde, which corresponds to a CH O/N ratio of 1.77. The remaining portion of the reaction was found to contain 4.2% free formaldehyde after standing for 3 days which corresponds to a CH O/N ratio of 1.79.
Example 3 N,N-dimethylol methyl carbamate was prepared by reaction of grams methyl carbamate (2 moles) with 120 grams of paraformaldehyde (4 moles) using 1.0 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly starting at 26 C. When the temperature reached 33 C., a fluid slurry was obtained which was clear at 68 C. The reaction mixture was held at 60-68 C. for 3 hours and then cooled. Neutralization to a pH of 7.12 was carried out using 1 gram of 37% hydrochloric acid. The pH of the mixture before neutralization was about 10. The product was found to contain 7.3% free formaldehyde, which corresponds to a CH O/N ratio of 1.67.
Example 4 N,N-din1ethylo1 methylene bis (ethyl carbamate) was prepared by reaction of grams of methylene bis (ethyl carbamate) (1 mole) with 60 grams of paraformaldehyde (2 moles) using 1.0 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly starting at 25 C. When the temperature reached 48 C., a fluid slurry was obtained which became clear at 65 C. The reaction mixture was held at 65-73 C. for 3 hours, after which time the pH of the mixture was about 9.5. The reaction was allowed to cool overnight and Was found to contain 4.9% free formaldehyde, which corresponds to a CH O/N ratio of 1.59.
Example 5 This example illustrates the superior results obtained when the process of the present invention is employed rather than a prior art process.
The method set forth in Examples 14 was followed in preparing Formulations 2, 3 and 5, whereas Formulations 1 and 4 were prepared according to an exemplary prior art method. In carrying out the prior art technique, a 30% aqueous solution of a carbamate in formaldehyde was prepared by dissolving the carbamate in 4 times its weight of water and then adding sufiicient 37% formaldehyde solution to afford a ratio of formaldehyde to the carbamate of 2:1. The reactants, their ratio, and the CH O/N ratio present in the final product are set forth in the table below.
formaldehyde (2).
From the results presented hereinabove, it can be seen that the product of the present invention contains a significantly higher proportion of the dimethylolatcd compound.
Example 6 N,N-dimethylol allyl carbamate was prepared by reaction of 50.5 grams of allyl carbamate (0.5 mole) with 30 grams of paraformaldehyde (1 mole) using 0.25 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was agitated and heated slowly, starting at 24 C. The temperature rose exothermically to 33 C., and the mixture was heated to 60 C. at which point it cleared. It was held at 60 C. for two hours, and was found to contain 7.45% free formaldehyde. The reaction mixture was cooled and filtered to yield a clear water-white viscous liquid. The CH O/N ratio based on free formaldehyde analysis was 1.60.
Example 7 N,N-dimethylol 2-ethylhexyl carbamate was prepared by reaction of 52 grams of Z-ethylhexyl carbamate (0.3 mole) with 18 grams of paraformaldehyde (0.6 mole) using 0.25 grams of 50% aqueous sodium hydroxide as catalyst. The mixture was heated to 80 C. and was clear at this temperature. The reaction mixture was held at 6070 C. for two hours and cooled, whereupon a viscous oil was obtained which showed 3.6% fere formaldehyde, corresponding to a CH O/ N ratio of 1.72.
Example 8 N,N-dimethylol cetyl stearyl carbamate (this carbamate is actually an equimolar mixture of cetyl carbamate and stearyl carbamate) was prepared by reaction of 60 grams of cetyl stearyl carbamate with 12 grams of paraformaldehyde, using 0.25 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was initially heated to 60 C. and, on further heating to 80 C., gave a clear liquid. The reaction mixture was held for two hours at 80 C. and cooled. A solid white product was obtained which showed 3.3% free formaldehyde, corresponding to a CH O/N ratio of 1.60.
Example 9 N,N-dimethylol 2-chloroethyl carbamate was prepared by the reaction of 49.2 grams of 2-chloroethyl carbamate (0.4 mole) with 24.0 grams of paraformaldehyde (0.8 mole) using 0.2 gram of 50% aqueous sodium hydroxide as catalyst. The mixture was heated to 50 C. with stirring. It was held at this temperature for one hour where- 6 upon a product having a CH O/N ratio of 1.70 was obtained.
Example 10 N,N-dimethylol 2-methoxyethyl carbamate was prepared by reaction of 143.0 grams of Z-methoxyethyl carbamate (1.2 moles) with 72 grams of paraformaldehyde (2.4 moles) using 0.25 gram of aqueous sodium hydroxide as catalyst. The mixture was agitated and heated for one hour at -65 C. The reaction mixture was cooled to room temperature and found to contain 5.85% free formaldehyde. The CH O/N ratio of the product based on free formaldehyde analysis was 1.66.
Any departure from the above description which conforms to the present invention is intended to be included within the scope of the invention as defined by the following claims.
What is claimed is: 1. A method of preparing dimethylolated aliphatic carbamates in improved yield and substantially free from both monomethylolated contaminant and formaldehyde, comprising the steps of (1) admixing an essentially anhydrous reaction mixture of alkyl carbamate containing at least two methylolatable amido hydrogens selected from the group consisting of monoalkyl carbamates and alkylene biscarbarnates, paraformaldehyde in an amount corresponding to from about 0.9 to about 1.1 equivalent weight of paraformaldehyde for each amido hydrogen atom in said carbamates, and sufiicient basic catalyst to maintain the pH from about 8.0 to about 11.0 during the reaction, and
(2) heating the reaction mixture between about 50 C.
to about C. until a substantial quantity of dimethylolated product is produced and isolating the product contained therein.
2. The method of claim 1 wherein said basic catalyst is selected from the group consisting of alkali metal hy droxides and alkaline earth metal hydroxides, the pH is maintained between about 9.5 and 10.5, and the reaction time varies between about 2 to about 5 hours.
3. The method of claim 2 wherein the carbamate used is a monoalkyl carbamate.
4. The method of claim 3 wherein the monoalkyl carbamate is selected from the group consisting of ethyl carbamate, methyl carbamate, Z-ethylhexyl carbamate, cetyl stearyl carbamate, 2-chloroethyl carbamate, Z-methoxyethyl carbamate and 'alkyl carbamate.
5. The method of claim 1 wherein the bis alkyl carbamate is methylene bis(ethyl carbamate).
References Cited UNITED STATES PATENTS 2,297,531 9/1942 Bock 260-584 2,760,977 8/1956 Fener et a1. 260-561 2,864,861 12/1958 W-ohnsiedler 260561 3,144,299 8/1964 Frick et a1. 3,226,428 12/1965 Vail et a1. 260-482 LORRAINE A. WEINBERGER, Primary Examiner.
A. P. HALLUIN, Assistant Examiner.
US440938A 1965-03-18 1965-03-18 Preparation of methylolated carbamates Expired - Lifetime US3391181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US440938A US3391181A (en) 1965-03-18 1965-03-18 Preparation of methylolated carbamates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US440938A US3391181A (en) 1965-03-18 1965-03-18 Preparation of methylolated carbamates

Publications (1)

Publication Number Publication Date
US3391181A true US3391181A (en) 1968-07-02

Family

ID=23750818

Family Applications (1)

Application Number Title Priority Date Filing Date
US440938A Expired - Lifetime US3391181A (en) 1965-03-18 1965-03-18 Preparation of methylolated carbamates

Country Status (1)

Country Link
US (1) US3391181A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524876A (en) * 1965-07-27 1970-08-18 Dan River Mills Inc N,n-dimethylolcarbamates of ether alcohols
US3852233A (en) * 1971-05-11 1974-12-03 Chase S Tanner Co Thermosetting vinyl ester-ethylene emulsion copolymers
US3865620A (en) * 1973-03-12 1975-02-11 Tanner Co Chas S Nonwoven fabrics bonded with thermosetting vinyl ester emulsion copolymers
US3871822A (en) * 1966-02-16 1975-03-18 Union Carbide Corp Treatment of cellulosic textile fabrics with methylolated alkoxyalkyl carbamates
US3875100A (en) * 1971-05-11 1975-04-01 Tanner Co Chas S Thermosetting vinyl or vinylidene halide emulsion copolymers
US4002668A (en) * 1975-05-16 1977-01-11 The United States Of America As Represented By The Secretary Of Agriculture Method of producing anhydrous crystalline reaction products of formaldehyde and methyl-, ethyl carbamate
US4042553A (en) * 1971-05-11 1977-08-16 Chas. S. Tanner Co. Thermosetting vinyl ester emulsion copolymers
US4058466A (en) * 1974-12-30 1977-11-15 Hooker Chemicals & Plastics Corporation Brominated carbamoyl derivatives
US4759832A (en) * 1986-02-28 1988-07-26 Basf Aktiengesellschaft Preparation of biscarbamates and novel biscarbamates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297531A (en) * 1940-07-16 1942-09-29 Rohm & Haas Tertiary amines
US2760977A (en) * 1953-06-03 1956-08-28 Research Corp N-alkylol unsaturated amides
US2864861A (en) * 1956-06-05 1958-12-16 American Cyanamid Co Preparation of methylolacrylamide
US3144299A (en) * 1961-06-06 1964-08-11 Jr John G Frick Wrinkle resistance finish for cellulosic textiles
US3226428A (en) * 1962-07-19 1965-12-28 Sidney L Vail Biscarbamate-formaldehyde adducts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297531A (en) * 1940-07-16 1942-09-29 Rohm & Haas Tertiary amines
US2760977A (en) * 1953-06-03 1956-08-28 Research Corp N-alkylol unsaturated amides
US2864861A (en) * 1956-06-05 1958-12-16 American Cyanamid Co Preparation of methylolacrylamide
US3144299A (en) * 1961-06-06 1964-08-11 Jr John G Frick Wrinkle resistance finish for cellulosic textiles
US3226428A (en) * 1962-07-19 1965-12-28 Sidney L Vail Biscarbamate-formaldehyde adducts

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524876A (en) * 1965-07-27 1970-08-18 Dan River Mills Inc N,n-dimethylolcarbamates of ether alcohols
US3871822A (en) * 1966-02-16 1975-03-18 Union Carbide Corp Treatment of cellulosic textile fabrics with methylolated alkoxyalkyl carbamates
US3852233A (en) * 1971-05-11 1974-12-03 Chase S Tanner Co Thermosetting vinyl ester-ethylene emulsion copolymers
US3875100A (en) * 1971-05-11 1975-04-01 Tanner Co Chas S Thermosetting vinyl or vinylidene halide emulsion copolymers
US4042553A (en) * 1971-05-11 1977-08-16 Chas. S. Tanner Co. Thermosetting vinyl ester emulsion copolymers
US3865620A (en) * 1973-03-12 1975-02-11 Tanner Co Chas S Nonwoven fabrics bonded with thermosetting vinyl ester emulsion copolymers
US4058466A (en) * 1974-12-30 1977-11-15 Hooker Chemicals & Plastics Corporation Brominated carbamoyl derivatives
US4002668A (en) * 1975-05-16 1977-01-11 The United States Of America As Represented By The Secretary Of Agriculture Method of producing anhydrous crystalline reaction products of formaldehyde and methyl-, ethyl carbamate
US4759832A (en) * 1986-02-28 1988-07-26 Basf Aktiengesellschaft Preparation of biscarbamates and novel biscarbamates

Similar Documents

Publication Publication Date Title
EP0008839B1 (en) Process for preparing compositions containing quaternary ammonium compounds
US3391181A (en) Preparation of methylolated carbamates
US3366639A (en) Synthesis of amides from nitriles
JPS61191653A (en) Manufacture of tertiary ether amine
US2502478A (en) Tetrafluorosuccinic acid derivatives and their preparation
US2320225A (en) Condensation products of amidines with alkylene oxides
US2985685A (en) Alkanolamine aluminates as catalysts for ester redistribution
US2258321A (en) Condensation products of amines and monoalkylol cyanamides
US3492352A (en) Aryl-substituted aliphatic tertiary amines
US2345237A (en) Piperazino-piperazines
JPS62286971A (en) Quaternary 2-alkylimidazolinium salt, manufacture and use
US3875197A (en) Amido-methyl-polyglycol formals
US4267350A (en) Imidazolinium compounds
US3749751A (en) Reducing free formaldehyde content in methylolated carbamates
US2806060A (en) Polyvalent metal ion chelating agent
US3189646A (en) Process for the preparation of n-methylol amide derivatives
US2781382A (en) Detergent sulphonic acid and sulphate salts of certain amphoteric detergents
US3102912A (en) Surface active phenoxy, ethoxylated hydroxy propylamines
US4262121A (en) Hexahydropyrimid-4-yl ethers and their preparation
US2781378A (en) Detergent sulphonic acid and sulphate salts of certain amphoteric detergents
US2776314A (en) Methyl fatty tertiary amines
US2372808A (en) Esters of poly-beta-carboxyalkyl ethers of polyhydric alcohols
US2370839A (en) Condensation products and processes for their production
US4529803A (en) Process for preparing imidazolinium compounds
US2222208A (en) Nitrogenous condensation product and a process of producing same