US3212884A - Ferrous base alloys containing boron - Google Patents
Ferrous base alloys containing boron Download PDFInfo
- Publication number
- US3212884A US3212884A US293238A US29323863A US3212884A US 3212884 A US3212884 A US 3212884A US 293238 A US293238 A US 293238A US 29323863 A US29323863 A US 29323863A US 3212884 A US3212884 A US 3212884A
- Authority
- US
- United States
- Prior art keywords
- alloy
- alloys
- stress rupture
- boron
- specimen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 52
- 239000000956 alloy Substances 0.000 title claims description 52
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims description 21
- 229910052796 boron Inorganic materials 0.000 title claims description 21
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 230000035882 stress Effects 0.000 description 24
- 238000012360 testing method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 6
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical class [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000001226 reprecipitation Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910000745 He alloy Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
Definitions
- Alloys of the type referred to are used for parts in jet engines for aircraft, gas turbines and other high temperature applications where it is necessary to have consistently high strength properties.
- Each of such engines is made up of a great many individual parts fabricated from the high temperature alloy. The failure of any single part can result in the failure of the entire engine.
- Typical specifications for alloys used in the high temperature applications described require a minimum stress rupture life of 23 hours at a temperature of 1200 F. and loads varying from 60,000 to 65,000 pounds per square inch. In many cases, they also require that the stress rupture life of a notched test specimen exceed that of a smooth test specimen, i.e., thematerial should not be notched sensitive.
- An object of this invention is to provide an alloy composition which possesses consistently high minimum strength at elevated temperatures.
- a further object of this invention is to provide an alloy which has improved notch ductility at elevated temperatures as determined by values obtained from notched stress rupture specimens.
- Another object is to provide an alloy having consistent stress rupture properties and which can be melted commercially and wrought by commercial practices.
- Ferrous base alloys according to the present invention contain nickel, chromium, titanium and boron within the following ranges:
- the alloy may contain from 0.02 to 0.10% carbon from 0.10 to 0.35% aluminum, from 0 to 2% manganese, from 0 to 1.50% silicon, from 0.50 to 4.0% molybdenum or from 0.50 to 8. 0% tungsten or both molybdenum and tungsten within these ranges, from 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum. The balance is substantially all iron although other elements not inconsistent with the properties desired may be present.
- T he alloys can be melted using normal practices in any of the usual production type furnaces such as the electric arc, induction or vacuum or inert gas furnace. They are processed using regular production methods to reduce to intermediate product such as bars, wire, sheet, strip, etc., as well as for fabricating into shapes by machining, forging or other methods.
- usual production type furnaces such as the electric arc, induction or vacuum or inert gas furnace. They are processed using regular production methods to reduce to intermediate product such as bars, wire, sheet, strip, etc., as well as for fabricating into shapes by machining, forging or other methods.
- the alloy is heated to a temperature sufiiciently high to dissolve the intermetallic compounds present and is then quenched. it is reheated at a temperature and for a time necessary to harden it by reprecipitation of the compounds and is thereafter cooled.
- the temperatures and times employed will vary somewhat depending upon the particular composition of the alloy being heat treated.
- a preferred hardening treatment is to treat the material at a temperature of about 1800 F. for one hour to dissolve the intermetallic compounds present and then quench.
- the alloy is then reheated at 1325 F. for 16 hours to cause reprecipitation of the nickel-titanium compounds and is thereafter cooled in air. This specific heat treatment was applied to an alloy of the following composition:
- the material on which the tests in all of the tables were made was produced in commercial size furnaces, the heats weighing from 5 to 13 tons each.
- Table I gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
- Table II gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
- Table III gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
- Table IV gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
- the alloy of this invention is less notch sensitive than an alloy having no definite boron content, forv example, Alloy 5 in Table I containing .0017 boron has a minimum value of 76.6 hours on a notched specimen and a minimum value of 60.3 hours on a smooth specimen, the notched specimen value exceeding the smooth specimen value. Alloy e in Table. III containing less than .0006 boron has a minimum value of 3.2 hours on a notched specimen and a minimum value of 21.1 hours on a smooth specimen indicating that this alloy is notch sensitive.
- microstructure of alloys according to the invention which have been solution treated and aged, consists of fine grains of equiaXed austenite having a precipitate of fine patricles of nickel-titanium compounds throughout its structure. Such structure is only obtained'when the alloy contains sufficient titanium to cause reprecipitation of the nickel-titanium compounds during the aging treatment.
- a ferrous base alloy consisting essentially of 2 0 to 40% nickel, 10 to 25% chromium, 1.35 to 3.0% titanium, 0.0010 to 0.0045% boron, 0.02 to 0.10% carbon, 0.10 to 0.35% aluminum, up to 2.0% manganese, up to 1.50% silicon, at least one member of the group consisting of molybdenum and tungsten, the molybdenum being from 0.50 to 4.0%, the tungsten being from 0.50 to 8.0%, 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum, the balance being iron.
- a ferrous base alloy of the composition claimed in claim 1 which has been precipitation hardened; in the absence of hot cold-working.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
United States Patent 3,212,884 FERROUS BASE ALLOYS CONTAINING BORON Gilbert Soler, deceased, late of Pittsburgh, Pa., by Marjorie 0. Soler, executrix, Columbus, Ohio, and Hyman Freeman, Pittsburgh, and Kenneth Metcalfe, Bridgeville, Pa.
No Drawing. Continuation of application Ser. No. 598,520, July 8, 1956. This application July 3, 1963, Ser. No. 293,238
3 Claims. (Cl. 75-124) This application is a continuation of Serial No. 598,520, filed July 18, 1956 and now abandoned.
Alloys of the type referred to are used for parts in jet engines for aircraft, gas turbines and other high temperature applications where it is necessary to have consistently high strength properties. Each of such engines is made up of a great many individual parts fabricated from the high temperature alloy. The failure of any single part can result in the failure of the entire engine.
Increased use of alloys having high strength at elevated temperatures has developed requirements that specify minimum strength as determined by the stress rupture life of the material. Some commercially produced alloys of this type gave very erratic stress rupture properties with many values below those acceptable for the application. It was not unusual to obtain extremely low as well as acceptable stress rupture properties on products from the same heat, thus making the application of such material questionable. In fact, where such varying results were obtained, the entire heat was scrapped rather than to apply questionable material for such critical use. The necessary rejection of the material having such variable stress rupture properties resulted in low yields of product and reduced production making'it extremely difiicult to meet delivery requirements.
Typical specifications for alloys used in the high temperature applications described require a minimum stress rupture life of 23 hours at a temperature of 1200 F. and loads varying from 60,000 to 65,000 pounds per square inch. In many cases, they also require that the stress rupture life of a notched test specimen exceed that of a smooth test specimen, i.e., thematerial should not be notched sensitive.
An object of this invention, therefore, is to provide an alloy composition which possesses consistently high minimum strength at elevated temperatures.
A further object of this invention is to provide an alloy which has improved notch ductility at elevated temperatures as determined by values obtained from notched stress rupture specimens.
' Another object is to provide an alloy having consistent stress rupture properties and which can be melted commercially and wrought by commercial practices.-
Other objects of this invention will be apparent to those skilled in the art from the following description.
It has been discovered that the stress rupture properties of ferrous base alloys are improved and made more consistent by the presence of definite amounts of boron. In the alloys of this invention having a definite boron content, low stress rupture properties are avoided. Alloys of our invention are precipitation hardenable by-heat treatment alone and do not require any special processing such as hot cold-working to bring about the desirable properties.
In many cases, it is not possible to make a use of hot cold-working to achieve the high strength because of the shape and nature of the finished part.
It has been discovered that improved and consistent stress rupture properties can be obtained in ferrous base alloys containing 20 to 40% nickel, 10 to 25% chromium and 0.0006 to 0.0045% boron when the alloys contain a critical minimum percentage of titanium neces sary for causing nickel-titanium compounds to precipitate after proper heat treatment. From the experience of the inventors, this minimum content of titanium in the alloys of our invention appears to be about 1.35%. In the absence of a critical amount of titanium, the nickel-titanium compounds do not precipitate upon aging.
Ferrous base alloys according to the present invention contain nickel, chromium, titanium and boron within the following ranges:
Ni 20 to 40%.
Cr 10 to 25% Ti 1.35 to 3.0%.
B 0.0010 to 0.0045%.
In addition to these elements, the alloy may contain from 0.02 to 0.10% carbon from 0.10 to 0.35% aluminum, from 0 to 2% manganese, from 0 to 1.50% silicon, from 0.50 to 4.0% molybdenum or from 0.50 to 8. 0% tungsten or both molybdenum and tungsten within these ranges, from 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum. The balance is substantially all iron although other elements not inconsistent with the properties desired may be present.
T he alloys can be melted using normal practices in any of the usual production type furnaces such as the electric arc, induction or vacuum or inert gas furnace. They are processed using regular production methods to reduce to intermediate product such as bars, wire, sheet, strip, etc., as well as for fabricating into shapes by machining, forging or other methods.
Improved and consistent stress rupture properties and other properties of the alloys are obtained by giving a suitable heat treatment to the product in finished form. Generally, the alloy is heated to a temperature sufiiciently high to dissolve the intermetallic compounds present and is then quenched. it is reheated at a temperature and for a time necessary to harden it by reprecipitation of the compounds and is thereafter cooled. The temperatures and times employed will vary somewhat depending upon the particular composition of the alloy being heat treated. A preferred hardening treatment is to treat the material at a temperature of about 1800 F. for one hour to dissolve the intermetallic compounds present and then quench. The alloy is then reheated at 1325 F. for 16 hours to cause reprecipitation of the nickel-titanium compounds and is thereafter cooled in air. This specific heat treatment was applied to an alloy of the following composition:
' Percent Percent Ni 25.38 Mn 1.53 Cr -4 14.97 Si .68 .Ti 2.23 Mo 1.26 B 0.0022 V .25
C .066 1% Balance Al .27
Patented Oct. 19, 1965 3 4 This alloy, when tested at 1200 F. under a load of 62,500 The stress rupture properties of alloys of this invention poundsper square inch using notched specimens, gave are given in Tables I and II. Stress rupture properties of Stress rupture P p as follows! alloys not made in accordance with this invention are Hours to Rupture: 815.0 803.6 762.7 655.3 given in Tables III and IV.
Table l OUR ALLOY HAVING A DEFINITE BORON CONTENT [Test Conditions: Temperature, 1200 F.; Load, 65,000 p.s.i.]
Stress rupture life in hours Alloy Boron Notched specimen 7 Smooth specimen N 0. content No.0f Minimum Maximum No.01 Minimum Maximum tests value value tests value value C Mn Si N 1 C1 Ti V Al M0 Table II OUR ALLOY HAVING A DEFINITE BORON CONTENT [Test Conditions: Temperature, 1200 F.; Load, 62,500.p.s.i.]
Stress rupture life in hours Alloy Boron Notched specimen Smooth specimen No. content No. of Minimum Maximum No. of Minimum Maximum tests value value tests value value LLLLLLLLLLLLLI value Smooth specimen Stress rupture life in hours value L L2 L2 L1 1 2 L L 2 value Smooth specimen tests Table III ANALYSES OF ALLOYS value LLLLLLLLLLLLLL 037221455444 12 2 .QLLLL-L 1 l M ANALYSES OF ALLOYS Notched specimen No.0! Minimum Maximum No.0i Minimum Maximum tests MnSi'Ni Stress rupture life in hours value Table IV value 13201769 0 LL L5 3 5 3 Notched specimen No. of Minimum Maximum No.0! Minimum Maximum tests [Test Conditions: Temperature, 1200 F.; Load, 65,000 p.s.i.]
Alloy No.
OUR ALLOY HAVING NO DEFINIIE BORON CONTENT Boron content ALLOYS HAVING NO DEFINITE BORON CONTENT [Test Conditions: Temperature, 1200 F.; Load, 62,500 p.s.i.]
Alloy Alloy No.
Alloy ANALYSES OF ALLOYS Alloy N 0 Mn S1 N1 C1 Ti V A1 M0 The plus sign after some values in the tables indicates that the test was not carried to failure of the specimen for it is common practice to discontinue the test after the specimen has been under load for a period of time that considerably exceeds the required hours to rupture. Such values would be expected to be greater if the tests had been allowed to continue to failure. However, since. they are well above the requirements, discontinuing the tests makes testing equipment available.
The material on which the tests in all of the tables were made was produced in commercial size furnaces, the heats weighing from 5 to 13 tons each.
The values in all of the tables were obtained on specimens which had been precipitation hardened.
Table I gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
Table II gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
Table III gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
Table IV gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
Each table gives values for the notched and the smooth type of specimen.
Comparison of the minimum values of Tables I and II with the minimum values in Tables III and IV shows the.
improved stress rupture properties obtainable in alloys of this invention having a definite boron content.
The alloy of this invention is less notch sensitive than an alloy having no definite boron content, forv example, Alloy 5 in Table I containing .0017 boron has a minimum value of 76.6 hours on a notched specimen and a minimum value of 60.3 hours on a smooth specimen, the notched specimen value exceeding the smooth specimen value. Alloy e in Table. III containing less than .0006 boron has a minimum value of 3.2 hours on a notched specimen and a minimum value of 21.1 hours on a smooth specimen indicating that this alloy is notch sensitive.
The microstructure of alloys according to the invention, which have been solution treated and aged, consists of fine grains of equiaXed austenite having a precipitate of fine patricles of nickel-titanium compounds throughout its structure. Such structure is only obtained'when the alloy contains sufficient titanium to cause reprecipitation of the nickel-titanium compounds during the aging treatment.
We claim:
1. A ferrous base alloy consisting essentially of 2 0 to 40% nickel, 10 to 25% chromium, 1.35 to 3.0% titanium, 0.0010 to 0.0045% boron, 0.02 to 0.10% carbon, 0.10 to 0.35% aluminum, up to 2.0% manganese, up to 1.50% silicon, at least one member of the group consisting of molybdenum and tungsten, the molybdenum being from 0.50 to 4.0%, the tungsten being from 0.50 to 8.0%, 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum, the balance being iron.
2. A precipitation hardened ferrous base alloy of the composition claimed in claim 1.
3. A ferrous base alloy of the composition claimed in claim 1 which has been precipitation hardened; in the absence of hot cold-working.
References Cited by the Examiner UNITED STATES PATENTS 11/62 Aggen l24
Claims (1)
1. A FERROUS BASE ALLOY CONSISTING ESSENTIALLY OF 20 TO 40% NICKEL, 10 TO 25% CHROMIUM, 1.35 TO 3.0% TITANIUM, 0.0010 TO 0.0045% BORON, 0.02 TO 0.10% CARBON, 0.10 TO 0.35% ALUMINUM, UP TO 2.0% MANGANESE, UP TO 1.50% SILICON, AT LEAST ONE MEMBER OF THE GROUP CONSISTING OF MOLYBDENUM AND TUNGSTEN, THE MOLYBDENUM BEING FROM 0.50 TO 4.0%, THE TUNGSTEN BEING FROM 0.50 TO 8.0%, 0.10 TO 0.50% VANADIUM, UP TO 2.0% ZIRCONIUM, UP TO 5.0% NIOBIUM AND UP TO 5.0% TANTALUM, THE BALANCE BEING IRON.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US293238A US3212884A (en) | 1963-07-03 | 1963-07-03 | Ferrous base alloys containing boron |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US293238A US3212884A (en) | 1963-07-03 | 1963-07-03 | Ferrous base alloys containing boron |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3212884A true US3212884A (en) | 1965-10-19 |
Family
ID=23128277
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US293238A Expired - Lifetime US3212884A (en) | 1963-07-03 | 1963-07-03 | Ferrous base alloys containing boron |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3212884A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3384476A (en) * | 1963-11-22 | 1968-05-21 | Sandvikens Jernverks Ab | Alloy steel and method of making same |
| US3663213A (en) * | 1970-05-11 | 1972-05-16 | Int Nickel Co | Nickel-chromium-iron alloy |
| US3708353A (en) * | 1971-08-05 | 1973-01-02 | United Aircraft Corp | Processing for iron-base alloy |
| US3837846A (en) * | 1971-04-08 | 1974-09-24 | Ver Deutsche Metallwerke Ag | Austenitic steel alloy adapted to be welded without cracking |
| US3935037A (en) * | 1974-04-18 | 1976-01-27 | Carpenter Technology Corporation | Austenitic iron-nickel base alloy |
| US4165997A (en) * | 1977-03-24 | 1979-08-28 | Huntington Alloys, Inc. | Intermediate temperature service alloy |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3065067A (en) * | 1959-01-21 | 1962-11-20 | Allegheny Ludlum Steel | Austenitic alloy |
-
1963
- 1963-07-03 US US293238A patent/US3212884A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3065067A (en) * | 1959-01-21 | 1962-11-20 | Allegheny Ludlum Steel | Austenitic alloy |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3384476A (en) * | 1963-11-22 | 1968-05-21 | Sandvikens Jernverks Ab | Alloy steel and method of making same |
| US3663213A (en) * | 1970-05-11 | 1972-05-16 | Int Nickel Co | Nickel-chromium-iron alloy |
| US3837846A (en) * | 1971-04-08 | 1974-09-24 | Ver Deutsche Metallwerke Ag | Austenitic steel alloy adapted to be welded without cracking |
| US3708353A (en) * | 1971-08-05 | 1973-01-02 | United Aircraft Corp | Processing for iron-base alloy |
| US3935037A (en) * | 1974-04-18 | 1976-01-27 | Carpenter Technology Corporation | Austenitic iron-nickel base alloy |
| US4165997A (en) * | 1977-03-24 | 1979-08-28 | Huntington Alloys, Inc. | Intermediate temperature service alloy |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2905577A (en) | Creep resistant chromium steel | |
| US20190040501A1 (en) | Nickel-cobalt alloy | |
| US5059257A (en) | Heat treatment of precipitation hardenable nickel and nickel-iron alloys | |
| US2994605A (en) | High temperature alloys | |
| US3235417A (en) | High temperature alloys and process of making the same | |
| US2873187A (en) | Austenitic alloys | |
| US3642543A (en) | Thermomechanical strengthening of the superalloys | |
| US3065067A (en) | Austenitic alloy | |
| US11384413B2 (en) | High temperature titanium alloys | |
| KR950704522A (en) | THERMOMECHANICAL PROCESSING OF METALLIC MATERIALS | |
| US20240287666A1 (en) | Creep Resistant Titanium Alloys | |
| US2397034A (en) | Heat-resisting alloys containing cobalt | |
| US3331715A (en) | Damping alloys and members prepared therefrom | |
| EP3526357A1 (en) | High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy | |
| US2562854A (en) | Method of improving the high-temperature strength of austenitic steels | |
| US2879194A (en) | Method of aging iron-base austenitic alloys | |
| US3212884A (en) | Ferrous base alloys containing boron | |
| US3741824A (en) | Method to improve the weldability and formability of nickel-base superalloys | |
| US2486576A (en) | Heat-treatment of cobalt base alloys and products | |
| US3649379A (en) | Co-precipitation-strengthened nickel base alloys and method for producing same | |
| US2975051A (en) | Nickel base alloy | |
| US2416515A (en) | High temperature alloy steel and articles made therefrom | |
| US3230119A (en) | Method of treating columbium-base alloy | |
| US2826496A (en) | Alloy steel | |
| US4049430A (en) | Precipitation hardenable stainless steel |