[go: up one dir, main page]

US3287122A - Process for the sensitization of photoconductors - Google Patents

Process for the sensitization of photoconductors Download PDF

Info

Publication number
US3287122A
US3287122A US426372A US42637265A US3287122A US 3287122 A US3287122 A US 3287122A US 426372 A US426372 A US 426372A US 42637265 A US42637265 A US 42637265A US 3287122 A US3287122 A US 3287122A
Authority
US
United States
Prior art keywords
parts
weight
photoconductor
group
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US426372A
Inventor
Hoegl Helmut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azoplate Corp
Original Assignee
Azoplate Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azoplate Corp filed Critical Azoplate Corp
Priority to US426372A priority Critical patent/US3287122A/en
Application granted granted Critical
Publication of US3287122A publication Critical patent/US3287122A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0631Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/001Electric or magnetic imagery, e.g., xerography, electrography, magnetography, etc. Process, composition, or product
    • Y10S430/10Donor-acceptor complex photoconductor

Definitions

  • Electrophotographic material normally consists of a support on which there is a photoconductive substance, this coating being provided in the absence of light with an electrostatic charge. Then, the material is exposed to light behind a master, or an episcopic image is projected thereon, so that an electrostatic image is formed which corresponds to the master. This image is developed by being briefly contacted with a resin powder, whereupon a visible image is formed which is fixed by heating or by the action of solvents. In this way, an image of the master which is resistant to abrasion is obtained electrophotographically.
  • the absorption maxima of the organic photoconductors are mostly in the ultra-violet region of the spectrum.
  • the addition of these dyestuff sensitizers achieves the result that the photoconductors become sensitive to visible light.
  • the dyestufi' sensitizers cause a displacement of the available sensitivity from the ultraviolet region to the visible region.
  • the sensitivity to visible light at first increases rapidly, but further additions give an increase in sensitivity which is much less than would be expected, and still further additions finally give no appreciable increase in sensitivity.
  • the dyestutl sensitizers have the disadvantage that they color the coating considerably.
  • the maximum achievable increase in sensitivity can seldom be utilized because then the photoconductor coatings have an intensity of color that is undesirable.
  • Colorless 0r practically colorless photoconductor coatings are desired, since colored material can be employed only in special cases. If additions of dyestuif sensitizers are such as not to adversely aliect the coloring of the coating for practical purposes, the sensitizing effect often does not meet the demands of general usage. Further, the dyestufl sensitizers have the disadvantage that they bleach out relatively quickly so that their sensitizing action tends to be lost during the storage of the electrophotographic material.
  • a process for the sensitization of photoconductor coatings has now been found in which organic substances, containing polarizing residues and being capable of serving as electron-acceptors in a molecule complex, having low molecular weight, i.e. being non-resinous, being colorless or of pale color and having a melting point above room temperature, are added to the photoconductor coatings.
  • Photoconductor coatings are those which can serve as electron donors in mole- 3,287,122 Patented Nov. 22, 1966 cule complexes of the donor/acceptor type (known as 1r-complex) and contain at least one aromatic or heterocyclic ring, which may be substituted.
  • photoconductors include aromatic hydrocarbons such as naphthalene, anthracene, benzanthrene, chrysene, p-diphenylbenzene, diphenyl anthracene, p-terphenyl, p-quaterphenyl,
  • thiodiphenylamine, oxadiazoles e.g., 2,5-bis-(p-aminophenyl)-1,3,4-oxadiazole and its N-alkyl and N-acyl derivatives
  • triazoles such as 2,5 bis-(p-aminophenyl)- 1,3,4-triazo1e and its N-alkyl and N-acyl derivatives
  • rmrdazolones and imidazolthiones e.g., 1,3,4,5-tetraphenyl-imidazolone-Z and 1,3,4,5-tetraphenyl-imidazolthrone-2
  • N-aryl-pyrazolines e.g.
  • 1,3,5-triphenyl-pyrazoline 1,3,5-triphenyl-pyrazoline; hydrated imidazoles, e.g., 1,3-diphenyl-tetrahydroimrdazole; oxazole derivates such as 2,5-diphenyloxazole-2- p-dimethylamino-4,S-diphenyloxazole; thiazole derivatives such as 2-p-dialkylaminophenyl-methyl-benzthiazole; as also the following:
  • Molecule complexes are defined in H. A. Staabs Einbowung in die theoretician organische Chemie (Introduction to Theoretical Organic Chemistry), Verlag Chemie, 1959, pp. 694-707, and by L. I. Andrews, Chemical Review, vol. 54, 1954, pp. 713-777.
  • the donor/acceptor complex (r-complexes) and "charge-transfer complexes which are formed from an electron-acceptor and an electron-donor are included.
  • the photoconductors are the electrondonors and the substances here called activators-4o distinguish them from the dyestutf sensitizers-are the electron-acceptors.
  • the electron-donors have a low ionization energy and have a tendency to give up electrons. They are bases in the sense of the definition of acids and-bases given by G. N. Lewis (H. A. Staab, as above, p. 600).
  • the electron-donors primarily concerned in the present case are the photoconductors described above. These photoconductors consist of aromatic or heterocyclic systems containing a plurality of fused rings, or, alternatively, single rings having substituents which facilitate further electrophilic substitution of the aromatic ring, socalled electron-repellent substituents, as described by L. F. and M. Fieser, Lehrbuch der organischen Chemie (Textbook of Organic Chemistry), Verlag Chemie, 1954, p. 651, Table I.
  • saturated groups e.g., alkyl groups such as methyl, ethyl, and propyl; alkoxy groups such as methoxy, ethoxy and propoxy; carbalkoxy groups such as carbmethoxy, carbethoxy and carbpropoxy; hydroxyl groups, amino groups and dialkylamino groups such as dimethylamino, diethylamino and dipropylamino.
  • the activators in accordance with the invention are compounds with a high electron-afiinity and have a tendency to take up electrons. They are acids in the sense of Lewis definition. Such properties are possessed by substances having strongly polarizing residues or groupings such as cyano and nitro groups, halogens such as fluorine, chlorine, bromine and iodine; ketone groups, ester groups, acid anhydride groups, acid groups such as carboxyl groups or the quinone grouping. Strongly polarizing electron-attracting groups of this type are described by L. F. and M. Fieser in the Lehrbuch der organischen Chemie, Verlag Chemie, 1954, p. 651, Table I.
  • the activator substances in accordance with the present process should be of lower molecular weight, i.e. between about 50 and 5000, preferably between about 100 and 1000, because with activators of lower molecular weight it is possible for reproducible results to be obtained insofar as sensitivity is concerned. Also, the sensitivity remains constant over rather long periods, since substances of lower molecular weight, unlike those of high molecular weight, undergo hardly any, change during storage.
  • 2-bromo-5-nitro-benzoic acid o-Chloronitrobenzene.
  • 2-bromobenzoie acid Chloracetophenone. 2chioro-toluene-4-sulphonic aci 2-chlorocinnamic acid. Chloromaleic anhy i 9-chioroacridine-.- 2-chloro-4-nitro-1-benzoic acid. fl-chloroacridine- 2-chloro-5-nitro-1-benzoic acid. -ch1orouitrobenze 3-chloro-6-nitro-1-benzoic acid.
  • phonic acid Dibromosuccinicacid Triphenylchloromethane. Tetrachlorcphthalic acid. Tetrabromophthalic acid. Tetraiodophthalic acid.
  • photoconductive coating containing at least one photoconductor and at least one solid, non-resinous, substantially colorless, electron-acceptor should contain the:
  • photoconductor coatings can be prepared which have a high degree of lighti sensitivity, particularly in the ultra-violet region, and which are practically colorless.
  • the photoconductor coatings being thereby strongly activated in the ultra-violet regionand afterwards being invested with a high degree of sensitivity to visible light by a very small additionof dyestufi. sensitizer without it being necessary for so much dyestuif to be added that the coating takes on a deep color.
  • activators for photoconductors such as naphthalene, whose initial sensitivity is very slight, to be given adequate sensitivity tor the production of satisfactory images by electrophotographic processes.
  • photoconductive mixtures are obtained which have photoconductiw'ty much higher than could be expected fi'om the amount of the photoconductor added to the activator.
  • a further increase in the" photoconductivity may be obtained by the addition of dyestuff sensitizers in the same amounts as in the photoconductor-activator mixtures in which the photoconductor,
  • the coatings are treated in other respects in accordance with the known processes of electrophotography, i.e. the photoconductor substances are used in the form of thin, coherent homogeneous coatings on a supporting material.
  • the materials used as supports are primarily metals, such as aluminum, zinc, and copper; cellulose products, such as paper and cellulose hydrate; plastics, such as polyvinyl alcohol, polyamides, and polyurethanes.
  • materials are suitable the specific resistance of which is less than ohm-cm., preferably less than 10 ohm-cm.
  • paper is used as the supporting material, it is preferably pretreated against the penetration of coating solutions, e.g., it can be treated with a solution of methyl cellulose or polyvinyl alcohol in water or with a solution of an interpolymer of acrylic acid methyl ester and acrylonitrile in a mixture of acetone and methylethyl ketone, or with solutions of polyamides in aqueous alcohols or with dispersions of such substances.
  • coating solutions e.g., it can be treated with a solution of methyl cellulose or polyvinyl alcohol in water or with a solution of an interpolymer of acrylic acid methyl ester and acrylonitrile in a mixture of acetone and methylethyl ketone, or with solutions of polyamides in aqueous alcohols or with dispersions of such substances.
  • the photoconductive compounds are preferably dissolved in organic solvents such as benzene, acetone, methylene chloride or ethyleneglycol monomethylether or other organic solvents or in mixtures of such solvents, and resins and the activatorsand possibly also the dyestutf sensitizers--a.re advantageously added thereto.
  • organic solvents such as benzene, acetone, methylene chloride or ethyleneglycol monomethylether or other organic solvents or in mixtures of such solvents, and resins and the activatorsand possibly also the dyestutf sensitizers--a.re advantageously added thereto.
  • These solutions are coated upon the supporting material in the normal manner, e.g., by immersion processes, painting or roller applicationor by spraying. The material is then heated so that the solvent will be removed.
  • a number of the compounds in question can be applied together to the supporting material or the compounds can be applied in association with other photoconductive substances.
  • Resins primarily of interest as additions to the photoconductor coatings include natural resins such as balsam resins, colophony and shellac, synthetic resins such as coumarone resins and indene resins, processed natural substances such as cellulose ethers; polymers such as vinyl polymers, e.g. polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl acetals, polyvinyl alcohol, polyvinyl ethers, polyacrylic and polymethacrylic acid esters, isobutylene and chlorinated rubber.
  • natural resins such as balsam resins, colophony and shellac
  • synthetic resins such as coumarone resins and indene resins
  • processed natural substances such as cellulose ethers
  • polymers such as vinyl polymers, e.g. polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl acetals, polyvin
  • the proportion of resin to photoconductor substance can vary very greatly. Mixtures of from two parts of resin and one part of photoconductor substance to two parts of photoconductor substance and one part of resin are to be preferred. Mixtures of the two substances in equal parts by weight are particularly favonable.
  • dyestulf sensitizers can be used in addition to the activators. Even very small additions of sensitizer, e.g., less than 0.01 percent, give good results. In general, however, 0.01 to 5 percent, and preferably 0.1 to 3 percent of dyestutf sensitizer is added to the photoconductor coatings. The addition of larger quantities is possible but in general is not accompanied by any considerable increase in sensitivity.
  • Triarylmethane dyestuffs such as Brilliant Green (No. 760, p. 314), Victoria Blue B (No. 822, p. 347), Methyl Violet (No. 783, p. 327), Crystal Violet (No. 785, p. 329), Acid Violet 6B (No. 831, p. 351); xanthene dyestulfs, namely rhod-amines, such as Rhod-amine B (No. 864, p. 365), Rhodami-ne 6G (No. 866, p. 366), Rhodamine G Extra (No. 865, p. 366), Sulphorhodamine B (N o. 863, p.
  • Eosin G No. 870, p. 368
  • FEDG Fast Acid Eosin G
  • phthaleins such as Eosin S (No. 883, p. 375), Eosin A (No. 881, p. 374), Erythrosin (No. 886, p. 376), Phloxin (No. 890, p. 378), Bengal Rose (No. 889, p. 378), and Fluorescein (No. 880, p. 373); thiazine dyestuifs such as Methylene Blue (No. 1038, p. 449); acridine dyestuffs such as Acridine Yellow (No. 901, p. 383), Acridine Orange (No.
  • quinoline dyestuffs such as Pin-acyanol (No. 924, p. 396) and Cryptocyanine v(No. 927, p. 397.); cyanine dyestuffs, e.g., Cyanine (No. 921, p. 394) and chlorophyll.
  • the photoconductive coating is charged by means of, for example, a corona discharge with a charging apparatus maintained at 60007000 volts.
  • the electro-copying material is then exposed to light in contact with a master.
  • an episcopic or diascopic image is projected thereon.
  • An electrostatic image corresponding to the master is thus produced on the material.
  • This invisible image is developed by contact with a developer consisting of carrier and toner.
  • the carriers used may be, for example, tiny glass balls, iron powder or tiny plastic balls.
  • the toner consists of a resin-carbon black mixture or a pigmented resin.
  • the toner is used in a grain size of 1 to
  • the developer may also consist of a resin or pigment suspended in a non-conductive liquid in which resins may be dissolved.
  • the image that is made visible by development is then fixed, e.g., by heating with an infra-red radiator to 100-170 C., preferably -150 C. or by treatment with solvents such as trichloroethylene, carbon tetrachloride or ethyl alcohol, or steam. Images corresponding to the master characterized by good contrast efi'ect are obtained.
  • the electrophotographic images can also be used as masters for the ptll'oduction of further copies on any type of light-sensitive s eets.
  • reflex images can be produced also.
  • the application of the activators in accordance with the present process is not restricted to electrophotographic coatings, but can extend to other devices containing photoconductors, e.g., photoelectric cells, photoresistances, sensing heads or camera tubes and electroluminescent apparatus.
  • EXAMPLE 1 A solution containing 26 parts by weight of polyvinyl acetate (e.g., Mowilith 50), 25.6 parts by weight of naphthalene, 0.0415 part by weight of 2,3,7-trinitrofiuorenone and 800 parts by volume of toluene is applied by means of a coating device to an aluminum foil. After the coating has dried, direct images are produced thereon by the electrophotographic process in the following manner: the coated foil is given a negative electric charge by corona discharge, exposed behind a master to the light of a high-pressure mercury vapor lamp watts, at a distance of 30 cm.) for about 10 seconds and then dusted over with a developer.
  • polyvinyl acetate e.g., Mowilith 50
  • naphthalene e.g., naphthalene
  • 2,3,7-trinitrofiuorenone e.g., 2,3,7-trinitrofiuorenone
  • the developer consists of tiny glass balls and a mixture of resin and carbon black which has been melted together and then finely divided.
  • a developer of this sort consists of, e.g., 100 parts by weight of tiny glass balls (grain size: 100-400p. approx.) and a toner (grain size: 20-50n approx.).
  • the toner is prepared by melting together 30 parts by weight of Polystyrol LG, 30 parts by weight of modified maleic acid resin (Beckacite K 105) and 3 parts 'by weight of Peerless Black" Russ 552. The melt is then ground and screened.
  • the finely divided resin adheres to the parts of the coating not struck by light during the exposure and a positive image of the master becomes visible. It is slightly heated and thereby fixed.
  • EXAMPLE 2 free of background, i.e., the exposed parts are not fully discharged and therefore retain a certain amount of developer.
  • the exposure time (125-watt high-pressure mercury vapor lamp) is 20 seconds.
  • EXAMPLE 6 26 parts by weight of polyvinyl acetate, 17.8 parts by weight of phenanthrene and 0.245 part by weight of chloranil are dissolved together in 800 parts .by volume of toluene.
  • EXAMPLE 7 A solution containing 26 parts by weight of polyvinyl ple 1.
  • the exposure time (l25-watt high-pressure mercury vapor lamp) is 2 seconds. Without the dibromomaleic anhydride addition, it is 10 seconds.
  • EXAMPLE 4 A solution containing 18 parts by weight of polyvinyl acetate, 18.2 parts by weight of 2,4-bis-(4'-diethylaminophenyl)-1,3,4-triazole and 0.130 part by weight of tetrachlorophthalic anhydride to 500 parts by volume of toluene is applied to an aluminum foil and further procedure The exposure time with Explanations on Table A Column A: Quantity and kind of binder used. -In all,
  • the polyvinyl acetate used was the product commercially available under the registered trademark Mowilith C.
  • the maleic acid resin used was the product commercially available under the designation Alrosat.”
  • Table B shows further examples of various photoconductors which were activated, and the reduction in exposure time caused by the activators:
  • naphthalene 25.6 naphthalene 26 2,4,5,7-tetranitrofiuorenone 1,5-dinitronaphtha1ene 1,4-benzoquinone Chloranil 3,5-dim'trosa1icy1ic acid Dibromornaleic anhydride Tetrachlorophthalie anhydrida Hexabromonaphthalic anhydride. Mo Picrylehloride 21.6 1,5-diethoxynaphthalene.
  • the increase in sensibility obtained by the addition of activating substances may be taken from a comparison of the degrees of blackening obtained with the activated photoconductive layer and with the unactivated photoconductive layer, under the same customary step wedge (e.g. Kodak No. 2 density strip with color patches).
  • EXAMPLE 8 A solution containing 20 parts by weight of afterchlorinated polyvinyl chloride with a content of chlorine from 61.7 to 62.3 percent and K-value from 59 to 62, 18.01 parts by weight of 2,4,5,7-tetranitrofiuorenone and 0.216 part by weight of 1,5-diethoxynaphthalene dissolved in a mixture of 450 parts by volume toluene and parts by volume butanone is applied to an aluminum foil. The subsequent procedure is that described in Example 1. The exposure time, with a 100 watt incandescent lamp at a distance of 30 centimeters is 2 seconds.
  • the exposure time is about 40 seconds.
  • Exposure time Photoconductors (parts by Welght) (seconds) chlorophthalic acid anhydride and 20 parts by weight of Acenaphthene (0'154) 15 afterchlorinated polyvinyl chloride in a mixture of 150 Nfthylcarbazole 15 parts by volume of butanone and 450 parts by volume 'dmaphfliy'lamme (0270) 15 of toluene, X parts by weight of hotoconductor and Diphgnylammgi (0170) 15 Y parts by weight of dyestufi sensitizer are added.
  • Dlphenyleneoxldfi (0170) 20 following table the amounts of the hotoconductor and.
  • Indole (0120) 10 sensitizer are given together with the corresponding ex-, Efel (0-200) 12 posure times. It is advantageous to dissolve the dyestutf stllbefne (03110) "7"" 5 sensitizer in a small amount of ethyleneglycol monozss'bls'"dlethylammophenyl)1,3,4 oxdlazole methyl ether before adding it to the solution.
  • the latter (0-365 1 is applied to a paper base material and further processed- Poly-N-vleylcarbezole 6 as described *in Example 1.
  • the light source used Phenoxathme (0100) 6 throughout was a 125-watt high pressure mercury vapor EXAMPLE 9 lamp and the distance between this lamp and the material exposed was about 30 centimeters.
  • a solution of 12 parts by weight of chlorinated rubber (Pergut S-40), 5.04 parts by weight of 1,3-dinitrobenzene and 0.106 part by weight of anthracene in 150 parts by volume of toluene is applied to a paper foll and ihe PhotoconductorXparts Dyestufl SensitizerY Exposure material is further processed as described in Example 1. byweight Parts by weight Time The exposure time (125 watt high'pressure mercurydvlads) or lamp) is 20 seconds. Without the anthracene a ii i n, even after an exposure g of 80 y ilii as' 'larraiarei ?fia::.::::::::::::::: 3'
  • the exposure times are g e AS the light Source, a 125-Watt high
  • the exposure times are given preseufe mercury Vapor p in a distance of about 30 which were obtained when using hotoconductors other Fentlmeters from the eXPOSed ma rial was used in all than benzidine.
  • EXAMPLE 11 A solution containing 6.2 parts by weight of afterchlorinated polyvinyl chloride, 3.94 parts by weight of 1,5-dichloronaphthalene and 0.145 part by weight of 2,5-bis- (4'-diethylaminophenyl)-1,3,4-oxdia.zole in a mixture of 135 parts by volume of toluene and 45 partsby volume of butanone is applied to a paper base and is further processed as described in Example 1.
  • the exposure time (125 watt high pressure mercury vapor lamp at a distance of 30 centimeters) is 10 seconds. Without the addition of the oxdiazole compound, even after an exposure time of 40 seconds, no image could be obtained. When the oxdiazole compound is replaced by 0.120 part by weight of 2,2-dinaphthylamine, the exposure time is about 10 seconds.
  • Exposure time Photoconductor (parts by weight): (seconds) None 180 Naphthalene (0.064) 30 Hydroquinonedimethyl ether (0.070) 30 Anthracene (0.090) 30 Carbazole (0.081) 30 Chrysene (0.114) 30 Pyrene (0.10) 30 o-Dianisidine (0.122) 30 1,5-diethoxynaphthalene (0.101) 30 2,6-dirnethylnaphthalene (0.078) 30 Hexamethylbenzene (0.081) Diphenylamine (0.085) l0 Diphenyleneoxide (0.084) 30 Indole (0.059) 20 Fluorene (0.083) 60 Benzodiphenyleneoxide (0.109) 30 2-methoxy-naphthalene (0.079) 60 1 Image with heavy background.
  • EXAMPLE 15 29.62 parts by weight of phthalic acid anhydride and 33 parts by weight of afterchlorinated polyvinyl chloride are dissolved in 670 parts by volume of toluene and 330 parts by volume of butanone. To 50 parts by volume of the resulting stock solution, one of the photoconductors listed in the following table is added; these coating solutions are applied to an aluminum foil, and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
  • Exposure time Photoconductor (parts by weight): (seconds) None 1 60 N-ethylcarbazole (0.10) 5 Anthracene (0.09) Chrysene (0.114) Pyrene (0.10) 10 2,2'-dinaphthylamine (0.134) l0 2,3,5-triphenylpyrrole (0.153) 10 --No image obtained.
  • EXAMPLE 16 49.2 parts by weight of chloranil and 56 parts by weight of afterchlorinated polyvinyl chloride are dissolved in a mixture of 1170 parts by volume of toluene and parts by volume of butanone. The resulting solution is filled up to 2000 parts by volume with chlorobenzene. To 100 parts by volume of this stock solution, one of the photoconductors listed in the following table is added; the coating solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
  • Exposure time Photoconductor (parts by weight): (seconds) None 180 Naphthalene (0.064) ca. Hydroquinonedimethyl ether (0.070) 30 N-ethylcarbazole (0.097) 10 Anthracene (0.090) 5 Chrysene (0.114) 15 Pyrene (0.10) l0 o-Dianisidine (0.122) 5 2,6-dimethyl-naphthalene (0.078) 30 Hexamethylbenzene (0.081) 120 2,2'-dinaphthylamine (0.134) 1-2 2,5-bis-(4-diethylaminophenyl)1,3,4-0xdiazole (0.182) 1 2,3,5-triphenylpyrrole (0.153) 4 EXAMPLE 17 10.6 parts by weight of 2-acetyl fluorene and 12 parts by weight of afterchlorinated polyvinyl chloride-are dissolved in parts of toluene and sutficient butanol to make up
  • Exposure time Photoconductor (parts by weight): (seconds) None 1 180 o-Dianisidine (0.120) 30 2,5 -bis- (4-diethylaminophenyl) -1,3,4-oxdiazole 1 No image obtained.
  • EXAMPLE 18 44 parts by weight of 9 acetyl-anthracene and 48 parts by weight of afterchlorinatcd polyvinyl chloride are dissolved in 700 parts by volume of solution. To 50 parts by volume of the resulting stock solution, one of the photoconductors of the following table is added. This solu tion is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance thereof was the same as in Example 13.
  • Exposure time Photoconductor (parts by weight): (seconds) None 1 180 Hydroquinonedimethyl ether (0.069) 30 N-ethyl carbazole (0.097) 60 Anthracene (0.089) 60 Hexamethylbenzene (0.081) 30 1 Image with heavy background.
  • EXAMPLE 19 46.2 parts by weight of pyrene3-aldehyde and 50 parts by weight of afterchlorinated polyvinyl chloride are dissolved in 670 parts by volume of toluene and sufiicient butanol to make up 1000 parts by volume of solution. To 50 parts by volume of the resulting stock solution one of the photoconductors of the following table is added. The solution is applied to an aluminum foil and further processed as described in Example 1. The light source 15 and the distance of the light source were the same as in Example 13.
  • Exposure time Photoconductor (parts by weight): (seconds) None 30 Naphthalene (0.064) 20 Hydroquinonedimethyl ether (0.070) 20 N-ethylcarbazole (0.10) Anthracene (0.090) 20 Chrysene (0.114) 20 Pyrene (0.10) 20 Hexarnethylbenzene (0.080) 20 2,2'-dinaphthylamine (0.135)
  • a sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R; is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydro gen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group.
  • a sensitized photoconductive .layer comprising at least one solid, non-resinous, substantially colorless elec tron-acceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; the layer containing the photoconductor and the electron-acceptor in proportions ranging from substantially lessthan equal amounts to a substantial excess of the photoconductor with respect to the electron-acceptor and from substantially less than equal amounts to a substantial excess of the electron-acceptor with respect to the photoconductor.
  • a sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor, and a compound having the formula in which R is selected from the group consisting of hy drogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydro gen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 0.1 to about 300 moles of the electron-acceptor per 1000 moles. of photoconductor.
  • a sensitized photoconductive layer comprising at.
  • R is selected from the group consisting of hy-t drogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl about 300 moles of the photoconductor per 1000 moles of the electron-acceptor.
  • a sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor, and a compound having the formula 1 o 112-0451 H CR in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 1 to about 50 1 moles of the electron-acceptor perv 1000 moles of the photoconductor.
  • a sensitized photoconductive layer comprising at.
  • R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups
  • R is selected from the group consisting of hydrogen, alkyl and aryl groups
  • R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R
  • R is selected from the group consisting of hydrogen and aryl groups
  • R is an aryl group, at least one of R, R R and R tbeing an aryl group; in proportions ranging from about 1 to about 50 moles of the photoconductor per 1000 moles of the electron-acceptor.
  • a layer according to claim 1 in which the electronacceptor is tetram'trofluorenone.
  • a layer according to claim 1 in'which the electronacceptor i-s tetrachlorophthalic anhydride.
  • a layer according to claim l'in which the electronacceptor is 1,2-benzanthraquinone.
  • a layer according to claim 1 including a dyestuff sensitizer.
  • a photographic reproduction process which comprises exposing an electrostatically charged, supported, photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R, is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group.
  • a photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; the layer containing the photoconductor and the electron-acceptor in proportions ranging from substantially less than equal amounts to a substantial excess of the photoconductor with respect to the electron-acceptor and from substantially less than equal amounts to a substan- 'tial excess of the electron-acceptor with respect to
  • a photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 0.1 to about 300 moles of the electron-acceptor per 1000 moles of photoconductor.
  • a photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 0.1 to about 300 moles of the photoconductor per 1000 moles of the electron-acceptor.
  • a photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 1 to about 50 moles of the electron-acceptor per 1000 moles of the photoconductor.
  • a photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least 19 7 one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, arylv and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of'R, R R and R being an aryl group; in proportions ranging from about 1 to about 50 moles of the photoconductor per. 1000 moles of the electron-acceptor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

United States Patent Hill NJ.
No Di'awing. Original application July 24, 1961, Ser. No. 125,984. Divided and this application Jan. 18, 1965, Ser. No. 426,372
Claims priority, 'appliclgtion sGgermany, May 29, 1959, 32 Claims. ((11. 96-1.5)
This application is a division of copending application Serial No. 125,984, filed July 24, 1961, now abandoned, which, in turn, is a continuation-in-part of application Serial No. 30,752, filed May 23, 1960, and also now abandoned.
Electrophotographic material normally consists of a support on which there is a photoconductive substance, this coating being provided in the absence of light with an electrostatic charge. Then, the material is exposed to light behind a master, or an episcopic image is projected thereon, so that an electrostatic image is formed which corresponds to the master. This image is developed by being briefly contacted with a resin powder, whereupon a visible image is formed which is fixed by heating or by the action of solvents. In this way, an image of the master which is resistant to abrasion is obtained electrophotographically.
In the electrophotographic process as described an increase in the sensitivity of the photoconductive coatings has already been attempted by the addition of organic dyestuffs, e.g. triphenylmethane, 'xanthene, phthalein, thiazine and acridine dyestuffs, to the photoconductors.
The absorption maxima of the organic photoconductors are mostly in the ultra-violet region of the spectrum. The addition of these dyestuff sensitizers achieves the result that the photoconductors become sensitive to visible light. Generally, the dyestufi' sensitizers cause a displacement of the available sensitivity from the ultraviolet region to the visible region. With increased addition of dyestufi sensitizer, the sensitivity to visible light at first increases rapidly, but further additions give an increase in sensitivity which is much less than would be expected, and still further additions finally give no appreciable increase in sensitivity. The dyestutl sensitizers have the disadvantage that they color the coating considerably. In practice, the maximum achievable increase in sensitivity can seldom be utilized because then the photoconductor coatings have an intensity of color that is undesirable. Colorless 0r practically colorless photoconductor coatings are desired, since colored material can be employed only in special cases. If additions of dyestuif sensitizers are such as not to adversely aliect the coloring of the coating for practical purposes, the sensitizing effect often does not meet the demands of general usage. Further, the dyestufl sensitizers have the disadvantage that they bleach out relatively quickly so that their sensitizing action tends to be lost during the storage of the electrophotographic material.
A process for the sensitization of photoconductor coatings has now been found in which organic substances, containing polarizing residues and being capable of serving as electron-acceptors in a molecule complex, having low molecular weight, i.e. being non-resinous, being colorless or of pale color and having a melting point above room temperature, are added to the photoconductor coatings.
Substances which are primarily of interest as photoconductor coatings in accordance with the present process are those which can serve as electron donors in mole- 3,287,122 Patented Nov. 22, 1966 cule complexes of the donor/acceptor type (known as 1r-complex) and contain at least one aromatic or heterocyclic ring, which may be substituted. Such photoconductors include aromatic hydrocarbons such as naphthalene, anthracene, benzanthrene, chrysene, p-diphenylbenzene, diphenyl anthracene, p-terphenyl, p-quaterphenyl,
sexiphenyl; heterocycles such as N-alkyl carbazole,
thiodiphenylamine, oxadiazoles, e.g., 2,5-bis-(p-aminophenyl)-1,3,4-oxadiazole and its N-alkyl and N-acyl derivatives; triazoles such as 2,5 bis-(p-aminophenyl)- 1,3,4-triazo1e and its N-alkyl and N-acyl derivatives; rmrdazolones and imidazolthiones, e.g., 1,3,4,5-tetraphenyl-imidazolone-Z and 1,3,4,5-tetraphenyl-imidazolthrone-2; N-aryl-pyrazolines, e.g. 1,3,5-triphenyl-pyrazoline; hydrated imidazoles, e.g., 1,3-diphenyl-tetrahydroimrdazole; oxazole derivates such as 2,5-diphenyloxazole-2- p-dimethylamino-4,S-diphenyloxazole; thiazole derivatives such as 2-p-dialkylaminophenyl-methyl-benzthiazole; as also the following:
Oxazoles and imidazoles described in German patent application K 35,586 IVa/57b, filed Aug. 22, 1958. Acylhydrazones described in German patent application K 36,517 IVa/57b, filed Dec. 19, 1958.
2,2,4-triazines described in German patent application K 36,651 IVa/57b, filed Jan. 7, 1959.
Metal compounds of mercapto-benzthiazole, mercaptobenzoxazole and mercapto-benzimidazole described in German patent application K 37,508 Iva/57b, filed Apr. 18, 1959.
Imidazoles described in German patent application K 37,435 IVa/57b, filed Apr. 9, 1959.
Triphenylamines described in German patent application K 37,436 IVa/57b, filed Apr. 9, 1959.
Furans, thiophenes and pyrroles described in German patent application K 37,423 IVa/ 5 7b, filed Apr. 8, 1959.
Amino compounds with multinuclear heterocyclic and multinuclear aromatic ring system described in Ger- 1112151; patent application K 37,437 Iva/57b, filed Apr. 9,
Azomethines described in German patent application K 29,270 IVa/57b, filed July 4, 1956.
Molecule complexes are defined in H. A. Staabs Einfuhrung in die theoretische organische Chemie (Introduction to Theoretical Organic Chemistry), Verlag Chemie, 1959, pp. 694-707, and by L. I. Andrews, Chemical Review, vol. 54, 1954, pp. 713-777. In particular, the donor/acceptor complex (r-complexes) and "charge-transfer complexes which are formed from an electron-acceptor and an electron-donor are included. In the present case, the photoconductors are the electrondonors and the substances here called activators-4o distinguish them from the dyestutf sensitizers-are the electron-acceptors. The electron-donors have a low ionization energy and have a tendency to give up electrons. They are bases in the sense of the definition of acids and-bases given by G. N. Lewis (H. A. Staab, as above, p. 600). The electron-donors primarily concerned in the present case are the photoconductors described above. These photoconductors consist of aromatic or heterocyclic systems containing a plurality of fused rings, or, alternatively, single rings having substituents which facilitate further electrophilic substitution of the aromatic ring, socalled electron-repellent substituents, as described by L. F. and M. Fieser, Lehrbuch der organischen Chemie (Textbook of Organic Chemistry), Verlag Chemie, 1954, p. 651, Table I. These are, in particular, saturated groups, e.g., alkyl groups such as methyl, ethyl, and propyl; alkoxy groups such as methoxy, ethoxy and propoxy; carbalkoxy groups such as carbmethoxy, carbethoxy and carbpropoxy; hydroxyl groups, amino groups and dialkylamino groups such as dimethylamino, diethylamino and dipropylamino.
The activators in accordance with the invention, which are electron-acceptors, are compounds with a high electron-afiinity and have a tendency to take up electrons. They are acids in the sense of Lewis definition. Such properties are possessed by substances having strongly polarizing residues or groupings such as cyano and nitro groups, halogens such as fluorine, chlorine, bromine and iodine; ketone groups, ester groups, acid anhydride groups, acid groups such as carboxyl groups or the quinone grouping. Strongly polarizing electron-attracting groups of this type are described by L. F. and M. Fieser in the Lehrbuch der organischen Chemie, Verlag Chemie, 1954, p. 651, Table I. Of these substances with a melting point above room temperature (25 C.) are preferable, i.e. solid substances, because these impart a particularly long shelf life to the photoconductive coatings as a result of their low vapor pressure. Substances which are rather deeply colored such as quinones can be used, but those that are colorless or only weak in color are preferable. Their absorption maximum should preferably be in the ultra-violet region of the spectrum, i.e. below 4,500 A. Further, the activator substances in accordance with the present process should be of lower molecular weight, i.e. between about 50 and 5000, preferably between about 100 and 1000, because with activators of lower molecular weight it is possible for reproducible results to be obtained insofar as sensitivity is concerned. Also, the sensitivity remains constant over rather long periods, since substances of lower molecular weight, unlike those of high molecular weight, undergo hardly any, change during storage. The following are examples of such substances:
2-bromo-5-nitro-benzoic acid o-Chloronitrobenzene. 2-bromobenzoie acid Chloracetophenone. 2chioro-toluene-4-sulphonic aci 2-chlorocinnamic acid. Chloromaleic anhy i 9-chioroacridine-.- 2-chloro-4-nitro-1-benzoic acid. fl-chloroacridine- 2-chloro-5-nitro-1-benzoic acid. -ch1orouitrobenze 3-chloro-6-nitro-1-benzoic acid.
chloride. 4-chloro-3-nitro-1-benzoic acid Mucochloric acid. 4-chlcro-2-hydroxy-benzoic acid Mucobromic acid. i-chloro-l-phenoH-sulphonic acid Styrenedibrcmide. 2-chloro,3-nitro-1-toluene-5-sul- Tetrabromo xylene.
phonic acid. 4-chioro-3-nitro-benzene-phos- B-Trichiorolactic acid nitrile.
phonic acid. Dibromosuccinicacid Triphenylchloromethane. Tetrachlorcphthalic acid. Tetrabromophthalic acid. Tetraiodophthalic acid.
Tetrachlorophthalic anhydride.
Tetrabromophthalic anhydride.
Tetraiodophthalic anhydride.
Tetrachlorophthalic acid monoethylester.
, 1,8-dichlorouaphthalene 2,i-dinitro-l-chlorouaphthalene 3,4-dichloro-nitrobcnzene 2,4-dich1oro-benzisatin Tetrabromophthalic acid monoy er. 2,6-dichloro-benzaldehyde Tetraiodophthalic acid monoester.
'Hexabromonaphthalic anhydride Iodoiorm.
Anthraquinone-ZJ-disnlphonic 1,5-dichloro-anthraquinone.
acid bis-anilide. Anthraquinone-Z-sulphouic acid 1,4-dimethyl-anthraquluone.
dimethylamide. Acenaphthenequinone 2,5-dichlor0-benzoquiuone. Anthraquinone-2-su1phonic acid 2,3dichlorenaphthoquinone-Li.
methyiaruide. Acenaphthenequinonedichloride Benzoquinone-i 4 7 4-nitro-1-phenol-2-sulph0nic acid- Picric acid. 1,2-benzanthraquinoue Z-methylanthraquinone. Brornanil Naphthoquinone-l,2. l-chloro-i-nitro-anthraquinone- Naphthoquinone-1,4. Ch ranil Pentacenequmona. l-chlor-anthraquinone- Tetracene-7,12-quinoue. Chryse-nequinone 1,4-toluquinone. Thymoqninone 2,5,7,IO-tetrachloropyrenequinone.
1,5-dich1oro-anthraquinone.
1-methyl-4-chloro-anthraquinoue.
The quantity of the solid, non-resinous, substantially colorless electron-acceptors (activators) which is best incorporated in the photoconductive coating to be sensitized is easily established by simple experiments. The
photoconductive coating containing at least one photoconductor and at least one solid, non-resinous, substantially colorless, electron-acceptor, should contain the:
photoconductor and electron-acceptor in proportions rang-, ing from substantially less than equal amounts to a sub-,
stantial excess of the photoconductor with respect to. the electron-acceptor. The optimum of the, proportions varies somewhat according to the substance used. Generally, minor amounts are used, i.e. from about 0.1 to
about 300 moles, preferably from about 1 to about 50 moles of electron-acceptor per 1000 moles of photoconductor. Alternatively, it has also been found that in the photoconductive coatings containing at least one photo-, i
conductor and at least one solid, non-resinous, substantially colorless electron-acceptor, it is also very useful to.
0.1 to about 300 moles, preferably from about 1 to about 50 moles photoconductor-per 1000 moles activator,
are used. Insome cases, it is also possible to use more than 300 moles photoconductor or activator per 1000 moles activator or photoconductor, respectively, butby exceeding the above range the dark decay of the mixture usually increases, and in such cases coatings made therefrom are inferior.
Mixtures of several photoconductors and activator subi stances may also be used. Moreover, in addition to these 1 substances, sensitizing dyestuflfsmay be added.
By means of the present process, photoconductor coatings can be prepared which have a high degree of lighti sensitivity, particularly in the ultra-violet region, and which are practically colorless. There is the further possibility of the photoconductor coatings being thereby strongly activated in the ultra-violet regionand afterwards being invested with a high degree of sensitivity to visible light by a very small additionof dyestufi. sensitizer without it being necessary for so much dyestuif to be added that the coating takes on a deep color. Also, it is possible, by means of activators, for photoconductors such as naphthalene, whose initial sensitivity is very slight, to be given adequate sensitivity tor the production of satisfactory images by electrophotographic processes.
Furthermore, by addition of minor amounts of photo-.
conductors, to activators, photoconductive mixtures are obtained which have photoconductiw'ty much higher than could be expected fi'om the amount of the photoconductor added to the activator.
A further increase in the" photoconductivity may be obtained by the addition of dyestuff sensitizers in the same amounts as in the photoconductor-activator mixtures in which the photoconductor,
is present in a major amount.
The coatings are treated in other respects in accordance with the known processes of electrophotography, i.e. the photoconductor substances are used in the form of thin, coherent homogeneous coatings on a supporting material. The materials used as supports are primarily metals, such as aluminum, zinc, and copper; cellulose products, such as paper and cellulose hydrate; plastics, such as polyvinyl alcohol, polyamides, and polyurethanes. Other plastics, such as cellulose acetate and cellulose butyrate, especially in a partially saponified form, polyesters, polycarbonates, and polyolefins, if they are covered with an electroconductive layer or if they are converted into materials which have the above-mentioned specific conductivity, e.g. by chemical treatment or by introduction of materials which render them electrically conductive, can also be used, as well as glass plates. In general, materials are suitable the specific resistance of which is less than ohm-cm., preferably less than 10 ohm-cm.
If paper is used as the supporting material, it is preferably pretreated against the penetration of coating solutions, e.g., it can be treated with a solution of methyl cellulose or polyvinyl alcohol in water or with a solution of an interpolymer of acrylic acid methyl ester and acrylonitrile in a mixture of acetone and methylethyl ketone, or with solutions of polyamides in aqueous alcohols or with dispersions of such substances.
For the preparation of the electrophotographic material, the photoconductive compounds are preferably dissolved in organic solvents such as benzene, acetone, methylene chloride or ethyleneglycol monomethylether or other organic solvents or in mixtures of such solvents, and resins and the activatorsand possibly also the dyestutf sensitizers--a.re advantageously added thereto. These solutions are coated upon the supporting material in the normal manner, e.g., by immersion processes, painting or roller applicationor by spraying. The material is then heated so that the solvent will be removed.
A number of the compounds in question can be applied together to the supporting material or the compounds can be applied in association with other photoconductive substances.
Further, it is often advantageous for the photoconductor substances to be applied to the supporting material in association with one or more binders, e.g., resins. Resins primarily of interest as additions to the photoconductor coatings include natural resins such as balsam resins, colophony and shellac, synthetic resins such as coumarone resins and indene resins, processed natural substances such as cellulose ethers; polymers such as vinyl polymers, e.g. polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl acetals, polyvinyl alcohol, polyvinyl ethers, polyacrylic and polymethacrylic acid esters, isobutylene and chlorinated rubber.
If the photoconductive compounds in accordance with the invention are used in association with the resins described above, the proportion of resin to photoconductor substance can vary very greatly. Mixtures of from two parts of resin and one part of photoconductor substance to two parts of photoconductor substance and one part of resin are to be preferred. Mixtures of the two substances in equal parts by weight are particularly favonable.
For the displacement of sensitivity from the ultra-violet to the visible range of the spectrum, dyestulf sensitizers can be used in addition to the activators. Even very small additions of sensitizer, e.g., less than 0.01 percent, give good results. In general, however, 0.01 to 5 percent, and preferably 0.1 to 3 percent of dyestutf sensitizer is added to the photoconductor coatings. The addition of larger quantities is possible but in general is not accompanied by any considerable increase in sensitivity.
Some examples are given below of dyestufl sensitizers which may be used with good results, and some with very good results. They are taken from Schultz Farbstotftabellen (7th edition, 1931, 1st vol.):
Triarylmethane dyestuffs such as Brilliant Green (No. 760, p. 314), Victoria Blue B (No. 822, p. 347), Methyl Violet (No. 783, p. 327), Crystal Violet (No. 785, p. 329), Acid Violet 6B (No. 831, p. 351); xanthene dyestulfs, namely rhod-amines, such as Rhod-amine B (No. 864, p. 365), Rhodami-ne 6G (No. 866, p. 366), Rhodamine G Extra (No. 865, p. 366), Sulphorhodamine B (N o. 863, p. 364) and Fast Acid Eosin G (No. 870, p. 368), as also phthaleins such as Eosin S (No. 883, p. 375), Eosin A (No. 881, p. 374), Erythrosin (No. 886, p. 376), Phloxin (No. 890, p. 378), Bengal Rose (No. 889, p. 378), and Fluorescein (No. 880, p. 373); thiazine dyestuifs such as Methylene Blue (No. 1038, p. 449); acridine dyestuffs such as Acridine Yellow (No. 901, p. 383), Acridine Orange (No. 908, p. 387) and Trypaflavine (No. 906, p. 386); quinoline dyestuffs such as Pin-acyanol (No. 924, p. 396) and Cryptocyanine v(No. 927, p. 397.); cyanine dyestuffs, e.g., Cyanine (No. 921, p. 394) and chlorophyll.
For the production of copies with the electrocopying material, the photoconductive coating is charged by means of, for example, a corona discharge with a charging apparatus maintained at 60007000 volts. The electro-copying material is then exposed to light in contact with a master. Alternatively, an episcopic or diascopic image is projected thereon. An electrostatic image corresponding to the master is thus produced on the material. This invisible image is developed by contact with a developer consisting of carrier and toner. The carriers used may be, for example, tiny glass balls, iron powder or tiny plastic balls. The toner consists of a resin-carbon black mixture or a pigmented resin. The toner is used in a grain size of 1 to The developer may also consist of a resin or pigment suspended in a non-conductive liquid in which resins may be dissolved. The image that is made visible by development is then fixed, e.g., by heating with an infra-red radiator to 100-170 C., preferably -150 C. or by treatment with solvents such as trichloroethylene, carbon tetrachloride or ethyl alcohol, or steam. Images corresponding to the master characterized by good contrast efi'ect are obtained.
If transparent supporting material is used, the electrophotographic images can also be used as masters for the ptll'oduction of further copies on any type of light-sensitive s eets.
If translucent supports are used for photoconductive layers such as are provided by the invention, reflex images can be produced also.
The application of the activators in accordance with the present process is not restricted to electrophotographic coatings, but can extend to other devices containing photoconductors, e.g., photoelectric cells, photoresistances, sensing heads or camera tubes and electroluminescent apparatus.
The invention will be further illustrated by reference to the following specific examples:
EXAMPLE 1 A solution containing 26 parts by weight of polyvinyl acetate (e.g., Mowilith 50), 25.6 parts by weight of naphthalene, 0.0415 part by weight of 2,3,7-trinitrofiuorenone and 800 parts by volume of toluene is applied by means of a coating device to an aluminum foil. After the coating has dried, direct images are produced thereon by the electrophotographic process in the following manner: the coated foil is given a negative electric charge by corona discharge, exposed behind a master to the light of a high-pressure mercury vapor lamp watts, at a distance of 30 cm.) for about 10 seconds and then dusted over with a developer.
The developer consists of tiny glass balls and a mixture of resin and carbon black which has been melted together and then finely divided. A developer of this sort consists of, e.g., 100 parts by weight of tiny glass balls (grain size: 100-400p. approx.) and a toner (grain size: 20-50n approx.). The toneris prepared by melting together 30 parts by weight of Polystyrol LG, 30 parts by weight of modified maleic acid resin (Beckacite K 105) and 3 parts 'by weight of Peerless Black" Russ 552. The melt is then ground and screened. The finely divided resin adheres to the parts of the coating not struck by light during the exposure and a positive image of the master becomes visible. It is slightly heated and thereby fixed.
If 2,4,7-t1initrofluorenone is not added to the coatings described above, even an exposure of two minutes will not produce an electrophotographic image.
EXAMPLE 2 free of background, i.e., the exposed parts are not fully discharged and therefore retain a certain amount of developer.
- EXAMPLE 3 A solution of 26 parts by weight of polyvinyl acetate, 17.8 parts by weight of anthracene and 0.3357 part by weight of hexabromonaphthalic anhydride in 800 parts by volume of toluene is applied to aluminum and further procedure is as described in Example 1. With a 125-watt high-pressure mercury vapor lamp, the exposure time is 4 seconds.
8 EXAMPLE 5 A solution of 26 parts by weight of polyvinyl acetate,
21.6 parts by weight of 1,5-diethoxynaphthalene and.
0.258 part by weight of 1,2-benzanthraquinone in 800 parts by volume of toluene is applied to paper and the material is further processed as described in Example 1.
The exposure time (125-watt high-pressure mercury vapor lamp) is 20 seconds.
Without the 1,2-benzanthraquinone addition,the copy still has considerable background after an exposure of 80 seconds.
EXAMPLE 6 26 parts by weight of polyvinyl acetate, 17.8 parts by weight of phenanthrene and 0.245 part by weight of chloranil are dissolved together in 800 parts .by volume of toluene.
ther processed as described in Example 1. If the material is exposed to a 125-watt high-pressure mercury vapor lamp, an exposure of 10 seconds gives an image free, of 1 background and rich in contrast, whereas without the chloranil addition there is heavy background even after, 1
an exposure of one minute.
EXAMPLE 7 A solution containing 26 parts by weight of polyvinyl ple 1. The exposure time (l25-watt high-pressure mercury vapor lamp) is 2 seconds. Without the dibromomaleic anhydride addition, it is 10 seconds.
The solution is applied to a superficially roughened aluminum foil and then the material is fur- TABLE A No. A B C D E 1 Polyvlnylaeetate, 10 parts (1)- 8 120 see. b an 3 Anthraquinone, 0.08 30 see. (b)? (ca) 3 8 Anthraquinone, 0.17 20 see. (b). 4 8 Anthraquinone, 0 25 20 see. (b). 5; 8 0. 001 see. (b). 6- 8 0. 005 60 see. (b). 7 8 o. 010 60 see. (b). 8 0. 030 90 see. (b). 8 0.050 90 see. (b). 1() 8 Anthraquinone, 0.17 0.001 20 see. (b). 1 8 (in 0- 010 20 SEC. (b). 12; 8 0.50 20 see. (b). 13 8 240 sec. (:3). (in 8 Anthraqumonc, 0.25 180 see. (a). 15 Cyclized rubber, 10 parts (2) 8 2 0 see. (a). dn 8 Anthraquinonc, 0.25 30 see. (a). 17 Aiterchlorinated polyvinylchlorlde, 7 parts (3)- 8 10 see. (3) Polyvinylchloride, afterchlorinated, 7 parts (3). 8 Anthraquinone, 0.25 part 3 see. (a). 19 Maleic acid resin, 10 parts (4) 8 240 20 (in 8 Anthraquinone, 0.25 part 60 see. (a) 21 Chlorinated rubber, 10 parts (5) 8 20 see. (a). 2 an 8 Anthraqulnone, 0.25 part 10 see. (a). 23 Chlorinated rubber, 10 parts (6) 8 20 see. (a). d0 8 Anthraqulnone, 0.25 10 sec. (a); 25 dn 8 1,2-benzanthraqulnone, 0.31 part 11.5 see. (a). 2 (in 8 Hexabromonaphthalic anhydride, 0.80 part 11.5 see. (a). 27 dn 8 2,4,5,7-tetranitrofluorenone, 0.43 part- 1.5 see. (a). 23 d0 8 Dibromomaleic anhydride, 0.30 part. 4-6 see. (a). 29 dn 8 N itroterephthalic acid-dimcthylestcr, 0.28 6-8 see. (a).
par
3 (ln 8 Tetraeyano ethylene, 0.15 part- I 4-6 see. (a). (ln 8 1,3,5-trinltrobenzene, 0.25 part 1.5-2 see. (a).
Without the hexabromonaphthalic anhydride addition, an exposureof as much as 30 seconds gives an image which contains background.
EXAMPLE 4 A solution containing 18 parts by weight of polyvinyl acetate, 18.2 parts by weight of 2,4-bis-(4'-diethylaminophenyl)-1,3,4-triazole and 0.130 part by weight of tetrachlorophthalic anhydride to 500 parts by volume of toluene is applied to an aluminum foil and further procedure The exposure time with Explanations on Table A Column A: Quantity and kind of binder used. -In all,
cases, the quantities stated were dissolved in 200 parts by volume of toluene.
Column B: Quantity of the photoconductor. In all 9 The tests were carried through under the same experimental conditions, with the exception of the variations stated in the table.
(1) The polyvinyl acetate used was the product commercially available under the registered trademark Mowilith C.
(2) The cyclized rubber used was the product commercially available under the registered trademark Pliolite S-SD.
(3) The afterchlorinated polyvinylchloride used was the product commercially available under the registered trade mark Rhenoflex.
(4) The maleic acid resin used was the product commercially available under the designation Alrosat."
(5) The chlorinated rubber used in Table A, col. A, under No. 21 (5) was the product commercially available under the registered trademark Parlon S-S cps.
(6) The chlorinated rubber used in Table A, col. A, under N0. 23 (6) was a product commercially available under the registered trademark Pergut 8-40.
The following Table B shows further examples of various photoconductors which were activated, and the reduction in exposure time caused by the activators:
TABLE 13 A B O 26 Chloranil Hexabromonaphthalic anhydride.
2,4,5,7-tetran.itrofiuorcnone V4 Hexabromonaphthalic anhydride 13.6 hydroquinonedimethylether.
25.6 naphthalene 26 2,4,5,7-tetranitrofiuorenone 1,5-dinitronaphtha1ene 1,4-benzoquinone Chloranil 3,5-dim'trosa1icy1ic acid Dibromornaleic anhydride Tetrachlorophthalie anhydrida Hexabromonaphthalic anhydride. Mo Picrylehloride 21.6 1,5-diethoxynaphthalene.
15.4 acenaphthene' 26 1 ,Z-benzanthraquinone- Dibrornomaleic anhydride 15.2 acenaphthylene Herabromonaphthalrc anhydride. 2,4,5,T-tetranitrofluorenone Chloranil 1,2-benzanthraquinone Tetrachlorophthalic anhydride Picrylchloride 2,4,5,7-tetranitrofiuorenone Chloranil 1 ,2-benzanthraquinone Tetrachlorophthalic anhydrid Hexabromonaphthalic anhydride. Picrylchloride Chloranil 15.4 diphenyl 24.4 o-dianisidine 26 16.6 fluorene 26 Hexabromouaphthalic an Picrylchlorlde 3,5-dinitrosalicylio acid" l,2benzanthraquinone Dibromomaleic anhydride- Tctrachlorophthalie anhydride- 2,4,5,7-tetranitr0fluorenone Benzoquinone- Chloranil 3,5-dinitrosalicy1ic aeid- 1,2-benzanthraquinone Tetrachlorophthalic anhydride Hexabromonaphthalic anhydride Picrylchloride 2,4,5,7-tetranttroflnorenone Benzoqninone Chloranil 2,4,5,7-tetranitroflnoren0ne 1,4-henzoquinone Chloranil- 3,5-dinitr0salicy1ic acid 1,2-benzanthraquinone Dibrornomalelc acid anhydride Tetrachlorophthalic anhydriden Hex-abrornonaphthalic anhydride Picrylchloride 2,4,5,7-tetranitr0fluorenone 1,2benzanthraquinone. Dibromomaleic anhydride. 'Ietrachlorophthalic anhydride Hexabromonaphthalic anhydri Picrylchloride 17.8 anthracene 26 22.8 chrysene 52 16.9 diphenylarnine 26 26.9 2,2 -dinaphthylamine xxsxxxsmsszx 17.8 phenanthrene 26 TABLE BContinued A B C D 19.3 2-phcnyl-indole 26 Chloranil $4 L'Z-benzanthraqurno Dibrornornaleic anhydri Tetrachlorophthalic anhydri l4 Hexabromonaphthalic anhydride 34 Picrylchloride 2,4,5,7-tetranitrofluorenone. 96
16.7 carbazole 26 Chloranil Mu 1,2-benzanthraquinone. M
3,5-dinitrosalicylic acid Dibromomaleic anhydride Ho Tetrachlorophthalic anhydride M Hexabrornonaphthalic anhydride. Ho
Picrylchloride $4 2,4,5,7-tetranitrofiuorenone. Mo
19.9 thiodiphenylamine.-- 26 l,2-benzanthraquinone ,4 25.48 2,4-bis-(4-diethyl- 26 2,4,5,7-tetranitrofluorenone- $60 amjnophenyl)-l,3,4 1,2-benzanthraquinone.-- Ho oxadiazole. 2,4-dich1orobenzoic acid- M Tetraehlorophthalic acidlo' 18.2 2,4-bis-(4'-diethyl- 18 3,5 dinitrosalicylic acid.-. Ho
aminophenyl) -1,3,4- 1,2-benzanthraquinone $6 triazole. Dibromomaleic anhydride $6 Hexabromonaphthalio anhydride- )o Picrylchloride Mu 2,4,5,7-tetranitrofluoren0ne $60 Explanations on Table B The table describes a series of experiments carried through for improving the photoconductivity of organic substances by adding activators.
In Column A the quantity and nature of the substance used is stated. The substances marked with a yielded no electrophotographic images even after an exposure time of several minutes.
In Column B the quantity of the binder used is stated. In all of the cases, polyvinyl acetate having a K-value of 50 was used. Binder, photoconductive substance, and activator were dissolved in toluene, coated onto an aluminum foil, and dried.
In Column C the substance used as activator is stated. In all of the cases 1 mol of the activator stated under C was used per 100 moles of the substance stated under A.
In Column D the reduced time of exposure is stated which is required to produce images equal in quality to those produced without the addition of an'activator. In those cases where a prolonged exposure of the photoconductor yielded not even a Weak image (marked with a the calculation of the reduced time of exposure was based on the longest exposure used for the unactivated photoconductor substance.
Alternatively, the increase in sensibility obtained by the addition of activating substances may be taken from a comparison of the degrees of blackening obtained with the activated photoconductive layer and with the unactivated photoconductive layer, under the same customary step wedge (e.g. Kodak No. 2 density strip with color patches).
EXAMPLE 8 A solution containing 20 parts by weight of afterchlorinated polyvinyl chloride with a content of chlorine from 61.7 to 62.3 percent and K-value from 59 to 62, 18.01 parts by weight of 2,4,5,7-tetranitrofiuorenone and 0.216 part by weight of 1,5-diethoxynaphthalene dissolved in a mixture of 450 parts by volume toluene and parts by volume butanone is applied to an aluminum foil. The subsequent procedure is that described in Example 1. The exposure time, with a 100 watt incandescent lamp at a distance of 30 centimeters is 2 seconds.
Without the addition of 1,5-diethoxynaphthalene the exposure time is about 40 seconds.
instead of the 1,5 -diethoxynapht-halene.
Exposure time Photoconductors (parts by Welght) (seconds) chlorophthalic acid anhydride and 20 parts by weight of Acenaphthene (0'154) 15 afterchlorinated polyvinyl chloride in a mixture of 150 Nfthylcarbazole 15 parts by volume of butanone and 450 parts by volume 'dmaphfliy'lamme (0270) 15 of toluene, X parts by weight of hotoconductor and Diphgnylammgi (0170) 15 Y parts by weight of dyestufi sensitizer are added. In the Dlphenyleneoxldfi (0170) 20 following table, the amounts of the hotoconductor and. Indole (0120) 10 sensitizer are given together with the corresponding ex-, Efrem (0-200) 12 posure times. It is advantageous to dissolve the dyestutf stllbefne (03110) "7"" 5 sensitizer in a small amount of ethyleneglycol monozss'bls'"dlethylammophenyl)1,3,4 oxdlazole methyl ether before adding it to the solution. The latter (0-365 1 is applied to a paper base material and further processed- Poly-N-vleylcarbezole 6 as described *in Example 1. The light source used Phenoxathme (0100) 6 throughout was a 125-watt high pressure mercury vapor EXAMPLE 9 lamp and the distance between this lamp and the material exposed was about 30 centimeters. A solution of 12 parts by weight of chlorinated rubber (Pergut S-40), 5.04 parts by weight of 1,3-dinitrobenzene and 0.106 part by weight of anthracene in 150 parts by volume of toluene is applied to a paper foll and ihe PhotoconductorXparts Dyestufl SensitizerY Exposure material is further processed as described in Example 1. byweight Parts by weight Time The exposure time (125 watt high'pressure mercurydvlads) or lamp) is 20 seconds. Without the anthracene a ii i n, even after an exposure g of 80 y ilii as' 'larraiarei ?fia::.::::::::::::: 3'
traces of an image were obtain This means t at t e 0-30Rl10dem111e B extra therefore still attracted developer. fi gs- (fige tl g e i i ino- None 4 t In the following table the exposure times are given, noinji 0 30Rh d m B t which were obtained, when using other hotoconductors 3:3? gfi i g ggfi i i 3 instead of the 1,3-dm1trobenzene. E D 3. firitsgallviglet 2 5 xposure time e Yen Photoconductors (parts by weight): (seconds) B33Z1 Y.'Yfi3i f3iif?1.:: %%21. ???fi f: i ffi:: 2g
2,2'-dinaphthylarnine (0.180) 20 2,5-bis-(4'-diethylaminophenyl)-1,3,4 oxdiazole EXAMPLE 10 EXAMPLE 13 A solutioncontaining 20 parts by weight of the after- A solution is prepared, containing 57.2 parts by weight chlorinated polyvinyl chloride mentioned in Example 8, of tetrachlorophthalic acid anhydride and 65 parts byp 21.02 parts by weight of benzile and 0.370 part by weight Weight of afterchlorinated polyvinyl chloride in 700 parts of benzidine in a mixture of 450 parts by Volume of tolby volume toluene and suflicient butanone is added to.
uene and 150 parts by volume of butanone is applied to make up 1000 parts by volume. To parts by volume an aluminum foil and the material is further processed 0f the resulting stock solution, one of the'photoconducas d ib d i E l 1 Th exposure time (125 tt tors listed below is added, and ,the solution is applied to high pressure mercury vapor lamp at a distance of 30 an aluminum foil and further Pfoeessed 35 described centimeters) is 10 seconds. Withoutthe addition of the 50 Example In he follo table, the added P benzidine activator, even after an exposure time of 4 minconductors are te and the corresponding exposure 1 utes, no electrophotographic image could be obtained. times are g e AS the light Source, a 125-Watt high In the 'following table, the exposure times are given preseufe mercury Vapor p in a distance of about 30 which were obtained when using hotoconductors other Fentlmeters from the eXPOSed ma rial was used in all than benzidine. Instances- Exposure time EXAMPLE 11 A solution containing 6.2 parts by weight of afterchlorinated polyvinyl chloride, 3.94 parts by weight of 1,5-dichloronaphthalene and 0.145 part by weight of 2,5-bis- (4'-diethylaminophenyl)-1,3,4-oxdia.zole in a mixture of 135 parts by volume of toluene and 45 partsby volume of butanone is applied to a paper base and is further processed as described in Example 1. The exposure time (125 watt high pressure mercury vapor lamp at a distance of 30 centimeters) is 10 seconds. Without the addition of the oxdiazole compound, even after an exposure time of 40 seconds, no image could be obtained. When the oxdiazole compound is replaced by 0.120 part by weight of 2,2-dinaphthylamine, the exposure time is about 10 seconds.
EXAMPLE 12 To a solution containing 28.6 parts by weightof tetra-,
Exposure time Photoconductor (parts by weight): (seconds) None 180 Naphthalene (0.064) 30 Hydroquinonedimethyl ether (0.070) 30 Anthracene (0.090) 30 Carbazole (0.081) 30 Chrysene (0.114) 30 Pyrene (0.10) 30 o-Dianisidine (0.122) 30 1,5-diethoxynaphthalene (0.101) 30 2,6-dirnethylnaphthalene (0.078) 30 Hexamethylbenzene (0.081) Diphenylamine (0.085) l0 Diphenyleneoxide (0.084) 30 Indole (0.059) 20 Fluorene (0.083) 60 Benzodiphenyleneoxide (0.109) 30 2-methoxy-naphthalene (0.079) 60 1 Image with heavy background.
13 Photoconductor (parts by weight) Exposure time Continued (seconds) Phenanthrene (0.089) 60 Phenoxathin (0.100) 10 Stilbene (0.090) 30 2,3,5-triphenylpyrrole (0.153) 10 l,l-dinaphthylamine (0.134) 30 1,2'-dinaphthylamine (0.134) 30 4'-tolyl-1-naphthylamine (0.116) 60 Z-phenylindole (0.096) 60 Acenaphthene (0.077) 60 Diphenyl (0.077) 120 N-methyldiphenylamine (0.091) 30 4-hydroxy-diphenylamine (0.092) 30 Phlorglucinediethyl ether (0.091) 120 EXAMPLE 14 57.2 parts by weight of tetrachlorophthalic acid anhydride and 65 parts by weight of polyvinyl acetate are dissolved in suificient toluene to make up 1000 parts by volume. To 50 parts by volume of this stock solution, one of the photoconductors listed below is added and the coating solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source from the exposed material were the same as in the foregoing example.
Exposure time (seconds) EXAMPLE 15 29.62 parts by weight of phthalic acid anhydride and 33 parts by weight of afterchlorinated polyvinyl chloride are dissolved in 670 parts by volume of toluene and 330 parts by volume of butanone. To 50 parts by volume of the resulting stock solution, one of the photoconductors listed in the following table is added; these coating solutions are applied to an aluminum foil, and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 1 60 N-ethylcarbazole (0.10) 5 Anthracene (0.09) Chrysene (0.114) Pyrene (0.10) 10 2,2'-dinaphthylamine (0.134) l0 2,3,5-triphenylpyrrole (0.153) 10 --No image obtained.
EXAMPLE 16 49.2 parts by weight of chloranil and 56 parts by weight of afterchlorinated polyvinyl chloride are dissolved in a mixture of 1170 parts by volume of toluene and parts by volume of butanone. The resulting solution is filled up to 2000 parts by volume with chlorobenzene. To 100 parts by volume of this stock solution, one of the photoconductors listed in the following table is added; the coating solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 180 Naphthalene (0.064) ca. Hydroquinonedimethyl ether (0.070) 30 N-ethylcarbazole (0.097) 10 Anthracene (0.090) 5 Chrysene (0.114) 15 Pyrene (0.10) l0 o-Dianisidine (0.122) 5 2,6-dimethyl-naphthalene (0.078) 30 Hexamethylbenzene (0.081) 120 2,2'-dinaphthylamine (0.134) 1-2 2,5-bis-(4-diethylaminophenyl)1,3,4-0xdiazole (0.182) 1 2,3,5-triphenylpyrrole (0.153) 4 EXAMPLE 17 10.6 parts by weight of 2-acetyl fluorene and 12 parts by weight of afterchlorinated polyvinyl chloride-are dissolved in parts of toluene and sutficient butanol to make up 250 parts by volume of solution. To 50 parts by volume of this stock solution, one of the photoconductors of the following table is added. The solution is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance of the light source were the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 1 180 o-Dianisidine (0.120) 30 2,5 -bis- (4-diethylaminophenyl) -1,3,4-oxdiazole 1 No image obtained.
EXAMPLE 18 44 parts by weight of 9 acetyl-anthracene and 48 parts by weight of afterchlorinatcd polyvinyl chloride are dissolved in 700 parts by volume of solution. To 50 parts by volume of the resulting stock solution, one of the photoconductors of the following table is added. This solu tion is applied to an aluminum foil and further processed as described in Example 1. The light source and the distance thereof was the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 1 180 Hydroquinonedimethyl ether (0.069) 30 N-ethyl carbazole (0.097) 60 Anthracene (0.089) 60 Hexamethylbenzene (0.081) 30 1 Image with heavy background.
EXAMPLE 19 46.2 parts by weight of pyrene3-aldehyde and 50 parts by weight of afterchlorinated polyvinyl chloride are dissolved in 670 parts by volume of toluene and sufiicient butanol to make up 1000 parts by volume of solution. To 50 parts by volume of the resulting stock solution one of the photoconductors of the following table is added. The solution is applied to an aluminum foil and further processed as described in Example 1. The light source 15 and the distance of the light source were the same as in Example 13.
Exposure time Photoconductor (parts by weight): (seconds) None 30 Naphthalene (0.064) 20 Hydroquinonedimethyl ether (0.070) 20 N-ethylcarbazole (0.10) Anthracene (0.090) 20 Chrysene (0.114) 20 Pyrene (0.10) 20 Hexarnethylbenzene (0.080) 20 2,2'-dinaphthylamine (0.135)
2,5-bis-(4'-diethylaminophenyl) -1,3,4-oxdiazole (0.180) 5 2,3,5-triphenylpyrrole (0.150)
EXAMPLE 20 Exposure time Photoconductor (parts-by weight): (seconds) None 1 180 N-ethylcarbazole (0.10) Anthracene (0.09) 30 o-Dianisidine (0.12) 10 2,5-bis-(4-diethylaminophenyl) -l ,3,4-oxdiazole 1 Image with heavy background.
It will be obvious to those skilled in the art that many modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
What is claimed is:
1. A sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R; is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydro gen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group.
2. A sensitized photoconductive layer according to claim 1 in which the photoconductor is 1,3,5-triphenylpyrazoline.
3. A sensitized photoconductive .layer comprising at least one solid, non-resinous, substantially colorless elec tron-acceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; the layer containing the photoconductor and the electron-acceptor in proportions ranging from substantially lessthan equal amounts to a substantial excess of the photoconductor with respect to the electron-acceptor and from substantially less than equal amounts to a substantial excess of the electron-acceptor with respect to the photoconductor.
4. A sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor, and a compound having the formula in which R is selected from the group consisting of hy drogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydro gen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 0.1 to about 300 moles of the electron-acceptor per 1000 moles. of photoconductor.
5. A sensitized photoconductive layer comprising at.
least one solid, non-resinous, substantially colorless elec-. tron-acceptor, and a compound having the formula in which R is selected from the group consisting of hy-t drogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl about 300 moles of the photoconductor per 1000 moles of the electron-acceptor.
6. A sensitized photoconductive layer comprising at least one solid, non-resinous, substantially colorless electron-acceptor, and a compound having the formula 1 o 112-0451 H CR in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 1 to about 50 1 moles of the electron-acceptor perv 1000 moles of the photoconductor.
7. A sensitized photoconductive layer comprising at.
least one solid, non-resinous, substantially colorless electron-acceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R;, is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R tbeing an aryl group; in proportions ranging from about 1 to about 50 moles of the photoconductor per 1000 moles of the electron-acceptor.
8. A layer according to claim 1 in which the electronacceptor is 2,4,7-trinitrofiuorenone.
9. A layer according to claim 1 in which the electronacceptor is tetram'trofluorenone.
10. A layer according to claim 1 in which the electronacceptor is hexabromonaphthalic anhydride.
11. A layer according to claim 1 in'which the electronacceptor i-s tetrachlorophthalic anhydride.
12. A layer according to claim l'in which the electronacceptor is 1,2-benzanthraquinone.
13. A layer according to claim 1 in which the electronacceptor is chloranil.
14. A layer according to claim 1 in which the electronacceptor is dibromomaleic anhydride.
15. A layer according to claim 1 including a resin.
16. A layer according to claim 1 including a dyestuff sensitizer.
17. A photographic reproduction process which comprises exposing an electrostatically charged, supported, photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R, is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group. p
18. A process according to claim 17 in which the photoconductor is 1,3,5-triphenyl-pyrazoline.
19. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; the layer containing the photoconductor and the electron-acceptor in proportions ranging from substantially less than equal amounts to a substantial excess of the photoconductor with respect to the electron-acceptor and from substantially less than equal amounts to a substan- 'tial excess of the electron-acceptor with respect to the photoconductor.
20. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 0.1 to about 300 moles of the electron-acceptor per 1000 moles of photoconductor.
21. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 0.1 to about 300 moles of the photoconductor per 1000 moles of the electron-acceptor.
22. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, aryl and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of R, R R and R being an aryl group; in proportions ranging from about 1 to about 50 moles of the electron-acceptor per 1000 moles of the photoconductor.
23. A photographic reproduction process which comprises exposing an electrostatically charged, supported photoconductive insulating layer to light under a master and developing the resulting image with an electroscopic material, the photoconductive layer comprising at least 19 7 one solid, non-resinous, substantially colorless electronacceptor, and a compound having the formula in which R is selected from the group consisting of hydrogen, alkyl, aryl and aralkenyl groups, R is selected from the group consisting of hydrogen, alkyl and aryl groups, R is selected from the group consisting of hydrogen, arylv and heterocyclic groups, R is selected from the group consisting of hydrogen and aryl groups, and R is an aryl group, at least one of'R, R R and R being an aryl group; in proportions ranging from about 1 to about 50 moles of the photoconductor per. 1000 moles of the electron-acceptor.
24. A process according to claim 19 in which'the electron-acceptor is 2,4,7-trinitrofluorenone.
25. A process according to claim 19 in which the electron-acceptor is tetranitrofluorenone.
26. A process according to claim 19 in which the electron-acceptor is hexabromonaphthalic anhydride. 27. A process according to claim 19 in which the electron-acceptor is tetrachlorophthalic anhydride.
28. A process according to claim 19 in which the electron-acceptor is 1,2-benzanthraquinone.
29. A process according to claim 19 in which the electron-acceptor is chloranil.
I 30. A process according to claim 19 in which the electron-acceptor is dibromomaleic anhydride.
31. A process according to claim 19 in which the layer includes a resin.
32. A process according to claim 19 in which the layer includes a dyestufi sensitizer.
References Cited by the Examiner UNITED STATES PATENTS 3,037,861 6/1962 Hoegl et al 96,1 3,113,022" 12/1963 Cassiers et a1. 96-1 3,155,503 11/1964 Cassiers et al. 96 1 3,180,729 4/1965 Klupfelet 'al. 96+1 OTHER REFERENCES NORMAN G. TORCHIN, Primary Examiner;
C. E. VAN HORN, Assistant Examiner.

Claims (1)

1. A SENSITIXED PHOTOCONDUCTIVE LAYER COMPRISING AT LEAST ONE SOLID, NON-RESINOUS, SUBSTANTIALLY COLORLESS ELECTRON-ACCEPTOR AND A COMPOUND HAVING THE FORMULA
US426372A 1961-07-24 1965-01-18 Process for the sensitization of photoconductors Expired - Lifetime US3287122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US426372A US3287122A (en) 1961-07-24 1965-01-18 Process for the sensitization of photoconductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12598461A 1961-07-24 1961-07-24
US426372A US3287122A (en) 1961-07-24 1965-01-18 Process for the sensitization of photoconductors

Publications (1)

Publication Number Publication Date
US3287122A true US3287122A (en) 1966-11-22

Family

ID=26824160

Family Applications (1)

Application Number Title Priority Date Filing Date
US426372A Expired - Lifetime US3287122A (en) 1961-07-24 1965-01-18 Process for the sensitization of photoconductors

Country Status (1)

Country Link
US (1) US3287122A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408189A (en) * 1966-10-27 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3408190A (en) * 1966-03-15 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3408188A (en) * 1966-05-27 1968-10-29 Xerox Corp Electrophotographic plate and process comprising photoconductive charge transfer complexes
US3527602A (en) * 1967-08-31 1970-09-08 Eastman Kodak Co Organic photoconductors
US3546085A (en) * 1967-01-30 1970-12-08 Xerox Corp Photoelectrophoretic imaging process and suspension
US3549361A (en) * 1966-08-01 1970-12-22 Eastman Kodak Co Electrophotographic compositions and elements
US3607259A (en) * 1967-01-06 1971-09-21 Australia Res Lab Package of charged photoconductive recording elements for electrophotography
US3877936A (en) * 1973-03-19 1975-04-15 Xerox Corp Photoconductive copolymer of N-vinylcarbazole and N-vinylphthalimide
US3879197A (en) * 1969-09-03 1975-04-22 Itek Corp Electrophotographic copying process
US4066454A (en) * 1973-11-19 1978-01-03 Kabushiki Kaisha Ricoh Electrophotographic light-sensitive material containing indenothiophenone or its derivative and process of preparing indenothiophenone and its derivative

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037861A (en) * 1957-09-07 1962-06-05 Kalle Ag Electrophotographic reproduction material
US3113022A (en) * 1959-02-26 1963-12-03 Gevaert Photo Prod Nv Electrophotographic process
US3155503A (en) * 1959-02-26 1964-11-03 Gevaert Photo Prod Nv Electrophotographic material
US3180729A (en) * 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180729A (en) * 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3037861A (en) * 1957-09-07 1962-06-05 Kalle Ag Electrophotographic reproduction material
US3113022A (en) * 1959-02-26 1963-12-03 Gevaert Photo Prod Nv Electrophotographic process
US3155503A (en) * 1959-02-26 1964-11-03 Gevaert Photo Prod Nv Electrophotographic material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408190A (en) * 1966-03-15 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3408188A (en) * 1966-05-27 1968-10-29 Xerox Corp Electrophotographic plate and process comprising photoconductive charge transfer complexes
US3549361A (en) * 1966-08-01 1970-12-22 Eastman Kodak Co Electrophotographic compositions and elements
US3408189A (en) * 1966-10-27 1968-10-29 Xerox Corp Electrophotographic plate and process employing photoconductive charge transfer complexes
US3607259A (en) * 1967-01-06 1971-09-21 Australia Res Lab Package of charged photoconductive recording elements for electrophotography
US3546085A (en) * 1967-01-30 1970-12-08 Xerox Corp Photoelectrophoretic imaging process and suspension
US3527602A (en) * 1967-08-31 1970-09-08 Eastman Kodak Co Organic photoconductors
US3879197A (en) * 1969-09-03 1975-04-22 Itek Corp Electrophotographic copying process
US3877936A (en) * 1973-03-19 1975-04-15 Xerox Corp Photoconductive copolymer of N-vinylcarbazole and N-vinylphthalimide
US4066454A (en) * 1973-11-19 1978-01-03 Kabushiki Kaisha Ricoh Electrophotographic light-sensitive material containing indenothiophenone or its derivative and process of preparing indenothiophenone and its derivative

Similar Documents

Publication Publication Date Title
US3287123A (en) Process for the sensitization of photoconductors
US3287120A (en) Process for the sensitization of photoconductors
US3159483A (en) Process for the preparation of electrophotographic reversed images
US3180730A (en) Material for electrophotographic purposes
US3189447A (en) Electrophotographic material and method
US3307940A (en) Electrophotographic process employing photoconductive polymers
US3287121A (en) Process for the sensitization of photoconductors
US3232755A (en) Photoconductive layers for electrophotographic purposes
JPH04223473A (en) Electronic photograph recording material
US3244516A (en) Electrophotographic mateiral and process
US3287114A (en) Process for the sensitization of photoconductors
US3287122A (en) Process for the sensitization of photoconductors
US3316087A (en) Photoconductor coatings for electrophotography
US3287119A (en) Process for the sensitization of photoconductors
US4284698A (en) Layered electrophotographic photoconductor
US3765883A (en) Organic photoconductors sensitized with free radical liberators and organometallic compounds
US3765884A (en) 1-substituted-2-indoline hydrazone photoconductors
EP0069397B1 (en) Electrophotographic plate
JPH02210357A (en) electrophotographic photoreceptor
US3169060A (en) Photoconductive layers for electrophotographic purposes
NO136108B (en)
US3114633A (en) Material for electrophotographic and electroradiographic purposes
US3287115A (en) Process for the sensitization of photoconductors
US3162532A (en) Photoconductive layers for electrophotographic purposes
US3163530A (en) Material for electrophotographic purposes