[go: up one dir, main page]

US3368960A - Alumina reduction cell - Google Patents

Alumina reduction cell Download PDF

Info

Publication number
US3368960A
US3368960A US210289A US21028962A US3368960A US 3368960 A US3368960 A US 3368960A US 210289 A US210289 A US 210289A US 21028962 A US21028962 A US 21028962A US 3368960 A US3368960 A US 3368960A
Authority
US
United States
Prior art keywords
anode
furnace
roof
space
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US210289A
Inventor
Sem Mathias Ovrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elektrokemisk AS
Original Assignee
Elektrokemisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektrokemisk AS filed Critical Elektrokemisk AS
Priority to US669360A priority Critical patent/US3582483A/en
Application granted granted Critical
Publication of US3368960A publication Critical patent/US3368960A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the shape of the anode is one of the most important factors to consider in determining the capacity of the furnace.
  • Early anodes were in the form of cylinders which are still used today in small furnaces of limited capacity.
  • the diameter of the cylinder is limited to a maxi-mum of about 2.5 meters and the load to about 30,000 amperes.
  • Rectangular anodes are most eificiently operated when the anode is about five times as long as it is wide and in the larger furnaces having a capacity of 120,000 amperes or more the anode is so long that it is extremely diflicult to obtain even current loads in both ends of the anode. Uneven current loads tend too interfere with the efficiency of the furnace and a further drawback is experienced in that an uneven current load causes uneven stresses and strains in the bottom of the furnace and the furnace lining has a considerably shorter life than that in the smaller size furnaces. The life of the furnace lining in the smaller size furnaces of about 50,000 amperes will usually average about four years whereas the life of the furnace bottom in the larger furnaces seldom lasts more than two years. Experience has shown that the larger furnaces cannot be economically operated and today the tendency in the aluminum industry is to limit the load on the anode to about 80,000 to 100,000 amperes.
  • an electric furnace for the production of aluminum by melt electrolysis which utilizes an annular or ring shaped anode capable of operating under a load of 250,000 amperes or more.
  • the outside diameter of the anode is about 7.0 meters and the inside diameter is about 2.0 meters giving an anode width of about 2.5 meters throughout.
  • Such an anode under a load of 250,000 amperes will have a current density of about 0.75 ampere per square centimeter.
  • the symmetrical construction of the present invention has many advantages which tend to reduce the cost of construction and operation of the furnace.
  • the symmetry of the structure makes it possible to provide a uniform current load in the anode which will eliminate stresses and strains in the lining of the furnace bottom caused by the uneven current load experienced with anodes in rectangular furnaces.
  • a uniform current load also provides well balanced operating conditions in the furnace which are important for eflicient operation and under such well balanced conditions the annular anode Patented Feb. 13, 1 968 and circular cathode will both tend to keep their shape without using those expensive reinforcements required in rectangular furnaces.
  • the hollow space in the center of the anode may be used to advantage for automatic and continuous charging of alumina and if desired the hollow space may be covered with a roof and all or only a part of the furnace gases may be collected beneath the roof in the hollow space of the anode. If all of the gas is to be collected beneath the cover in the hollow space, one or more channels are arranged in the anode to connect the peripheral part of the furnace with the hollow space in the center of the anode.
  • Collection of gas is helped by sloping the bottom surface of the anode upwardly toward the hollow space in the center of the furnace.
  • gases which ordinarily tend to collect on the bottom surface of the anode will have a natural tendency to flow upwardly into the hollow space.
  • the slope or taper on the bottom surface of the electrode is readily achieved by distributing the current in the anode in such a way that there is a higher amperage maintained in the inner portion of the anode than in the outer portion. This may be done for example by positioning a greater number of contact rods in the inner portion of the anode than there are in the outer portion.
  • the current may be led away from the furnace bottom in known manner as for example by means of iron reinforcements embedded in an electrically conductive furnace bottom.
  • the current may if desired also be led away only through the peripheral portion of the furnace bottom as for instance by means of an annular member of electrically conductive material such as blocks of coal or graphite or materials like TiB ZrB etc., which are not subject to attack by liquid aluminum at the temperatures experienced in operation.
  • an annular member of electrically conductive material such as blocks of coal or graphite or materials like TiB ZrB etc.
  • the best possible electromagnetic conditions in an aluminum furnace are obtained when the current path between the anode and cathode is as close to a vertical line as possible.
  • the annular anode of the present invention it will be diflicult to obtain vertical current paths in the center of the furnace below the hollow space in the anode.
  • This situation may be greatly improved by positioning a block of electrically nonconductive or poorly conductive material on the cathode below the hollow space of the anode.
  • the block may consist of Carborundum of such height that the top of the block is above the highest level of liquid aluminum in the furnace.
  • the liquid melt will then form in a ring on the furnace bottom directly below the annular anode.
  • large furnaces of 400,000 to 500,000 ampere load the hollow space in the center of the anode may have a diameter of 4 to 5 meters or more. In such case it may be desirable to employ an annular furnace pot.
  • the furnace of the present invention may be tapped in known manner and in the case of the large size furnaces tapping should be carried out continuously which may be done for example through pipes of refractory materials such as TiB or ZrB
  • Conventional furnace bottoms are usually constructed of blocks of baked carbon which may be employed to line the bottom of the furnace of the present invention. These baked blocks however expand when the furnace is heated up to operating temperature and movement in the furnace bottom caused by expansion tends to reduce the life of the bottom. In accordance with the present invention applicant has found that such movement may be avoided by using a mixture of baked and unbaked blocks of graphite or carbon electrode paste.
  • the unbaked blocks will during the heating period shrink and as a practical matter the shrinkage will so closely correspond to the thermal expansion of the baked blocks that the furnace bottom will show little or no expansion while the furnace is heated to operating temperature. In some cases it may be desirable to adjust the arrangement of the blocks so as to obtain a very slight thermal expansion during the heating period.
  • FIG. I is a vertical section through one form of furnace
  • FIG. II is a top view taken on line 22 of FIG. I
  • FIGS. III and IV are horizontal sections through modified forms of annular anode
  • FIG. V is a sectional view taken on line 5-5 of FIG. III which illustrates a channel through the anode
  • FIGS. VI 'and VII are vertical sectional views illustrating modified forms of furnaces.
  • the furnace shell while 12 is the annular anode which may be suspended by any convenient means.
  • the anode is suspended from an annular bus bar 14 by means of contact studs 16 which supply current to the anode.
  • the contact studs are the type conventionally used for suspending the ordinary type of continuous Soderberg anode.
  • the vertical position of the anode is changed during operation of the furnace by changing the position of the bus bar by means of jacks (not shown).
  • Two rows of contact studs 16 are shown in the drawing but any desired number of rows may be employed and the studs need not be symmetrically arranged in the anode.
  • the bottom of the furnace is lined with blocks 18 which are shaped to form a spherical surface and in the preferred form of structure a keystone block such as that employed in stone bridges (not shown) may be employed to guard against the bottom rising up in the furnace.
  • blocks 18 are made of conventional refractory material which will not conduct electricity.
  • the current is led away by means of an annular member 20 (cathode) which consists of graphite blocks electrically connected to an annular metal cathode bar 22 by means of iron rods 24 which are preferably screwed into the graphite rings so that they may be readily removed and replaced without disturbing or discontinuing furnace operation.
  • annular member 20 cathode
  • iron rods 24 which are preferably screwed into the graphite rings so that they may be readily removed and replaced without disturbing or discontinuing furnace operation.
  • electromagnetic forces will cause the molten aluminum to move toward the central part of the furnace. Because of this movement the bottom surface of the anode will be shaped to slope upwardly toward the central part of the furnace. This slope on the bottom surface of the electrode is of advantage in that gas bubbles which ordinarily collect on the bottom surface of the anode will tend to move into the hollow space in the center of the anode.
  • the anode is molded by feeding conventional electrode paste into the annular space between and inner and an outer permanent metallic casing 26 and 28 respectively.
  • the electrode paste is baked as it slides down through the space between the permanent casings in a manner similar to the way in which the paste is baked in a conventional circular continuous Soderberg anode. Additional unbaked paste is fed in at the top as the anode is consumed during furnace operation.
  • the outer and inner permanent casings may be suspended in the furnace in any convenient manner as for example by metal straps (not shown) attached to the casings and to the roof or support beam in the furnace building or any conventional suspension mechanism may be employed.
  • Outer casing 28 is equipped with a circular gas hood 29 in which furnace gases are collected.
  • the gas hood is of known construction and the gases may be withdrawn from the hood by one or more pipes (not shown).
  • One example of such a gas hood is described in United States Letters Patent No. 2,526,876.
  • the inner casing 26 is preferably equipped with an annular flange 30 which supports a roof 32 that covers the hollow space in the center of the anode in which furnace gases collect.
  • the furnace gases in the hollow space are withdrawn by means of a pipe 34 which connects the hollow space with a manifold 36 which is most conveniently arranged on the roof of the furnace building 38. Thereafter the furnace gases are processed in conventional manner.
  • Air is injected into the hollow space above roof 32 by means of a pipe 40 in order to cool the inner casing.
  • Alumina is fed into the hollow space in the center of the anode by means of conventional feeding equipment indicated at 42.
  • the furnace may be tapped in conventional manner or continuously tapped by pipes of TiB (not shown) arranged in the bottom of the furnace.
  • FIGS. III to V Modified forms of the anode of the furnace of FIG. I are illustrated in FIGS. III to V.
  • gas channels 44 are cut through the annular anode 12 to connect the hollow space under the gas hood 29 with the hollow space under the roof 32 in the center of the furnace.
  • the walls of channels 44 are formed by metal casing members 46 and 48 which connect the inner casing 26 with the outer casing 28.
  • the channels through the anode are provided with a cover or roof 50 which connects the base of the casing members 46 and 48. Air supplied by pipe 40 will be circulated through channels 44 above roof 50 and the casing members 46 and 48 are provided with fins 52 which assist in cooling the casing members.
  • furnace gases which collect in the gas hood 29 pass through the channels 44 and all of the the furnace gas is withdrawn from the hollow space in the center of the anode.
  • Alumina may also be fed into the furnace through suitable openings (not shown) in the roof of the channels to effect a more even distribution of the charge.
  • the form of anode illustrated in FIG. IV is identical with that of FIG. III with the exception that the three separate anode casings are rounded off to an approximate elliptical shape.
  • FIG. VI illustrates the use of an annular anode and cathode equipped with a block of electrically nonconductive or poorly conductive material positioned below the hollow space of the anode.
  • a circular block of Carborundum 54 is positioned on the cathode 56 below the hollow space in the center of anode 58.
  • the block extends above the level of the liquid molten aluminum which forms a ring of liquid below the anode to provide substantially vertical current paths in the furnace.
  • the remainder of the furnace may be constructed in accordance with the furnace shown in FIG. 1 and the annular anode may be provided with one or more radial channels shown in FIG. III.
  • Cathode 56 is made of conventional material which is electrically conductive.
  • the furnace pot illustrated in FIG. V1 is in the form of an annular ring 60 having an open hollow space in the center thereof.
  • the outer and inner anode casings are each provided with circular hoods 62 and 64 respectively for collection of furnace gases. Air is preferably circulated in the hollow space in the center of the furnace to cool the furnace parts.
  • An electric furnace for the production of aluminum by melt electrolysis which comprises a furnace pot having a continuous Soderberg anode therein, said anode being positioned in the space between an exterior permanent annular casing and an interior permanent annular casing and an interior permanent annular casing whereby said anode is correspondingly shaped into an annular configuration having a hollow center coextensive with the longitudinal anode axis, said anode sliding down through said space during operation of the furnace, a roof positioned within said hollow center substantially below the upper edge of said anode, said roof being surrounded by and in sealed contact about its entire periphery with said interior permanent annular casing, said roof thereby providing a gastight cover over that portion of the space of said hollow center extending below the position of said roof.
  • a furnace as in claim 1 which includes means for feeding furnace charge through said roof into the furnace, and means for directing a flowing stream of cooling gas upon said roof.
  • a furnace as in claim 1 which includes a hood surrounding the exterior of said anode for collection of gases in a zone below said hood, and at least one channel connecting the space covered by said roof with said zone.
  • An electric furnace for the production of aluminum by melt electrolysis which comprises a furnace pot having a continuous Soderberg anode therein, said anode being positioned in the space between an exterior permanent annular casing and an interior permanent annular casing whereby said anode is correspondingly shaped into an annular configuration with a hollow center, said anode sliding down through said space during operation of the furnace, a lining in the bottom of the furnace pot, a circular block which is at best a poor conductor of electricity positioned in the bottom of the furnace pot below the hollow center of said anode, said block having a height suflicient to extend above the pool of liquid aluminum which will be formed at the bottom of said pot during operation of said furnace.
  • An electric furnace for the production of aluminum by melt electrolysis which comprises a furnace pot having a continuous Soderberg anode therein, said anode being positioned in the space between an exterior permanent annular casing and an interior permanent annular casing whereby said anode is correspondingly shaped into an annular configuration with a hollow center, said anode sliding down through said space during operation of the furnace, a roof positioned within said hollow center below the upper edge of said anode, said roof providing a cover over that portion of the space of said hollow center extending below the position of said roof, and said furnace pot being annular with a hollow space in the center thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

Feb. 13, I968 M. ovRoM SEM 3,363,960
ALUMINA REDUCTION CELL Filed June 29, 1962 3 Sheets-Sheet 1 INVENTOR. MATHIAS 6vR0M SEM 6, 2mm wm ATTQRNEYS Feb. 13, 1968v M. bvRom SEM 3,368,960
' ALUMINA REDUCTION CELL Filed June 29, 1962 3 Sheets-Sheet 2 INVENTOR. MATHIAS OVROM SEM a, We. 1%
ATTORNEYS Feb. 13, 1968 M. OVROM SEM 3,368,960
' ALUMINA REDUCTION CELL Filed June 29, 1962 3 Sheets-Sheet 3 ggvvENToR. MATHIAS OVROM SEM ATTORNEYS United States Patent 3,368,960 ALUMINA REDUCTION CELL Mathias Ovrom Sem, Smestad, Oslo, Norway, assignor to Elektrokemisk A/S, Oslo, Norway, a corporation of Norway Filed June 29, 1962, Ser. No. 210,289 Claims priority, application Norway, July 4, 1961, 140,757; Oct. 21, 1961, 141,868 6 Claims. (Cl. 204-247) Since the invention of the continuous Soderberg anode for production of aluminum by melt electrolysis, considerable development work has been carried out to increase the capacity of commercial furnaces.
The shape of the anode is one of the most important factors to consider in determining the capacity of the furnace. Early anodes were in the form of cylinders which are still used today in small furnaces of limited capacity. For eflicient commercial operation the diameter of the cylinder is limited to a maxi-mum of about 2.5 meters and the load to about 30,000 amperes.
A tremendous improvement in furnace capacity was achieved by means of rectangular or oblong shaped anodes. These anodes were able to carry much larger ampere loads and there are commercial furnaces in operation today in which the rectangular anode carries a load of about 120,000 amperes. The rectangular anode in such a furnace is about 2.5 meters wide and 12.5 meters long. Still larger rectangular anodes capable of carrying a load of 150,000 amperes have been proposed but difiiculties have been experienced in operating the large furnaces.
Rectangular anodes are most eificiently operated when the anode is about five times as long as it is wide and in the larger furnaces having a capacity of 120,000 amperes or more the anode is so long that it is extremely diflicult to obtain even current loads in both ends of the anode. Uneven current loads tend too interfere with the efficiency of the furnace and a further drawback is experienced in that an uneven current load causes uneven stresses and strains in the bottom of the furnace and the furnace lining has a considerably shorter life than that in the smaller size furnaces. The life of the furnace lining in the smaller size furnaces of about 50,000 amperes will usually average about four years whereas the life of the furnace bottom in the larger furnaces seldom lasts more than two years. Experience has shown that the larger furnaces cannot be economically operated and today the tendency in the aluminum industry is to limit the load on the anode to about 80,000 to 100,000 amperes.
In accordance with the present invention there has now been devised an electric furnace for the production of aluminum by melt electrolysis which utilizes an annular or ring shaped anode capable of operating under a load of 250,000 amperes or more. In a preferred form of structure the outside diameter of the anode is about 7.0 meters and the inside diameter is about 2.0 meters giving an anode width of about 2.5 meters throughout. Such an anode under a load of 250,000 amperes will have a current density of about 0.75 ampere per square centimeter.
The symmetrical construction of the present invention has many advantages which tend to reduce the cost of construction and operation of the furnace. For example, the symmetry of the structure makes it possible to provide a uniform current load in the anode which will eliminate stresses and strains in the lining of the furnace bottom caused by the uneven current load experienced with anodes in rectangular furnaces. A uniform current load also provides well balanced operating conditions in the furnace which are important for eflicient operation and under such well balanced conditions the annular anode Patented Feb. 13, 1 968 and circular cathode will both tend to keep their shape without using those expensive reinforcements required in rectangular furnaces.
The hollow space in the center of the anode may be used to advantage for automatic and continuous charging of alumina and if desired the hollow space may be covered with a roof and all or only a part of the furnace gases may be collected beneath the roof in the hollow space of the anode. If all of the gas is to be collected beneath the cover in the hollow space, one or more channels are arranged in the anode to connect the peripheral part of the furnace with the hollow space in the center of the anode.
Collection of gas is helped by sloping the bottom surface of the anode upwardly toward the hollow space in the center of the furnace. When this is done furnace gases which ordinarily tend to collect on the bottom surface of the anode will have a natural tendency to flow upwardly into the hollow space. The slope or taper on the bottom surface of the electrode is readily achieved by distributing the current in the anode in such a way that there is a higher amperage maintained in the inner portion of the anode than in the outer portion. This may be done for example by positioning a greater number of contact rods in the inner portion of the anode than there are in the outer portion.
The current may be led away from the furnace bottom in known manner as for example by means of iron reinforcements embedded in an electrically conductive furnace bottom. The current may if desired also be led away only through the peripheral portion of the furnace bottom as for instance by means of an annular member of electrically conductive material such as blocks of coal or graphite or materials like TiB ZrB etc., which are not subject to attack by liquid aluminum at the temperatures experienced in operation. By leading the current away through the peripheral portion of the furnace bottom there is no need for metallic reinforcement normally used in the bottom of the furnace. If the current is led away from the peripheral portion of the furnace the remainder of the furnace bottom is lined with conventional refractory material which will not conduct electricity.
As is known the best possible electromagnetic conditions in an aluminum furnace are obtained when the current path between the anode and cathode is as close to a vertical line as possible. With the annular anode of the present invention, it will be diflicult to obtain vertical current paths in the center of the furnace below the hollow space in the anode. This situation may be greatly improved by positioning a block of electrically nonconductive or poorly conductive material on the cathode below the hollow space of the anode. The block may consist of Carborundum of such height that the top of the block is above the highest level of liquid aluminum in the furnace. The liquid melt will then form in a ring on the furnace bottom directly below the annular anode. In really large furnaces of 400,000 to 500,000 ampere load the hollow space in the center of the anode may have a diameter of 4 to 5 meters or more. In such case it may be desirable to employ an annular furnace pot.
The furnace of the present invention may be tapped in known manner and in the case of the large size furnaces tapping should be carried out continuously which may be done for example through pipes of refractory materials such as TiB or ZrB Conventional furnace bottoms are usually constructed of blocks of baked carbon which may be employed to line the bottom of the furnace of the present invention. These baked blocks however expand when the furnace is heated up to operating temperature and movement in the furnace bottom caused by expansion tends to reduce the life of the bottom. In accordance with the present invention applicant has found that such movement may be avoided by using a mixture of baked and unbaked blocks of graphite or carbon electrode paste. The unbaked blocks will during the heating period shrink and as a practical matter the shrinkage will so closely correspond to the thermal expansion of the baked blocks that the furnace bottom will show little or no expansion while the furnace is heated to operating temperature. In some cases it may be desirable to adjust the arrangement of the blocks so as to obtain a very slight thermal expansion during the heating period.
These and other advantages and the details of the structure of the present invention are schematically illustrated in the drawings in which:
FIG. I is a vertical section through one form of furnace FIG. II is a top view taken on line 22 of FIG. I
FIGS. III and IV are horizontal sections through modified forms of annular anode FIG. V is a sectional view taken on line 5-5 of FIG. III which illustrates a channel through the anode FIGS. VI 'and VII are vertical sectional views illustrating modified forms of furnaces.
In the drawings is the furnace shell while 12 is the annular anode which may be suspended by any convenient means. As illustrated in the drawing the anode is suspended from an annular bus bar 14 by means of contact studs 16 which supply current to the anode. The contact studs are the type conventionally used for suspending the ordinary type of continuous Soderberg anode. As in conventional furnaces the vertical position of the anode is changed during operation of the furnace by changing the position of the bus bar by means of jacks (not shown). Two rows of contact studs 16 are shown in the drawing but any desired number of rows may be employed and the studs need not be symmetrically arranged in the anode.
The bottom of the furnace is lined with blocks 18 which are shaped to form a spherical surface and in the preferred form of structure a keystone block such as that employed in stone bridges (not shown) may be employed to guard against the bottom rising up in the furnace.
In the form of structure shown blocks 18 are made of conventional refractory material which will not conduct electricity. The current is led away by means of an annular member 20 (cathode) which consists of graphite blocks electrically connected to an annular metal cathode bar 22 by means of iron rods 24 which are preferably screwed into the graphite rings so that they may be readily removed and replaced without disturbing or discontinuing furnace operation. In the structure of the furnace shown in FIG. I electromagnetic forces will cause the molten aluminum to move toward the central part of the furnace. Because of this movement the bottom surface of the anode will be shaped to slope upwardly toward the central part of the furnace. This slope on the bottom surface of the electrode is of advantage in that gas bubbles which ordinarily collect on the bottom surface of the anode will tend to move into the hollow space in the center of the anode.
The anode is molded by feeding conventional electrode paste into the annular space between and inner and an outer permanent metallic casing 26 and 28 respectively.
The electrode paste is baked as it slides down through the space between the permanent casings in a manner similar to the way in which the paste is baked in a conventional circular continuous Soderberg anode. Additional unbaked paste is fed in at the top as the anode is consumed during furnace operation. The outer and inner permanent casings may be suspended in the furnace in any convenient manner as for example by metal straps (not shown) attached to the casings and to the roof or support beam in the furnace building or any conventional suspension mechanism may be employed.
Outer casing 28 is equipped with a circular gas hood 29 in which furnace gases are collected. The gas hood is of known construction and the gases may be withdrawn from the hood by one or more pipes (not shown). One example of such a gas hood is described in United States Letters Patent No. 2,526,876.
The inner casing 26 is preferably equipped with an annular flange 30 which supports a roof 32 that covers the hollow space in the center of the anode in which furnace gases collect. The furnace gases in the hollow space are withdrawn by means of a pipe 34 which connects the hollow space with a manifold 36 which is most conveniently arranged on the roof of the furnace building 38. Thereafter the furnace gases are processed in conventional manner. Air is injected into the hollow space above roof 32 by means of a pipe 40 in order to cool the inner casing. Alumina is fed into the hollow space in the center of the anode by means of conventional feeding equipment indicated at 42. The furnace may be tapped in conventional manner or continuously tapped by pipes of TiB (not shown) arranged in the bottom of the furnace.
Modified forms of the anode of the furnace of FIG. I are illustrated in FIGS. III to V. As there shown gas channels 44 are cut through the annular anode 12 to connect the hollow space under the gas hood 29 with the hollow space under the roof 32 in the center of the furnace. The walls of channels 44 are formed by metal casing members 46 and 48 which connect the inner casing 26 with the outer casing 28. As best shown in FIG. V the channels through the anode are provided with a cover or roof 50 which connects the base of the casing members 46 and 48. Air supplied by pipe 40 will be circulated through channels 44 above roof 50 and the casing members 46 and 48 are provided with fins 52 which assist in cooling the casing members. In this way the furnace gases which collect in the gas hood 29 pass through the channels 44 and all of the the furnace gas is withdrawn from the hollow space in the center of the anode. Alumina may also be fed into the furnace through suitable openings (not shown) in the roof of the channels to effect a more even distribution of the charge. The form of anode illustrated in FIG. IV is identical with that of FIG. III with the exception that the three separate anode casings are rounded off to an approximate elliptical shape.
FIG. VI illustrates the use of an annular anode and cathode equipped with a block of electrically nonconductive or poorly conductive material positioned below the hollow space of the anode. As there shown a circular block of Carborundum 54 is positioned on the cathode 56 below the hollow space in the center of anode 58. The block extends above the level of the liquid molten aluminum which forms a ring of liquid below the anode to provide substantially vertical current paths in the furnace. The remainder of the furnace may be constructed in accordance with the furnace shown in FIG. 1 and the annular anode may be provided with one or more radial channels shown in FIG. III. Cathode 56 is made of conventional material which is electrically conductive.
The furnace pot illustrated in FIG. V1 is in the form of an annular ring 60 having an open hollow space in the center thereof. In this case the outer and inner anode casings are each provided with circular hoods 62 and 64 respectively for collection of furnace gases. Air is preferably circulated in the hollow space in the center of the furnace to cool the furnace parts.
While the structure of the present invention is of particular advantage in connection with continuous Soderberg anodes it will be understand that the anode may if desired be prebaked in the form of an annular ring or sections thereof.
It will be understood that it is intended to cover all changes and modifications of the preferred form of structure herein chosen for the purpose of illustration which do not constitute a departure from the spirit and scope of the invention.
What I claim is:
1. An electric furnace for the production of aluminum by melt electrolysis which comprises a furnace pot having a continuous Soderberg anode therein, said anode being positioned in the space between an exterior permanent annular casing and an interior permanent annular casing and an interior permanent annular casing whereby said anode is correspondingly shaped into an annular configuration having a hollow center coextensive with the longitudinal anode axis, said anode sliding down through said space during operation of the furnace, a roof positioned within said hollow center substantially below the upper edge of said anode, said roof being surrounded by and in sealed contact about its entire periphery with said interior permanent annular casing, said roof thereby providing a gastight cover over that portion of the space of said hollow center extending below the position of said roof.
2. A furnace as in claim 1 which includes means for feeding furnace charge through said roof into the furnace, and means for directing a flowing stream of cooling gas upon said roof.
3. A furnace as in claim 1 which includes a hood surrounding the exterior of said anode for collection of gases in a zone below said hood, and at least one channel connecting the space covered by said roof with said zone.
4. A furnace as in claim 1 in which said furnace pot is lined with electrically conductive material positioned in the periphery of the lining and the remainder of the lining is of nonconductive material.
5. An electric furnace for the production of aluminum by melt electrolysis which comprises a furnace pot having a continuous Soderberg anode therein, said anode being positioned in the space between an exterior permanent annular casing and an interior permanent annular casing whereby said anode is correspondingly shaped into an annular configuration with a hollow center, said anode sliding down through said space during operation of the furnace, a lining in the bottom of the furnace pot, a circular block which is at best a poor conductor of electricity positioned in the bottom of the furnace pot below the hollow center of said anode, said block having a height suflicient to extend above the pool of liquid aluminum which will be formed at the bottom of said pot during operation of said furnace.
6. An electric furnace for the production of aluminum by melt electrolysis which comprises a furnace pot having a continuous Soderberg anode therein, said anode being positioned in the space between an exterior permanent annular casing and an interior permanent annular casing whereby said anode is correspondingly shaped into an annular configuration with a hollow center, said anode sliding down through said space during operation of the furnace, a roof positioned within said hollow center below the upper edge of said anode, said roof providing a cover over that portion of the space of said hollow center extending below the position of said roof, and said furnace pot being annular with a hollow space in the center thereof.
References Cited UNITED STATES PATENTS 920,893 5/1909 Blackmore 20467 2,825,690 3/1958 Ferrand 204225 X 1,007,897 11/1911 Seward et a1 204245 1,254,531 1/1918 Patanen 204-247 X 1,837,070 12/1931 Roth 204245 X 2,291,644 8/1942 McNitt 204247 2,378,142 6/1945 Hurter 1335 2,448,886 9/1948 Hopkins 204243 X 2,526,876 10/1950 Sejersted 20467 1,754,142- 4/1930 Bornand et a1 1318 1,912,560 6/1933 Wiles 13- -18 2,680,141 6/1954 Waddington et al. 13-18 2,822,328 2/1958 Walker 13-18 3,079,450 2/1963 Senior 13--35 FOREIGN PATENTS 1,042,637 6/ 1953 France. 1,128,913 9/1956 France.
ROBERT K. MIHALEK, Primary Examiner. JOSEPH V. TRUHE, JOHN H. MACK, Examiners. G. KAPLAN, Assistant Examiner.

Claims (1)

1. AN ELECTRIC FURNACE FOR THE PRODUCTION OF ALUMINUM BY MELT ELECTROLYSIS WHICH COMPRISES A FURNACE POT HAVING A CONTINUOUS SODERBERG ANODE THEREIN, SAID ANODE BEING POSITIONED IN THE SPACE BETWEEN AN EXTERIOR PERMANENT ANNULAR CASING AND AN INTERIOR PERMANENT ANNULAR CASING AND AN INTERIOR PERMANENT ANNULAR CASING WHEREBY SAID ANODE IS CORRESPONDINGLLY SHAPED INTO AN ANNULAR CONFIGURATION HAVING A HOLLOW CENTER COEXTENSIVE WITH THE LONGITUDINAL ANODE AXIS, SAID ANODE SLIDING DOWN THROUGH SAID SPACE DURING OPERATION OF THE FURNACE, A ROOF POSITIONED WITHIN SAID HOLLOW CENTER SUBSTANTIALLY BELOW THE UPPER EDGE OF SAID ANODE, SAID ROOF BEING SURROUNDED BY AND IN SEALED CONTACT ABOUT ITS ENTIRE PERIPHERY WITH SAID INTERIOR PERMANENT ANNULAR CASING, SAID ROOF THEREBY PROVIDING A GASTIGHT COVER OVER THAT PORTION OF THE SPACE OF SAID HOLLOW CENTER EXTENDING BELOW THE POSITION OF SAID ROOF.
US210289A 1961-02-21 1962-06-29 Alumina reduction cell Expired - Lifetime US3368960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US669360A US3582483A (en) 1962-06-29 1967-09-18 Process for electrolytically producing aluminum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO14186861 1961-02-21
NO14075761 1961-07-04

Publications (1)

Publication Number Publication Date
US3368960A true US3368960A (en) 1968-02-13

Family

ID=26649140

Family Applications (1)

Application Number Title Priority Date Filing Date
US210289A Expired - Lifetime US3368960A (en) 1961-02-21 1962-06-29 Alumina reduction cell

Country Status (1)

Country Link
US (1) US3368960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078002A1 (en) * 2011-06-22 2012-12-27 Sgl Carbon Se Annular electrolytic cell and annular cathode with magnetic field compensation

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US920893A (en) * 1903-09-12 1909-05-04 Henry Spencer Blackmore Art of extracting aluminum and other metals.
US1007897A (en) * 1910-05-10 1911-11-07 Virginia Lab Company Electrolytic apparatus.
US1254531A (en) * 1916-02-02 1918-01-22 Isak Partanen Method or process of smelting zinc.
US1754142A (en) * 1927-12-08 1930-04-08 Bornand Emilien Electric furnace
US1837070A (en) * 1928-11-27 1931-12-15 Roth Ernst Apparatus for charging aluminum producing furnaces
US1912560A (en) * 1930-06-02 1933-06-06 Buffalo Electric Furnace Corp Refractory lined hollow electrode
US2291644A (en) * 1939-02-24 1942-08-04 Robert J Mcnitt Apparatus for electrolysis of fused electrolytes
US2378142A (en) * 1943-08-23 1945-06-12 Pour I Ind De I Aluminum Sa Method for making furnaces for the electrolytic production of aluminum
US2448886A (en) * 1945-05-19 1948-09-07 Kellogg M W Co Electric furnace
US2526876A (en) * 1948-05-08 1950-10-24 Elektrokemisk As Method of handling continuous electrodes
FR1042637A (en) * 1950-07-21 1953-11-03 soederberg electrode and method for its production
US2680141A (en) * 1951-03-21 1954-06-01 Elektrokemisk As Method of readjusting the metal supporting rods of continuous self-baking electrodes
FR1128913A (en) * 1954-01-26 1957-01-14 Elektrokemisk As Method for obtaining a suitable adaptation of the lower surface of the electrode in furnaces for molten electrolysis or other applications
US2822328A (en) * 1953-07-20 1958-02-04 Henry J Kaiser Company Bifurcated self-baking anode and gas collection means
US2825690A (en) * 1951-04-18 1958-03-04 Ferrand Louis Self-baked annular anode for melting furnaces
US3079450A (en) * 1959-05-12 1963-02-26 Strategic Materials Corp Furnace refractory structures

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US920893A (en) * 1903-09-12 1909-05-04 Henry Spencer Blackmore Art of extracting aluminum and other metals.
US1007897A (en) * 1910-05-10 1911-11-07 Virginia Lab Company Electrolytic apparatus.
US1254531A (en) * 1916-02-02 1918-01-22 Isak Partanen Method or process of smelting zinc.
US1754142A (en) * 1927-12-08 1930-04-08 Bornand Emilien Electric furnace
US1837070A (en) * 1928-11-27 1931-12-15 Roth Ernst Apparatus for charging aluminum producing furnaces
US1912560A (en) * 1930-06-02 1933-06-06 Buffalo Electric Furnace Corp Refractory lined hollow electrode
US2291644A (en) * 1939-02-24 1942-08-04 Robert J Mcnitt Apparatus for electrolysis of fused electrolytes
US2378142A (en) * 1943-08-23 1945-06-12 Pour I Ind De I Aluminum Sa Method for making furnaces for the electrolytic production of aluminum
US2448886A (en) * 1945-05-19 1948-09-07 Kellogg M W Co Electric furnace
US2526876A (en) * 1948-05-08 1950-10-24 Elektrokemisk As Method of handling continuous electrodes
FR1042637A (en) * 1950-07-21 1953-11-03 soederberg electrode and method for its production
US2680141A (en) * 1951-03-21 1954-06-01 Elektrokemisk As Method of readjusting the metal supporting rods of continuous self-baking electrodes
US2825690A (en) * 1951-04-18 1958-03-04 Ferrand Louis Self-baked annular anode for melting furnaces
US2822328A (en) * 1953-07-20 1958-02-04 Henry J Kaiser Company Bifurcated self-baking anode and gas collection means
FR1128913A (en) * 1954-01-26 1957-01-14 Elektrokemisk As Method for obtaining a suitable adaptation of the lower surface of the electrode in furnaces for molten electrolysis or other applications
US3079450A (en) * 1959-05-12 1963-02-26 Strategic Materials Corp Furnace refractory structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078002A1 (en) * 2011-06-22 2012-12-27 Sgl Carbon Se Annular electrolytic cell and annular cathode with magnetic field compensation

Similar Documents

Publication Publication Date Title
US4795540A (en) Slotted cathode collector bar for electrolyte reduction cell
US2480474A (en) Method of producing aluminum
NO143498B (en) PROCEDURE FOR ALKYLING OF AROMATIC HYDROCARBONES
CN110484937B (en) Rare earth electrolytic cell for producing rare earth and alloy thereof
US4224128A (en) Cathode assembly for electrolytic aluminum reduction cell
AU619240B2 (en) Electrolytic cell for the production of a metal
US4181584A (en) Method for heating electrolytic cell
US3575827A (en) System for reduction of aluminum
CA1280715C (en) Electrolytic cell with anode having projections and surrounded by partition
US5904821A (en) Fused chloride salt electrolysis cell
US3582483A (en) Process for electrolytically producing aluminum
US3322658A (en) Aluminum electrolytic cell and method of use
US3714002A (en) Alumina reduction cell and improved anode system therein
US3368960A (en) Alumina reduction cell
US4730338A (en) Coupling construction for an electric furnace
GB2136450A (en) Cell for the refining of aluminium
US3178363A (en) Apparatus and process for production of aluminum and other metals by fused bath electrolysis
US3736244A (en) Electrolytic cells for the production of aluminum
RU2722605C1 (en) Electrolysis unit for aluminum production
CN109081336A (en) A kind of electricity forges high temperature graphitization furnace
JPS60116793A (en) Alkali metal halide molten salt electrolytic apparatus and operation therefor
US4647355A (en) Apparatus for molten salt electrolysis
US4196067A (en) Absorption of magnetic field lines in electrolytic reduction cells
US3265606A (en) Electrolytic cell for preparation of alloys of lead with alkaline metals
US3230072A (en) Production of aluminum by electro-thermal reduction