US3373752A - Method for the ultrasonic cleaning of surfaces - Google Patents
Method for the ultrasonic cleaning of surfaces Download PDFInfo
- Publication number
- US3373752A US3373752A US322932A US32293263A US3373752A US 3373752 A US3373752 A US 3373752A US 322932 A US322932 A US 322932A US 32293263 A US32293263 A US 32293263A US 3373752 A US3373752 A US 3373752A
- Authority
- US
- United States
- Prior art keywords
- nozzle
- transducer
- frequency
- liquid
- stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 15
- 238000004506 ultrasonic cleaning Methods 0.000 title description 3
- 239000007788 liquid Substances 0.000 description 23
- 239000012530 fluid Substances 0.000 description 19
- 238000004140 cleaning Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000000356 contaminant Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 230000010358 mechanical oscillation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004851 dishwashing Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0623—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B2203/00—Details of cleaning machines or methods involving the use or presence of liquid or steam
- B08B2203/02—Details of machines or methods for cleaning by the force of jets or sprays
- B08B2203/0288—Ultra or megasonic jets
Definitions
- My present invention relates to the removal of undesirable surface accumulations from metallic and nonmetallic bodies by directing a stream of cleaning fluid thereagainst and, more particularly, to an improved method of carrying out this removal.
- the principal object of the present invention to provide an improved method of treating surfaces to remove contaminants therefrom, utilizing a stream of fluid directed against the surface.
- a method of removing undesirable matter from the surface of a body which comprises directing a stream of fluid at this surface in such manner that the kinetic energy of the fluid particles is at least partly transferred to the contaminants, and supplying to these particles a mechanical vibration substantially in the direction of the impact with the surface to increase the transferable energy of impact and thus the efiiciency of contaminant removal.
- an ultrasonic vibration is supplied to the fluid stream in such manner that, at least at the nozzle of the cleaning apparatus, a vibrational mode is imparted to the discharged fluid particles.
- a marked improvement in the cleaning efficiency of a fluid stream can be achieved by providing an electromechanical transducer in the discharge conduit or the nozzle at the terminus thereof, this transducer being energized by a relatively highfrequency current to produce mechanical vibrations in the fluid stream.
- the fluid stream can be relatively conductive (i.e. composed of an electrolyte) with the oscillations supplied by electromagnetic pulsing of the fluid stream.
- the transducer may be of a body of, for example, piezoelectric material which experiences a change of volume upon application of an electric field, so that a direct conversion of high-frequency electric current to mechanical oscillations is provided, it is also possible to achieve the conversion of electrical energy to mechanical energy in directly (e.g. via magnetic effects).
- Magnetic oscillations need not be derived from complete mechanical displacement of an armature but can result from the application of a magnetic field to a magnetostrictive body in which the oscillations are generated just as direct conversion of high-frequency electrical energy to mechanical oscillations can be produced by electrostriction.
- the resonating body may be a transducer in the sense previously described or merely an element suspended so that it vibrates at a frequency harmonically related to the original or supply frequency.
- the pressure fluid is a liquid to which a gas has been added in a continuous stream, the gas apparently further increasing the turbulence necessary to promote transfer of vibrational energy to the particles of liquid or being present as a substance adapted to take up such energy temporarily while entrained in the liquid and subsequently transfer it to particles of the liquid; the use of the inert gas increases efiiciency by at least 20% in most cases.
- FIG. 1 is an axial cross-sectional view through the nozzle of a descaling device, in accordance with the present invention, using a magnetostrictive transducer;
- FIG. 2 is an axial cross-sectional view of a nozzle employing an electrostrictive transducer
- FIG. 3 is a view similar to those of FIGS. 1 and 2, illustrating the use of electromagnetic oscillating means according to the invention
- FIGS. 4 and 5 are axial cross-sectional views illustrating further modifications of the invention.
- FIG. 6 shows, in cross-section, a portion of a dishwashing device embodying the invention.
- FIG. 1 I show a descaling device having a nozzle 10 into which a descaling liquid is passed axially (arrow 11) and is admixed with a gas stream fed transversely into the nozzle by tube 12.
- the interior of the nozzle tapers toward its mouth 13, which is shown to be inclined to the surface 14 to be descaled, whereby the liquid stream 15 emitted from the mouth 13 of the nozzle forcibly removes the scale 16.
- an electromechanical transducer 17 of the magnetostrictive type This transducer comprises a body 18 of a material adapted to convert electromagnetic energy into mechanical vibrations, flexibly mounted by rods 19 on an inner wall of the nozzle in such manner as to be capable of oscillating at the vibrating frequency.
- Body 18 is surrounded by a coil 2t) energized by a highfrequency alternating current source 21 at ultrasonic frequency.
- Suitable transducer materials include barium titanium oxide (BaTiO ferrite (Fe O aluminum ferrides and nichrome alloys; the latter are capable of developing l5 watt/cm. while the ferrites have power outputs of about 6 watt/cm. and the barium titanium oxide of 3 watt/ cm. for corresponding masses.
- the BaTiO is capable of developing frequencies of 10 to 500 kc./sec. without dificulty while ferrite is suitable for frequencies between 10 and 100 lie/sec.
- Example I With the device of the type illustrated in FIG. 1 using barium titanium oxide and a frequency of 47 kc./ sec. and an acoustical power output of 6 watt/cm. a stream of water emitted at a pressure of 5 kg/cm. and a velocity of 100 liter/min. was able to descale a motor casting of iron for the body of a 10 HP motor. 3% by volume of alcohol (Skydrol) was added as a rust-inhibiting agent. The nozzle was composed of bronze and had a converging portion of 120 mm. in length tapering from a diameter of 30 mm. to a diameter of 10 mm. The distance between the mouth of the nozzle and the workpiece was 200 mm.
- Example II Following the steps outlined above, using water, approximately 2 to 4 liter/min. of inert gas (i.e. nitrogen) was admixed with the liquid stream within the nozzle. A period of only 15 seconds was required for treatment of the face in contrast with a treatment time of 20 seconds in the absence of the nitrogen adjuvant.
- inert gas i.e. nitrogen
- Example III ously described and the water pressure was 5 kg./cm. with a flow velocity of 100 liter/min. The nozzle/workpiece distance was 200 mm. During the time indicated, no descaling was observed. When the transducer was again energized at a frequency of 47 kc./sec., descaling was accomplished in 20 seconds. When the same test was carried out in the absence of an ultrasonic vibration but with addition of gas to the liquid, there was no noticeable improvement.
- FIG. 2 there is illustrated a modified nozzle 22, according to the invention, wherein the tapered portion has a length L which is an integral number of half wavelengths of the sonic frequency developed by the electrosonic transducer 23.
- the latter can comprise a body 24 of barium titanium oxide between conductive layers 25, 26. It may be noted at this point that it is an essential feature of this invention that the resulting vibrations be in the direction of the liquid flow.
- An alternating current source 27 is connected across the transducer 23 to provide the electric energizing pulses of a frequency at which the transducer is designed to operate.
- a tube 28 supplies an adjuvant gas to the nozzle, whose tapered interior 30 is provided with annular serrations 31 which augment the transfer of vibrational energy to the liquid.
- Example IV The process of Example I was followed with the apparatus of the type shown in FIG. 2.
- the transducer 23 had an output power of 3 watts/cm. at 47 kc./sec. and resulted in a descaling of the casting surface in a period of l8-20 seconds.
- the output power was increased to 6 watt/cm. the descaling was accomplished in 10l5 seconds.
- the length of the tapered portion L of the nozzle was approximately mm., i.e. an integral number of half wavelengths (8O Angstrom units).
- the serrations had a depth of about 10 microns and an apex angle of 60.
- FIG. 3 I show another nozzle 32 in which the transducer includes a magnetic armature 33, the latter being oscillated (arrow 34) in the direction of mouth 35 by a magnetizing coil 36 and an alternating-current source 37 connected therewith.
- Armature 33 has a narrow extension 38 projecting into a serrated passage 39 of small cross-section adjacent the mouth 35 of the nozzle.
- the main interior portion of the latter is also serrated as shown at 40. Gases admixed with the liquid stream at 41.
- the use of the extension 38 or another element partly filling the discharge cavity apparently increases the transfer of vibrational energy to the liquid as a consequence of the elimination of laminar flow by holding the Reywolds number above that at which turbulence commences.
- a basketful of screw-machine parts was descaled by passing the nozzle over the parts at a distance of about 15 cm. and supplying kerosene through the nozzle at a rate of about 25 liters per minutes and a pressure of 7 kg./cm. at room temperature.
- the armature 33 is vibrated at a frequency of 20 kc./ second with a maximum stroke of about 10 microns.
- the main portion of the nozzle had an internal diameter of 40 mm. whereas the passage 39 had a diameter of 10 mm.
- the parts were cleaned by a single pass of the nozzle over them. When no ultrasonic frequency was applied, there was a noticeable retention of grease upon the metal (brass).
- the transducer is again an armature 43 vibrated by a magnetic coil 44 at an ultrasonic frequency and cooperating with the serrated and tapered interior 45 of the nozzle, the latter having the configuration of the nozzle of FIG. 2.
- a vibrating pointed element 43 whose configuration is substantially complementary to the configuration of the nozzle at its outlet permits a 5- increase in the cleaning efficiency and reduces the cleaning time by a similar proportion.
- the electromagnetic transducer 47 is suspended for oscillatory motion within the nozzle on flexible rods 48 and is provided with a serrated periphery composed of an array of annular grooves.
- a resonant body 50 is suspended in a compartment 51 of the nozzle adjacent to the mouth 52 thereof and is serrated to vibrate in step with the supplied frequency.
- the suspension means may be a vi-bratile reed 53.
- the distance a between the constricted passage 54 of the nozzle and the resonating body 50 as well as the distance between the body and the constricted mouth 52 is so selected as to be an integral number of half wavelengths so that the passage 51 constitutes, in effect, a resonating cavity.
- body 50 may itself be a transducer vibrated via an alternatingcurrent source 55 in step with transducer 47, care being taken to ensure that the distance between the transducers is equal to an integral number of wavelengths of the supachieved by this construction.
- FIG. 6 there is shown a dishwashing machine 60 in which the articles to be washed are retained in the usual baskets 61, 62 or upon suitable trays in the path of the liquid jets from a plurality of nozzles 63, 64.
- the supply conduit 65 for nozzle 63 is provided with a plurality of spaced transducers 66 adapted to provide ultrasonic frequencies for increasing the Washing efficiency.
- the nozzles 64 of the lower array have the transducers built into them in the manner illustr'tted in FIG. 2.
- the baskets 61 and 62 can be withdrawn from the machine, upon termination of the cleaning operation, on rails 67, 68.
- a device of this type incorporating electrosonic transducers to augment the cleaning action, was found to give 25-50% better results in removing greasy substances from table articles.
- the improvement in cleaning efiiciency permitted a reduction in the washing time by at least 25% and enabled a reduction in the total volume of water employed.
- Example VI A plurality of nozzles of the type illustrated in FIG. 2 were arranged radially about a common center through which a stainless steel wire was passed at a rate of 0.5 m./min.
- the wire had a diameter of 5 mm. and was composed of 18/8 stainless steel.
- Two nozzles were employed, using chromium oxide (CI'OZ) as the transducer material with a power output of 5 watt cm. with a frequency of 100 kc./second, a flow rate of 50 liter/min. and a liquid pressure of 5 kg./cm.
- the steel wire was found to have a bright appearance after passing through the spray.
- a method of cleaning a surface comprising the steps of:
Landscapes
- Cleaning By Liquid Or Steam (AREA)
Description
BEST AVAILABLE COPY March 19, 1968 KIYOSHI lNOUE 3,373,752
METHOD FOR THE ULTRASONIC CLEANING OF SURFACES Filed Nov. 12. 1963 2 Sheets-Sheet 1 M 31?} KIYOSH/ INOUE F lg. 3 INVENTOR.
BEST AVAILABLE CO March 1968 KIYOSHI [NOUE 3,373,752
METHOD FOR THE ULTRASONIC CLEANING OF SURFACES Filed Nov. 12, 1963 2 Sheets-Sheet 2 KIYOSH/ INOUE INVENTOR.
Fig. 6 BY gfy ss AGENT EST AVAILABLE COPY 3,373,752 Patented Mar. 19, 1968 ABSTRACT OF THE DESCLQSURE Method for cleaning a surface by directing a highpressure stream of liquid/gas mixture from a nozzle thereagainst, ultrasonic vibrations being imparted to the mixture in the nozzle by an electromechanical transducer cooperating with a resonant body downstream thereof and having a natural frequency of vibration of the order of that generated by the transducer, while serrated areas on the internal tapered wall of the nozzle and on the resonant body augment the turbulence in the nozzle.
My present invention relates to the removal of undesirable surface accumulations from metallic and nonmetallic bodies by directing a stream of cleaning fluid thereagainst and, more particularly, to an improved method of carrying out this removal.
It has been the practice heretofore, to descale metallic bodies, masonry and other surfaces and to effect a soil removal therefrom by subjecting the contaminated surfaces of the bodies to a high-pressure and/or high-velocity stream of a fluid (generally a liquid) in which the contaminants are soluble or otherwise entrainable with or Without the aid of chemical solubilizing agents or solid particles entrained by the fluid stream to effect a loosening by impact of the contaminant. The considerable advantages of this method of cleaning or clearing a surface has led to many efforts to develop an apparatus for carrying out this technique with greater efliciency, such apparatus being primarily improved spray guns, means for feeding an adjuvant to the fluid stream, mechanism for concentrating the stream or insuring the maintenance of a predetermined impact angle on the surface etc. In all cases, however, the principle of operation remained the same and no marked increase in the cleaning efliciency was noted. A most significant drawback of the aforedescribed system has been the relatively large volume of fluid employed as a consequence of the relatively long treatment periods necessary. This disadvantage becomes increasingly important when relatively expensive solvents (eg. kerosene or trichloroethylene) are employed.
It is, consequently, the principal object of the present invention to provide an improved method of treating surfaces to remove contaminants therefrom, utilizing a stream of fluid directed against the surface.
These objects, and others which will become apparent hereinafter, are attained, in accordance with the present invention, by a method of removing undesirable matter from the surface of a body which comprises directing a stream of fluid at this surface in such manner that the kinetic energy of the fluid particles is at least partly transferred to the contaminants, and supplying to these particles a mechanical vibration substantially in the direction of the impact with the surface to increase the transferable energy of impact and thus the efiiciency of contaminant removal. I have found, in this connection, that a fluid directed at relatively high pressure against a contaminated surface elfects removal of the undesirable material as a consequence of a process which can be described, in simple terms, as repeated collision of par- Cir ticles of the fluid with the contaminant material at the surface to loosen the adherent material and entrain it along with the fluid stream. I have further observed that the efliciency of soil removal by this repeated-impact mode can be strongly augmented when the impacting particles undergo vibration at supersonic frequencies substantially in the direction at which the particles collide with the surface, these vibrations, being superimposed upon the impact velocity of the fluid stream.
According to an essential feature of the present invention, therefore, an ultrasonic vibration is supplied to the fluid stream in such manner that, at least at the nozzle of the cleaning apparatus, a vibrational mode is imparted to the discharged fluid particles. I have found that a marked improvement in the cleaning efficiency of a fluid stream can be achieved by providing an electromechanical transducer in the discharge conduit or the nozzle at the terminus thereof, this transducer being energized by a relatively highfrequency current to produce mechanical vibrations in the fluid stream. Alternatively, or as a supplement to these mechanical oscillations, the fluid stream can be relatively conductive (i.e. composed of an electrolyte) with the oscillations supplied by electromagnetic pulsing of the fluid stream. The transducer may be of a body of, for example, piezoelectric material which experiences a change of volume upon application of an electric field, so that a direct conversion of high-frequency electric current to mechanical oscillations is provided, it is also possible to achieve the conversion of electrical energy to mechanical energy in directly (e.g. via magnetic effects). Magnetic oscillations need not be derived from complete mechanical displacement of an armature but can result from the application of a magnetic field to a magnetostrictive body in which the oscillations are generated just as direct conversion of high-frequency electrical energy to mechanical oscillations can be produced by electrostriction.
I have found that the transfer of vibrational energy to the liquid can be augmented by serrating the discharge conduit at least in the region of the nozzle and, preferably, constricting the latter at the mouth. Apparently these serrations, which may be annular or broken in the circumferential direction, increase turbulence at the nozzle and ensure an increased transfer of vibrational energy to the particles through a process of collision and rebound. In this connection it may be noted that excellent results are obtained When the nozzle is, in effect, tuned to the ultrasonic frequency. To this end I have found it convenient to provide the nozzle with a taper whose length is an integral number of half-wave lengths (L=nh/2) or to provide a body in the constricted portion of the nozzle which oscillates substantially at the frequency of the supplied vibrations or an aiding harmonic thereof. Since the vibration is of a sonic type (i.e. alternate rarefaction and condensation), such harmonics may have half-lengths equal to an integral number of half-wave lengths of the supplied frequency. The resonating body may be a transducer in the sense previously described or merely an element suspended so that it vibrates at a frequency harmonically related to the original or supply frequency.
According to a further feature of this invention, the pressure fluid is a liquid to which a gas has been added in a continuous stream, the gas apparently further increasing the turbulence necessary to promote transfer of vibrational energy to the particles of liquid or being present as a substance adapted to take up such energy temporarily while entrained in the liquid and subsequently transfer it to particles of the liquid; the use of the inert gas increases efiiciency by at least 20% in most cases.
The above and other objects, features and advantages of the present invention will become more readily appar- BEST AVAILABLE COPY ent from the following description, reference being made to the accompanying drawing in which:
FIG. 1 is an axial cross-sectional view through the nozzle of a descaling device, in accordance with the present invention, using a magnetostrictive transducer;
FIG. 2 is an axial cross-sectional view of a nozzle employing an electrostrictive transducer;
FIG. 3 is a view similar to those of FIGS. 1 and 2, illustrating the use of electromagnetic oscillating means according to the invention;
FIGS. 4 and 5 are axial cross-sectional views illustrating further modifications of the invention; and
FIG. 6 shows, in cross-section, a portion of a dishwashing device embodying the invention.
In FIG. 1, I show a descaling device having a nozzle 10 into which a descaling liquid is passed axially (arrow 11) and is admixed with a gas stream fed transversely into the nozzle by tube 12. The interior of the nozzle tapers toward its mouth 13, which is shown to be inclined to the surface 14 to be descaled, whereby the liquid stream 15 emitted from the mouth 13 of the nozzle forcibly removes the scale 16. Within the nozzle 10 there is provided an electromechanical transducer 17 of the magnetostrictive type. This transducer comprises a body 18 of a material adapted to convert electromagnetic energy into mechanical vibrations, flexibly mounted by rods 19 on an inner wall of the nozzle in such manner as to be capable of oscillating at the vibrating frequency. Body 18 is surrounded by a coil 2t) energized by a highfrequency alternating current source 21 at ultrasonic frequency.
Suitable transducer materials include barium titanium oxide (BaTiO ferrite (Fe O aluminum ferrides and nichrome alloys; the latter are capable of developing l5 watt/cm. while the ferrites have power outputs of about 6 watt/cm. and the barium titanium oxide of 3 watt/ cm. for corresponding masses. The BaTiO is capable of developing frequencies of 10 to 500 kc./sec. without dificulty while ferrite is suitable for frequencies between 10 and 100 lie/sec.
Example I With the device of the type illustrated in FIG. 1 using barium titanium oxide and a frequency of 47 kc./ sec. and an acoustical power output of 6 watt/cm. a stream of water emitted at a pressure of 5 kg/cm. and a velocity of 100 liter/min. was able to descale a motor casting of iron for the body of a 10 HP motor. 3% by volume of alcohol (Skydrol) was added as a rust-inhibiting agent. The nozzle was composed of bronze and had a converging portion of 120 mm. in length tapering from a diameter of 30 mm. to a diameter of 10 mm. The distance between the mouth of the nozzle and the workpiece was 200 mm. and the temperature of the liquid 8 C. Under these conditions the casting face was cleaned of scale after a contact duration of seconds with the liquid. Using the identical parameters, a steel body was degreased by substituting kerosene for the water. It was found that other conventional organic degreasing solvents were also effective. These solvents included I-Ienkel P3, Cleanall S and trichloroethylene.
Example II Following the steps outlined above, using water, approximately 2 to 4 liter/min. of inert gas (i.e. nitrogen) was admixed with the liquid stream within the nozzle. A period of only 15 seconds was required for treatment of the face in contrast with a treatment time of 20 seconds in the absence of the nitrogen adjuvant.
Example III ously described and the water pressure was 5 kg./cm. with a flow velocity of 100 liter/min. The nozzle/workpiece distance was 200 mm. During the time indicated, no descaling was observed. When the transducer was again energized at a frequency of 47 kc./sec., descaling was accomplished in 20 seconds. When the same test was carried out in the absence of an ultrasonic vibration but with addition of gas to the liquid, there was no noticeable improvement.
In FIG. 2 there is illustrated a modified nozzle 22, according to the invention, wherein the tapered portion has a length L which is an integral number of half wavelengths of the sonic frequency developed by the electrosonic transducer 23. The latter can comprise a body 24 of barium titanium oxide between conductive layers 25, 26. It may be noted at this point that it is an essential feature of this invention that the resulting vibrations be in the direction of the liquid flow. An alternating current source 27 is connected across the transducer 23 to provide the electric energizing pulses of a frequency at which the transducer is designed to operate. A tube 28 supplies an adjuvant gas to the nozzle, whose tapered interior 30 is provided with annular serrations 31 which augment the transfer of vibrational energy to the liquid.
Example IV The process of Example I was followed with the apparatus of the type shown in FIG. 2. The transducer 23 had an output power of 3 watts/cm. at 47 kc./sec. and resulted in a descaling of the casting surface in a period of l8-20 seconds. When the output power was increased to 6 watt/cm. the descaling was accomplished in 10l5 seconds. In this case, the length of the tapered portion L of the nozzle was approximately mm., i.e. an integral number of half wavelengths (8O Angstrom units). The serrations had a depth of about 10 microns and an apex angle of 60.
In FIG. 3 I show another nozzle 32 in which the transducer includes a magnetic armature 33, the latter being oscillated (arrow 34) in the direction of mouth 35 by a magnetizing coil 36 and an alternating-current source 37 connected therewith. Armature 33 has a narrow extension 38 projecting into a serrated passage 39 of small cross-section adjacent the mouth 35 of the nozzle. The main interior portion of the latter is also serrated as shown at 40. Gases admixed with the liquid stream at 41. The use of the extension 38 or another element partly filling the discharge cavity apparently increases the transfer of vibrational energy to the liquid as a consequence of the elimination of laminar flow by holding the Reywolds number above that at which turbulence commences.
Using the device of FIG. 3, a basketful of screw-machine parts was descaled by passing the nozzle over the parts at a distance of about 15 cm. and supplying kerosene through the nozzle at a rate of about 25 liters per minutes and a pressure of 7 kg./cm. at room temperature. The armature 33 is vibrated at a frequency of 20 kc./ second with a maximum stroke of about 10 microns. The main portion of the nozzle had an internal diameter of 40 mm. whereas the passage 39 had a diameter of 10 mm. The parts were cleaned by a single pass of the nozzle over them. When no ultrasonic frequency was applied, there was a noticeable retention of grease upon the metal (brass). An ultrasonic frequency ranging from 10 kc./ second to about 10 megacycles was found most effective. It may be noted that this method of degreasing differs sharply from earlier degreasing techniques using ultrasonics wherein the vibrations are supplied to a body of liquid in contact with the material to be degreased or to the parts themselves.
In the nozzle 42 of FIG. 4 the transducer is again an armature 43 vibrated by a magnetic coil 44 at an ultrasonic frequency and cooperating with the serrated and tapered interior 45 of the nozzle, the latter having the configuration of the nozzle of FIG. 2. It should be obas a zez served that the use of a vibrating pointed element 43 whose configuration is substantially complementary to the configuration of the nozzle at its outlet permits a 5- increase in the cleaning efficiency and reduces the cleaning time by a similar proportion. In the nozzle 46 of FIG. 5, the electromagnetic transducer 47 is suspended for oscillatory motion within the nozzle on flexible rods 48 and is provided with a serrated periphery composed of an array of annular grooves. Additionally, a resonant body 50 is suspended in a compartment 51 of the nozzle adjacent to the mouth 52 thereof and is serrated to vibrate in step with the supplied frequency. The suspension means may be a vi-bratile reed 53. The distance a between the constricted passage 54 of the nozzle and the resonating body 50 as well as the distance between the body and the constricted mouth 52 is so selected as to be an integral number of half wavelengths so that the passage 51 constitutes, in effect, a resonating cavity. If desired, body 50 may itself be a transducer vibrated via an alternatingcurrent source 55 in step with transducer 47, care being taken to ensure that the distance between the transducers is equal to an integral number of wavelengths of the supachieved by this construction.
In FIG. 6 there is shown a dishwashing machine 60 in which the articles to be washed are retained in the usual baskets 61, 62 or upon suitable trays in the path of the liquid jets from a plurality of nozzles 63, 64. As shown in this figure, the supply conduit 65 for nozzle 63 is provided with a plurality of spaced transducers 66 adapted to provide ultrasonic frequencies for increasing the Washing efficiency. The nozzles 64 of the lower array have the transducers built into them in the manner illustr'tted in FIG. 2. The baskets 61 and 62 can be withdrawn from the machine, upon termination of the cleaning operation, on rails 67, 68. A device of this type, incorporating electrosonic transducers to augment the cleaning action, was found to give 25-50% better results in removing greasy substances from table articles. The improvement in cleaning efiiciency permitted a reduction in the washing time by at least 25% and enabled a reduction in the total volume of water employed.
Example VI A plurality of nozzles of the type illustrated in FIG. 2 were arranged radially about a common center through which a stainless steel wire was passed at a rate of 0.5 m./min. The wire had a diameter of 5 mm. and was composed of 18/8 stainless steel. Two nozzles were employed, using chromium oxide (CI'OZ) as the transducer material with a power output of 5 watt cm. with a frequency of 100 kc./second, a flow rate of 50 liter/min. and a liquid pressure of 5 kg./cm. The steel wire was found to have a bright appearance after passing through the spray.
A series of tests were made using a device of the type illustrated in FIG. 5 without the aid of any electromechanical transducer element. In this test, the transducer 47 was dispensed with and the resonant body 50 provided upon the reed 53 without any external source of activation. With the configuration illustrated in FIG. 5 it was found that there was a tendency for body 50 to vibrate at a frequency determined by the Youngs modulus of the system. It was thus possible to supply a vibrating mode to the particles without the use of any external source. Vibration control was effected by varying the modulus of the vibratile element.
The invention described and illustrated is believed to admit of many modifications within the ability of persons skilled in the art, all such modifications being considered within the spirit and scope of the appended claims.
I claim:
1. A method of cleaning a surface, comprising the steps of:
(a) directing a stream of liquid against said surface from the mouth of a nozzle at an elevated pressure;
(b) admixing with said liquid in said nozzle a gas admitted to the nozzle at a location upstream of said mouth;
(c) imparting ultrasonic vibrations to the mixture of gas and liquid passing through said nozzle by operating at ultrasonic frequency an electromechanical transducer between said location and said mouth; and
(d) augmenting the vibrations imparted to said nozzle by disposing a resonating body in said nozzle between said mouth and said transducer, said body having a natural frequency of vibration of the order of the frequency of the vibrations generated by said transducer.
References Cited UNITED STATES PATENTS 1,738,565 12/ 1929 Claypoole. 2,453,595 11/ 1948 Rosenthal. 2,481,620 9/1949 Rosenthal 239--102 2,647,846 8/1953 Bagno 1341 2,766,064 10/ 1956 Schweitzer 239102 X 2,789,008 4/ 1957 Cronin. 2,828,231 3/1958 Henry 13436 X 2,850,854 9/1958 Levy. 2,947,312 8/1960 Heinicke 1341 X 2,980,123 4/1961 Lemelson 134-1 X 3,081,946 3/1963 Solotf 2394 X FOREIGN PATENTS 978,290 11/1950 France.
MORRIS O. WOLK, Primary Examiner.
J. ZATARGA, Assistant Examiner.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4978362 | 1962-11-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3373752A true US3373752A (en) | 1968-03-19 |
Family
ID=12840743
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US322932A Expired - Lifetime US3373752A (en) | 1962-11-13 | 1963-11-12 | Method for the ultrasonic cleaning of surfaces |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3373752A (en) |
Cited By (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3499792A (en) * | 1965-08-11 | 1970-03-10 | Soniflow Equipment Co | Cleaning method and apparatus |
| US3503804A (en) * | 1967-04-25 | 1970-03-31 | Hellmut Schneider | Method and apparatus for the production of sonic or ultrasonic waves on a surface |
| US3528704A (en) * | 1968-07-17 | 1970-09-15 | Hydronautics | Process for drilling by a cavitating fluid jet |
| US3542592A (en) * | 1968-05-02 | 1970-11-24 | Bell Tech Systems Inc | Method and apparatus for cleaning members with fluids |
| US3700169A (en) * | 1970-10-20 | 1972-10-24 | Environment One Corp | Process and appratus for the production of hydroelectric pulsed liquids jets |
| US3806029A (en) * | 1973-01-24 | 1974-04-23 | Energy Sciences Inc | Shock enhancement of pressure wave energy |
| US3983740A (en) * | 1971-12-07 | 1976-10-05 | Societe Grenobloise D'etudes Et D'applications Hydrauliques (Sogreah) | Method and apparatus for forming a stream of identical drops at very high speed |
| US4092176A (en) * | 1975-12-11 | 1978-05-30 | Nippon Electric Co., Ltd. | Apparatus for washing semiconductor wafers |
| US4153201A (en) * | 1976-11-08 | 1979-05-08 | Sono-Tek Corporation | Transducer assembly, ultrasonic atomizer and fuel burner |
| US4193635A (en) * | 1978-04-07 | 1980-03-18 | Hochrein Ambrose A Jr | Controlled cavitation erosion process and system |
| US4326553A (en) * | 1980-08-28 | 1982-04-27 | Rca Corporation | Megasonic jet cleaner apparatus |
| US4352459A (en) * | 1979-11-13 | 1982-10-05 | Sono-Tek Corporation | Ultrasonic liquid atomizer having an axially-extending liquid feed passage |
| US4368080A (en) * | 1979-10-25 | 1983-01-11 | Robert Langen | Method of removing rust from metallic objects |
| US4378755A (en) * | 1977-01-12 | 1983-04-05 | Magnusson Ulla M | De-icing and cleaning system for aircrafts |
| EP0182644A1 (en) * | 1984-11-20 | 1986-05-28 | General Dispensing Systems Limited | Fluid flow control valve |
| EP0202100A1 (en) * | 1985-05-13 | 1986-11-20 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic atomization |
| EP0202844A1 (en) * | 1985-05-13 | 1986-11-26 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic atomization |
| US4726524A (en) * | 1985-05-13 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic atomizing vibratory element having a multi-stepped edged portion |
| US4726522A (en) * | 1985-05-13 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic atomization having curved multi-stepped edged portion |
| US4726523A (en) * | 1984-12-11 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic injection nozzle |
| US4734659A (en) * | 1986-04-03 | 1988-03-29 | Ultrasonic Engineering Co., Ltd. | Ultrasonic oscillator |
| US4783003A (en) * | 1984-04-19 | 1988-11-08 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic injecting method and injection nozzle |
| US4784491A (en) * | 1986-06-03 | 1988-11-15 | General Electric Company | System to protect optics against dirty environments |
| US4799622A (en) * | 1986-08-05 | 1989-01-24 | Tao Nenryo Kogyo Kabushiki Kaisha | Ultrasonic atomizing apparatus |
| US4806277A (en) * | 1986-05-19 | 1989-02-21 | Hitachi Ltd. | Decontaminating solid surfaces |
| US4844343A (en) * | 1986-08-01 | 1989-07-04 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic vibrator horn |
| DE3840583A1 (en) * | 1988-12-02 | 1990-06-07 | Volker Ulrich Boehringer | Process for the non-contact, eruptive removal of sediment and other deposits |
| WO1992013679A1 (en) * | 1991-02-05 | 1992-08-20 | National Research Council Canada | Ultrasonically generated cavitating or interrupted jet |
| US5368054A (en) * | 1993-12-17 | 1994-11-29 | International Business Machines Corporation | Ultrasonic jet semiconductor wafer cleaning apparatus |
| US5529753A (en) * | 1993-07-09 | 1996-06-25 | Dade International Inc. | System for ultrasonic energy coupling by irrigation |
| WO1997016263A1 (en) * | 1995-10-30 | 1997-05-09 | Henkel Kommanditgesellschaft Auf Aktien | Ultrasonic cleaning process and cleaning agent suitable therefor |
| US5818009A (en) * | 1994-10-25 | 1998-10-06 | Fanuc, Ltd | Laser beam machining system |
| AT404906B (en) * | 1995-03-09 | 1999-03-25 | Geodrill Bohr Gmbh | Method of removing deposits |
| US6039059A (en) * | 1996-09-30 | 2000-03-21 | Verteq, Inc. | Wafer cleaning system |
| US6039309A (en) * | 1997-12-05 | 2000-03-21 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for producing gas bubbles in a liquid medium |
| US6702204B2 (en) | 2000-03-01 | 2004-03-09 | Bip Technology, Ltd. | Cavitating jet |
| US6705396B1 (en) * | 1999-10-04 | 2004-03-16 | Bip Technology Ltd | Method and apparatus for producing fluid cavitation |
| WO2005042177A1 (en) * | 2003-11-03 | 2005-05-12 | Vln Advanced Technologies Inc. | Ultrasonic waterjet apparatus |
| US20060191562A1 (en) * | 2003-02-25 | 2006-08-31 | Mahito Nunomura | Ultrasonic washing device |
| US20060239844A1 (en) * | 2005-04-21 | 2006-10-26 | Norikazu Nakayama | Jet generating device and electronic apparatus |
| EP1722412A2 (en) | 2005-05-02 | 2006-11-15 | Sony Corporation | Jet generator and electronic device |
| US20070051307A1 (en) * | 2005-08-16 | 2007-03-08 | Babaev Eilaz P | Ultrasound apparatus and methods for mixing liquids and coating stents |
| US20090025761A1 (en) * | 2004-10-12 | 2009-01-29 | Hitachi Plant Technologies, Ltd. | Ultrasonic cleaning apparatus |
| US20090140067A1 (en) * | 2007-11-29 | 2009-06-04 | Vedanth Srinivasan | Devices and Methods for Atomizing Fluids |
| US20090200394A1 (en) * | 2008-02-08 | 2009-08-13 | Eilaz Babaev | Echoing ultrasound atomization and mixing system |
| US20100015892A1 (en) * | 2008-07-16 | 2010-01-21 | Vln Advanced Technologies Inc. | Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet |
| US20100324481A1 (en) * | 2007-07-13 | 2010-12-23 | Bacoustics, Llc | Ultrasound pumping apparatus for use with the human body |
| US20170165809A1 (en) * | 2014-07-10 | 2017-06-15 | Vetco Gray Scandinavia As | Release of subsea clamp connector by waterjet cutting of drive screw |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1738565A (en) * | 1927-07-18 | 1929-12-10 | Texas Co | Method and apparatus for utilizing high-frequency sound waves |
| US2453595A (en) * | 1943-08-27 | 1948-11-09 | Scophony Corp Of America | Apparatus for dispensing liquid fuel |
| US2481620A (en) * | 1945-02-08 | 1949-09-13 | Skiatron Corp | Device for dispensing liquid fuel into combustion air of furnaces |
| FR978290A (en) * | 1948-12-29 | 1951-04-11 | Method and device for stripping or other surface actions | |
| US2647846A (en) * | 1948-02-28 | 1953-08-04 | Bagno Samuel | Method and apparatus for washing articles by supersonic vibration in a flowing liquid |
| US2766064A (en) * | 1955-08-22 | 1956-10-09 | Howard V Schweitzer | Paint gun |
| US2789008A (en) * | 1955-06-13 | 1957-04-16 | Menlo Res Corp | Ultrasonic magnetostrictive nozzle |
| US2828231A (en) * | 1954-03-31 | 1958-03-25 | Gen Electric | Method and apparatus for ultrasonic cleansing |
| US2850854A (en) * | 1956-08-20 | 1958-09-09 | Levy Sidney | Method for removing material |
| US2947312A (en) * | 1958-02-26 | 1960-08-02 | Heinicke Instr Company | Washing and sterilizing machine for glassware |
| US2980123A (en) * | 1955-11-14 | 1961-04-18 | Jerome H Lemelson | Ultrasonic apparatus |
| US3081946A (en) * | 1962-07-09 | 1963-03-19 | Astrosonics Inc | Sonic spray nozzle |
-
1963
- 1963-11-12 US US322932A patent/US3373752A/en not_active Expired - Lifetime
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1738565A (en) * | 1927-07-18 | 1929-12-10 | Texas Co | Method and apparatus for utilizing high-frequency sound waves |
| US2453595A (en) * | 1943-08-27 | 1948-11-09 | Scophony Corp Of America | Apparatus for dispensing liquid fuel |
| US2481620A (en) * | 1945-02-08 | 1949-09-13 | Skiatron Corp | Device for dispensing liquid fuel into combustion air of furnaces |
| US2647846A (en) * | 1948-02-28 | 1953-08-04 | Bagno Samuel | Method and apparatus for washing articles by supersonic vibration in a flowing liquid |
| FR978290A (en) * | 1948-12-29 | 1951-04-11 | Method and device for stripping or other surface actions | |
| US2828231A (en) * | 1954-03-31 | 1958-03-25 | Gen Electric | Method and apparatus for ultrasonic cleansing |
| US2789008A (en) * | 1955-06-13 | 1957-04-16 | Menlo Res Corp | Ultrasonic magnetostrictive nozzle |
| US2766064A (en) * | 1955-08-22 | 1956-10-09 | Howard V Schweitzer | Paint gun |
| US2980123A (en) * | 1955-11-14 | 1961-04-18 | Jerome H Lemelson | Ultrasonic apparatus |
| US2850854A (en) * | 1956-08-20 | 1958-09-09 | Levy Sidney | Method for removing material |
| US2947312A (en) * | 1958-02-26 | 1960-08-02 | Heinicke Instr Company | Washing and sterilizing machine for glassware |
| US3081946A (en) * | 1962-07-09 | 1963-03-19 | Astrosonics Inc | Sonic spray nozzle |
Cited By (88)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3499792A (en) * | 1965-08-11 | 1970-03-10 | Soniflow Equipment Co | Cleaning method and apparatus |
| US3503804A (en) * | 1967-04-25 | 1970-03-31 | Hellmut Schneider | Method and apparatus for the production of sonic or ultrasonic waves on a surface |
| US3542592A (en) * | 1968-05-02 | 1970-11-24 | Bell Tech Systems Inc | Method and apparatus for cleaning members with fluids |
| US3528704A (en) * | 1968-07-17 | 1970-09-15 | Hydronautics | Process for drilling by a cavitating fluid jet |
| US3700169A (en) * | 1970-10-20 | 1972-10-24 | Environment One Corp | Process and appratus for the production of hydroelectric pulsed liquids jets |
| US3983740A (en) * | 1971-12-07 | 1976-10-05 | Societe Grenobloise D'etudes Et D'applications Hydrauliques (Sogreah) | Method and apparatus for forming a stream of identical drops at very high speed |
| US3806029A (en) * | 1973-01-24 | 1974-04-23 | Energy Sciences Inc | Shock enhancement of pressure wave energy |
| US4092176A (en) * | 1975-12-11 | 1978-05-30 | Nippon Electric Co., Ltd. | Apparatus for washing semiconductor wafers |
| US4153201A (en) * | 1976-11-08 | 1979-05-08 | Sono-Tek Corporation | Transducer assembly, ultrasonic atomizer and fuel burner |
| US4378755A (en) * | 1977-01-12 | 1983-04-05 | Magnusson Ulla M | De-icing and cleaning system for aircrafts |
| US4193635A (en) * | 1978-04-07 | 1980-03-18 | Hochrein Ambrose A Jr | Controlled cavitation erosion process and system |
| US4368080A (en) * | 1979-10-25 | 1983-01-11 | Robert Langen | Method of removing rust from metallic objects |
| US4352459A (en) * | 1979-11-13 | 1982-10-05 | Sono-Tek Corporation | Ultrasonic liquid atomizer having an axially-extending liquid feed passage |
| US4326553A (en) * | 1980-08-28 | 1982-04-27 | Rca Corporation | Megasonic jet cleaner apparatus |
| US4783003A (en) * | 1984-04-19 | 1988-11-08 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic injecting method and injection nozzle |
| EP0182644A1 (en) * | 1984-11-20 | 1986-05-28 | General Dispensing Systems Limited | Fluid flow control valve |
| US4726523A (en) * | 1984-12-11 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic injection nozzle |
| US4726525A (en) * | 1985-05-13 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic injection |
| US4726522A (en) * | 1985-05-13 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic atomization having curved multi-stepped edged portion |
| US4726524A (en) * | 1985-05-13 | 1988-02-23 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic atomizing vibratory element having a multi-stepped edged portion |
| EP0202844A1 (en) * | 1985-05-13 | 1986-11-26 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic atomization |
| EP0202100A1 (en) * | 1985-05-13 | 1986-11-20 | Toa Nenryo Kogyo Kabushiki Kaisha | Vibrating element for ultrasonic atomization |
| US4734659A (en) * | 1986-04-03 | 1988-03-29 | Ultrasonic Engineering Co., Ltd. | Ultrasonic oscillator |
| US4806277A (en) * | 1986-05-19 | 1989-02-21 | Hitachi Ltd. | Decontaminating solid surfaces |
| US4784491A (en) * | 1986-06-03 | 1988-11-15 | General Electric Company | System to protect optics against dirty environments |
| US4844343A (en) * | 1986-08-01 | 1989-07-04 | Toa Nenryo Kogyo Kabushiki Kaisha | Ultrasonic vibrator horn |
| US4799622A (en) * | 1986-08-05 | 1989-01-24 | Tao Nenryo Kogyo Kabushiki Kaisha | Ultrasonic atomizing apparatus |
| DE3840583A1 (en) * | 1988-12-02 | 1990-06-07 | Volker Ulrich Boehringer | Process for the non-contact, eruptive removal of sediment and other deposits |
| WO1992013679A1 (en) * | 1991-02-05 | 1992-08-20 | National Research Council Canada | Ultrasonically generated cavitating or interrupted jet |
| US5154347A (en) * | 1991-02-05 | 1992-10-13 | National Research Council Canada | Ultrasonically generated cavitating or interrupted jet |
| US5529753A (en) * | 1993-07-09 | 1996-06-25 | Dade International Inc. | System for ultrasonic energy coupling by irrigation |
| US5368054A (en) * | 1993-12-17 | 1994-11-29 | International Business Machines Corporation | Ultrasonic jet semiconductor wafer cleaning apparatus |
| US5818009A (en) * | 1994-10-25 | 1998-10-06 | Fanuc, Ltd | Laser beam machining system |
| AT404906B (en) * | 1995-03-09 | 1999-03-25 | Geodrill Bohr Gmbh | Method of removing deposits |
| WO1997016263A1 (en) * | 1995-10-30 | 1997-05-09 | Henkel Kommanditgesellschaft Auf Aktien | Ultrasonic cleaning process and cleaning agent suitable therefor |
| US6295999B1 (en) | 1996-09-30 | 2001-10-02 | Verteq, Inc. | Wafer cleaning method |
| US20040206371A1 (en) * | 1996-09-30 | 2004-10-21 | Bran Mario E. | Wafer cleaning |
| US6140744A (en) * | 1996-09-30 | 2000-10-31 | Verteq, Inc. | Wafer cleaning system |
| US7211932B2 (en) | 1996-09-30 | 2007-05-01 | Akrion Technologies, Inc. | Apparatus for megasonic processing of an article |
| US6463938B2 (en) | 1996-09-30 | 2002-10-15 | Verteq, Inc. | Wafer cleaning method |
| US6681782B2 (en) | 1996-09-30 | 2004-01-27 | Verteq, Inc. | Wafer cleaning |
| US6684891B2 (en) | 1996-09-30 | 2004-02-03 | Verteq, Inc. | Wafer cleaning |
| US8771427B2 (en) | 1996-09-30 | 2014-07-08 | Akrion Systems, Llc | Method of manufacturing integrated circuit devices |
| US6039059A (en) * | 1996-09-30 | 2000-03-21 | Verteq, Inc. | Wafer cleaning system |
| US7268469B2 (en) | 1996-09-30 | 2007-09-11 | Akrion Technologies, Inc. | Transducer assembly for megasonic processing of an article and apparatus utilizing the same |
| US8257505B2 (en) | 1996-09-30 | 2012-09-04 | Akrion Systems, Llc | Method for megasonic processing of an article |
| US20060175935A1 (en) * | 1996-09-30 | 2006-08-10 | Bran Mario E | Transducer assembly for megasonic processing of an article |
| US20060180186A1 (en) * | 1996-09-30 | 2006-08-17 | Bran Mario E | Transducer assembly for megasonic processing of an article |
| US7518288B2 (en) | 1996-09-30 | 2009-04-14 | Akrion Technologies, Inc. | System for megasonic processing of an article |
| US7117876B2 (en) | 1996-09-30 | 2006-10-10 | Akrion Technologies, Inc. | Method of cleaning a side of a thin flat substrate by applying sonic energy to the opposite side of the substrate |
| US20080006292A1 (en) * | 1996-09-30 | 2008-01-10 | Bran Mario E | System for megasonic processing of an article |
| US6039309A (en) * | 1997-12-05 | 2000-03-21 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for producing gas bubbles in a liquid medium |
| US6705396B1 (en) * | 1999-10-04 | 2004-03-16 | Bip Technology Ltd | Method and apparatus for producing fluid cavitation |
| US6702204B2 (en) | 2000-03-01 | 2004-03-09 | Bip Technology, Ltd. | Cavitating jet |
| US20060191562A1 (en) * | 2003-02-25 | 2006-08-31 | Mahito Nunomura | Ultrasonic washing device |
| US7549429B2 (en) * | 2003-02-25 | 2009-06-23 | Panasonic Electric Works Co., Ltd. | Ultrasonic washing device |
| CZ301715B6 (en) * | 2003-11-03 | 2010-06-02 | Vln Advanced Technologies Inc. | Ultrasonic waterjet apparatus and method of generating pulsed waterjet |
| US7594614B2 (en) * | 2003-11-03 | 2009-09-29 | Vln Advanced Technologies, Inc. | Ultrasonic waterjet apparatus |
| WO2005042177A1 (en) * | 2003-11-03 | 2005-05-12 | Vln Advanced Technologies Inc. | Ultrasonic waterjet apparatus |
| US8006915B2 (en) | 2003-11-03 | 2011-08-30 | Vijay Mohan M | Ultrasonic waterjet apparatus |
| US20110089251A1 (en) * | 2003-11-03 | 2011-04-21 | Vln Advanced Technologies, Inc. | Ultrasonic Waterjet Apparatus |
| US8360337B2 (en) | 2003-11-03 | 2013-01-29 | Pratt & Whitney Military Aftermarket Services, Inc. | Ultrasonic waterjet apparatus |
| JP2007523751A (en) * | 2003-11-03 | 2007-08-23 | ヴィーエルエヌ アドヴァンスト テクノロジーズ インコーポレイテッド | Ultrasonic water jet device |
| US8387894B2 (en) * | 2003-11-03 | 2013-03-05 | Pratt & Whitney Military Aftermarket Services, Inc. | Ultrasonic waterjet apparatus |
| US20090308948A1 (en) * | 2003-11-03 | 2009-12-17 | Vln Advanced Technologies, Inc. | Ultrasonic Waterjet Apparatus |
| US20070063066A1 (en) * | 2003-11-03 | 2007-03-22 | Nortel Networks Limited | Ultrasonic waterjet apparatus |
| US20100192974A1 (en) * | 2004-10-12 | 2010-08-05 | Hitachi Plant Technologies, Ltd. | Method for ultrasonic cleaning of contamination attached to a surface of an object |
| US20090025761A1 (en) * | 2004-10-12 | 2009-01-29 | Hitachi Plant Technologies, Ltd. | Ultrasonic cleaning apparatus |
| US7682137B2 (en) | 2005-04-21 | 2010-03-23 | Sony Corporation | Jet generating device and electronic apparatus |
| US20060239844A1 (en) * | 2005-04-21 | 2006-10-26 | Norikazu Nakayama | Jet generating device and electronic apparatus |
| EP1715519A3 (en) * | 2005-04-21 | 2007-12-19 | Sony Corporation | Jet generating device and electronic apparatus |
| US20060281398A1 (en) * | 2005-05-02 | 2006-12-14 | Kanji Yokomizo | Jet generator and electronic device |
| EP1722412A2 (en) | 2005-05-02 | 2006-11-15 | Sony Corporation | Jet generator and electronic device |
| EP1722412A3 (en) * | 2005-05-02 | 2008-01-23 | Sony Corporation | Jet generator and electronic device |
| US7896539B2 (en) * | 2005-08-16 | 2011-03-01 | Bacoustics, Llc | Ultrasound apparatus and methods for mixing liquids and coating stents |
| US20070051307A1 (en) * | 2005-08-16 | 2007-03-08 | Babaev Eilaz P | Ultrasound apparatus and methods for mixing liquids and coating stents |
| US20100324481A1 (en) * | 2007-07-13 | 2010-12-23 | Bacoustics, Llc | Ultrasound pumping apparatus for use with the human body |
| US7617993B2 (en) | 2007-11-29 | 2009-11-17 | Toyota Motor Corporation | Devices and methods for atomizing fluids |
| US20090140067A1 (en) * | 2007-11-29 | 2009-06-04 | Vedanth Srinivasan | Devices and Methods for Atomizing Fluids |
| US8016208B2 (en) * | 2008-02-08 | 2011-09-13 | Bacoustics, Llc | Echoing ultrasound atomization and mixing system |
| US20090200394A1 (en) * | 2008-02-08 | 2009-08-13 | Eilaz Babaev | Echoing ultrasound atomization and mixing system |
| US20100015892A1 (en) * | 2008-07-16 | 2010-01-21 | Vln Advanced Technologies Inc. | Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet |
| US8550873B2 (en) | 2008-07-16 | 2013-10-08 | Vln Advanced Technologies Inc. | Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet |
| US9757756B2 (en) | 2008-07-16 | 2017-09-12 | Vln Advanced Technologies Inc. | Method and apparatus for prepping bores and curved inner surfaces with a rotating high-frequencey forced pulsed waterjet |
| US10189046B2 (en) | 2008-07-16 | 2019-01-29 | Vln Advanced Technologies Inc. | Method and apparatus for prepping bores and curved inner surfaces with a rotating high-frequency forced pulsed waterjet |
| US10532373B2 (en) | 2008-07-16 | 2020-01-14 | Vln Advanced Technologies Inc. | Method and apparatus for prepping bores and curved inner surfaces with a rotating high-frequency forced pulsed waterjet |
| US20170165809A1 (en) * | 2014-07-10 | 2017-06-15 | Vetco Gray Scandinavia As | Release of subsea clamp connector by waterjet cutting of drive screw |
| US10569385B2 (en) * | 2014-07-10 | 2020-02-25 | Vetco Gray Scandinavia As | Release of subsea clamp connector by waterjet cutting of drive screw |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3373752A (en) | Method for the ultrasonic cleaning of surfaces | |
| JP4718327B2 (en) | Ultrasonic water jet device | |
| US3849195A (en) | Ultrasonic cleaning | |
| US2855244A (en) | Sonic liquid-spraying and atomizing apparatus | |
| US4326553A (en) | Megasonic jet cleaner apparatus | |
| US3198170A (en) | Ultrasonic-wave painting machine | |
| US3139101A (en) | Sonic surface cleaner | |
| US6085764A (en) | Cleaning apparatus and method | |
| US4034244A (en) | Resonant cylindrically shaped ultrasonic wave generator | |
| US3499792A (en) | Cleaning method and apparatus | |
| KR100333341B1 (en) | How to clean thread or strip articles, especially wire | |
| JPH05317820A (en) | Ultrasonic cleaning method and device therefor | |
| JP2002144155A (en) | Method of removing residual tensile stress by application of ultrasonic vibration in liquid | |
| JP2003332286A (en) | Semiconductor wafer cleaning apparatus and cleaning method using the same | |
| GB2449759A (en) | Methods for cleaning generator coils | |
| JPH049670A (en) | Analyzing apparatus | |
| RU2670629C1 (en) | Method of ultrasonic gas laser cutting of sheet metal and device for ultrasonic gas laser cutting of sheet metal (options) | |
| US3410534A (en) | Sonic apparatus for wetting metals | |
| US3291957A (en) | Method and apparatus for removal of insulation coating of parts in spot welding | |
| SU1736641A1 (en) | Method and apparatus for removal of non-metallic contamination from metal items | |
| TW202313215A (en) | Device and method for cleaning and decontaminating in which a super cavitation propeller effect is induced to prompt cleaning of a workpiece surface | |
| JPH09122612A (en) | Cleaning equipment | |
| SU1574285A1 (en) | Method of ultrasonic cleaning of articles | |
| Muthurajan et al. | Piezoceramic-based chlorofluorocarbon-free tunable ultrasonic cleaning system | |
| US6182519B1 (en) | Method for qualifying the cylinder valve on gas cylinders |