US3130096A - Solid combustible composition containing epoxy resin - Google Patents
Solid combustible composition containing epoxy resin Download PDFInfo
- Publication number
- US3130096A US3130096A US151165A US15116561A US3130096A US 3130096 A US3130096 A US 3130096A US 151165 A US151165 A US 151165A US 15116561 A US15116561 A US 15116561A US 3130096 A US3130096 A US 3130096A
- Authority
- US
- United States
- Prior art keywords
- composition
- weight
- diglycidyl ether
- percent
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 41
- 239000007787 solid Substances 0.000 title description 7
- 239000003822 epoxy resin Substances 0.000 title description 3
- 229920000647 polyepoxide Polymers 0.000 title description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 35
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000004449 solid propellant Substances 0.000 claims description 14
- 239000011872 intimate mixture Substances 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 21
- 150000002118 epoxides Chemical class 0.000 description 17
- 239000000446 fuel Substances 0.000 description 13
- 239000004615 ingredient Substances 0.000 description 13
- 239000003380 propellant Substances 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 11
- 239000007800 oxidant agent Substances 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- -1 oxidizers Substances 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000000466 oxiranyl group Chemical group 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 2
- BJUPZVQSAAGZJL-UHFFFAOYSA-N 2-methyloxirane;propane-1,2,3-triol Chemical compound CC1CO1.OCC(O)CO BJUPZVQSAAGZJL-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- UOORRWUZONOOLO-OWOJBTEDSA-N (E)-1,3-dichloropropene Chemical compound ClC\C=C\Cl UOORRWUZONOOLO-OWOJBTEDSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- USXDFAGDIOXNML-UHFFFAOYSA-N Fulminate Chemical compound [O-][N+]#[C-] USXDFAGDIOXNML-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002517 constrictor effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/226—Mixtures of di-epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
Definitions
- the invention relates to solid combustible compositions and to charges formed thereof which are adaptable to gas generation at high velocity.
- the invention more particularly relates to solid propellants for use in rocket propulsion which are capable of high ballistic performance.
- Solid propellant charges are commonly composed of a fuel, an inorganic oxidizer such as ammonium perchlorate or ammonium nitrate, and a binder.
- propellant refers to a substantially homogeneous solid mixture comprising any of the known oxidizing agents employed in the field of propellants in admixture with a suitable fuel and binder to produce a solid which can be ignited and which thereupon releases essentially gaseous combustion products at high temperature, e.g., above 2000 F.
- the fuel and binder may be the same or different substances.
- metal fuels in a particulated state, such as aluminum, magnesium, lithium, beryllium, boron, and alloys thereof and metal hydrides with the fuel-oxidizer-binder mixture.
- fuel refers to substances which liberate heat during burning and which act as a chemical reducing agent, i.e., are themselves oxidized by the oxidizing agent.
- the fuels broadly, are materials which can be oxidized sufilciently rapidly in the combustion chamber of a rocket engine to release gases to provide the desired thrust but are not violently explosive under the prevailing conditions. They may be solid or liquid. Solid fuels commonly employed contain combined hydrogen and/ or combined or elemental carbon in a combustible state. Known fuels include pulverized coal, bitumens, petroleum residium, asphalts, cellulose, rubbers, and a large number of derivatives thereof including metals chemically combined with organic radicals containing hydrogen and/ or carbon. The finely ground metals named above are also fuels but are usually considered as modifiers and are generally employed with another fuel of the hydrogenor carbon-containing type.
- binders include certain natural and synthetic resins, e.g., butadiene-styrene and butadiene-acrylate rubbers, polyesters, phenol-formaldehyde resins, ureaformaldehyde resins, polyacrylates, polyalkylacrylates, l. polystyrene, polysulfides, polyurethanes, and polyvinyl acetate resins.
- the solid propellants may be cast into predesigned geometrical shapes of convenient size, e.g., tubular, cylindrical, triform, hexaform, and a variety of modifications ice thereof including those having multiperforations therein or which may be cast directly in the combustion chamber of the rocket motor.
- Solid propellant compositions employing known binders are not completely satisfactory and present problems which have not yet been solved.
- Many of the known binders require lengthy and complex processing to produce required characteristics for satisfactory use in solid propellants.
- the introduction of extraneous and undesirable impurities is often necessary in preparing the propellant changes.
- curing agents and plas ticizers are often required.
- the curing agents and plasticizers frequently interfere with uniform combustion, give off toxic gases, and leave residues in the combustion chamber.
- the use of plasticizers to prevent freezing of the solid propellant mass at low temperature e.g., in the range of from 20 to F. has not been fully satisfactory.
- Freezing is to be prevented because it causes brittleness which often results in fissures in the charges which increases the burning surface and consequently adversely affects the rate of gas evolution.
- An undesirable consequence of such fissures is a constricting effect on the exhaust nozzle, thereby causing an inadequate passageway therethrough and often resulting in high internal chamber pressures and sometimes damaging explosions.
- an object of the invention to provide an improved solid propellant composition of superior physical properties. It is a further object of the invention to provide a solid propellant having a high specific impulse and particularly adapted for use in rocket motors. How these and other objects are attained will become apparent as the ensuing description proceeds.
- the invention is predicated on the discovery that a mixture of a diphenolic diglycidyl ether and an aliphatic diglycidyl ether containing a curing agent provides both a fuel and binder when admixed with an oxidizing material, with or without a modifying fuel additive such as a pulverized metal, and produces a solid propellant of superior strength, flexibility, and burning properties.
- curing agent refers to any of the known curing agents, hardeners, or cross-linking agents for epoxy resins and includes the amines, polyamines, dibasic acids and anhydrides thereof, and Lewis acids and ether and amine complexes thereof.
- composition of the invention may be cast into any desired geometric shape or configuration without the necessity of high pressure molding or extrusion. It offers the further advantage of resiliency and excellent dimensional stability; a tensile strength of not less than 175 pounds per square inch, is capable of significant elongation, ranging from 5 percent to greater than percent, and possesses excellent case-bonding properties.
- Combustion of the solid propellant of the invention in a combustion chamber proceeds at a substantially uniform rate of from about 0.3 to 0.6 inch per second at 1000 p.s.i. chamber pressure without detonation, appreciable smoke, or residue.
- the invention accordingly, is a novel solid propellant employing (A) a fuel-binder having the composite properties of flexibility, bond strength, and uniform combustibility in admixture with (B) a known inorganic oxidizing agent. It consists of the oxidizing agent in admixture with a mixture of two diglycidyl ethers having the Formulae 1 and 2 set out below:
- R is an isoalkylidene residue of l to 4 carbon atoms, wherein n is from to 4 and the resulting epoxide equivalent weight is from about 156 to about 773.
- Epoxide equivalent weight means the number of grams of the diglycidyl ether necessary to yield one oxirane group.
- This ingredient may be referred to, generally, as an aromatic diglycidyl ether.
- R is an alkylene residue of from 2 to 4 carbon atoms, wherein m is from zero to about 90, and the resulting epoxide equivalent weight is between 65 and about 3000.
- This ingredient is referred to hereinafter, at times,
- diglycidyl ether is employed herein, it is to be understood that the ethers concerned usually contain somewhat less than an average of two glycidyl groups per molecule. It is to be further understood that the diglycidyl ethers include the polyethers containing repeating ether groups represented by the bracketed portions of Formulae 1 and 2 above.
- the preferred aromatic diglycidyl ethers to employ are those prepared by reacting epichlorohydrin with a binuclear diphenol, i.e., a bisphenol, especially an isoalkylidene diphenol of which 4,4'-isopropylidene diphenol known as bisphenol A is illustrative.
- the preferred aliphatic diglycidyl ethers to employ are those prepared by reacting epichlorohydrin with a polyoxyalkylene glycol, sometimes called merely a polyglycol, of which polyoxypropylene glycol having a molecular weight of between 300 and 500 and more often of about 400 is illustrative. They include such compounds as the homopolymers of a1- kylene oxides having from 2 to 4 carbon atoms terminated at either end by oxirane groups and polyhydroxy initiated polyglycols terminated with oxirane groups.
- the weight ratio of the aromatic diglycidyl ether to the aliphatic diglycidyl ether to employ is between 0.02 and 1.5 and the preferred ratio to employ is between 0.1 and 1.0.
- the total amount of the diglycidyl ethers, including the curing agent therefor, to employ is between and 35 percent of the propellant composition, the balance being oxidizer and a supplemental or modifying metallic fuel, when employed. It is preferred that a supplemental or modifying metallic fuel, e.g., pulverized aluminum metal, in an amount up to about 30 weight percent, and preferably between about 10 and 25 weight of the propellant composition, be employed.
- One embodiment of the invention contemplates employing, in addition to the diglycidyl ethers represented above, a triglycidyl ether of glycerol or the triglycidyl ether of a glycerol-propylene oxide adduct in amount up to about one-third of the total glycidyl ether components.
- the material designated triglycidyl ether usually contains slightly less than an average of three glycidyl groups per molecule.
- the diglycidyl ethers as represented by the above formulae, within the weight ratio stated, and containing in intimate admixture therewith a sufiicient amount of a suitable curing agent to set the resin, are admixed in any suitable type mixer, e.g., one provided with baflles and a rotating shaft equipped with impeller blades.
- the admixture so made is promptly cast in suitable shaped charges for subsequent loading into a combustion chamber but is preferably cast directly into the combustion chamber of a rocket motor and there permitted to set to the solid charge.
- the charge so made when ignited by known means, e.g., a fulminate detonator or a primer charge of black powder which is set off by a timed electric spark, burns evenly.
- a steady flow of evolving gases proceeds from the burning propellant charge and escapes at high pressure through the nozzle.
- Example 1 A blend was prepared which consisted of the following parts by weight.
- Bisphenol A is 4,4-isopropylidenediphenol; it has a Durrans softening point of 74 to C.
- the above components were mixed for 30 minutes at F.
- the resulting composition was a fiowable slurry of relatively high viscosity. It was drawn from the mixer and compressed to a uniform thickness of 0.25 inch and placed in an oven and cured therein for 2 hours at 227 F.
- the cured sheet of propellant thus made was removed from the oven and cut into strips 6 inches long and 0.75 inch wide. These strips were tested and found to have a tensile strength of 176.8 pounds per square inch, an elongation of 55 percent, and excellent adhesion to glass, metal, and ceramic surfaces.
- the example was repeated except that the fiowable slurry was cast into specimens for use in determining the burning rate.
- the cast composition was tested according to standard testing procedures to ascertain its burning rate which was found to be between 0.28 and 0.34 inch per second at 1000 psi. gauge pressure.
- the above example was repeated except no aluminum powder was employed.
- the composition comprised 78 percent NH ClO oxidizer and 22 percent of the mixture of diglycidyl ethers employed above containing the amine curing agents employed therein.
- the burning rate was found to be between 0.48 and 0.62 inch per second at 1000 p.s.i. gauge pressure.
- Example 2 Another composition illustrative of that of the invention was prepared employing the following components.
- Example 2 The procedure employed was substantially the same as that of Example 1. After the 2-hour cure, the sheet of propellant composition was removed from the oven and tested and found to have a tensile strength of 633.2 pounds per square inch, an elongation of 15 percent, and excellent adhesion to metals and ceramics.
- Example 3 Another composition illustrative of the invention was prepared by admixing the following ingredients.
- Example 4 To illustrate further the composition of the invention, the following ingredients were admixed.
- Oxidizer composed of 70 weight percent NH CIO (unground) and 30 weight percent NH ClO ground to 250 mesh 65.0
- the above ingredients were admixed in accordance with the procedure employed in the above examples and cast into sheets as above described.
- the curing period employed was extended to 40 hours at 85 C.
- the product so made was tough and flexible.
- Example 6 The following composition was prepared to show the effect of incorporating a polyglycidyl ether containing more than an average of two glycidyl groups per molecule with the composition of the invention.
- the mixture was mixed for 0.5 hour at 30 C. and then cast into sheets and cured at 85 C. for hours. The sheets were then tested and found to have a tensile strength of 389 psi. and an elongation of 5%.
- the castings made in the example above had a theoretical specific impulse of greater than 240 seconds as calculated by standard methods based on thermal values.
- the solid propellant composition which comprises an intimate mixture of (A) between 10 and 35 percent by weight of a fuel-binder consisting essentially of a thermosetting glycidyl ether mixture of (1) an aromatic diglycture employed was the same but the period of cure was 45 idyl ether having the formula extended to 16 hours.
- the product thus made was a particularly flexible and strong propellant composition having good physical properties.
- Example 5 A further composition illustrative of the invention was prepared by admixing the following ingredients.
- composition of claim 1 wherein the weight ratio of (1) the aromatic diglycidyl ether to (2) the aliphatic diglycidyl ether is between 0.1 and 1.0.
- composition of claim 1 wherein said monofunctional amine is an alkanol amine and said difunctional amine is a dialkylenepolyamine.
- composition of claim 1 which contains up to 30 percent by weight, based on the weight of said composition, of a readily oxidizable particulate metal selected from the class consisting of aluminum, magnesium, boron, beryllium, and lithium.
- composition of claim 3 wherein the percent by weight of (A) said fuel-binder is between 15 and 30, of (B) said inorganic oxidizing agent is between 45 and 60, and said readily oxidizable particulate metal is between 10 and 30 percent.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Epoxy Resins (AREA)
Description
United States Patent 3,130,096 SOLID COMBUSTIBLE COMPOSITION CONTAINING EPOXY RESIN Malcolm E. Pruitt, Wallace T. McMichael, and Elmer L. Pendleton, Lake Jackson, Tex., assignors to The Dow Chemical Company, Midland, Mich, a corporation of Delaware No Drawing. Filed Nov. 9, 1961, Ser. No. 151,165 8 Claims. (Cl. 149-19) The invention relates to solid combustible compositions and to charges formed thereof which are adaptable to gas generation at high velocity. The invention more particularly relates to solid propellants for use in rocket propulsion which are capable of high ballistic performance.
In the combustion chamber of a rocket propulsion motor, propellant mixtures are burned to produce gaseous combustion products which are exhausted through a nozzle at high velocity to produce a thrust. Solid propellant charges are commonly composed of a fuel, an inorganic oxidizer such as ammonium perchlorate or ammonium nitrate, and a binder.
The term, propellant, as used herein, refers to a substantially homogeneous solid mixture comprising any of the known oxidizing agents employed in the field of propellants in admixture with a suitable fuel and binder to produce a solid which can be ignited and which thereupon releases essentially gaseous combustion products at high temperature, e.g., above 2000 F. The fuel and binder may be the same or different substances. In order to increase the flame temperature of the propellant and thereby increase the gas expansion ratio, it is common practice to admix known metal fuels, in a particulated state, such as aluminum, magnesium, lithium, beryllium, boron, and alloys thereof and metal hydrides with the fuel-oxidizer-binder mixture.
The term, fuel, as used herein, refers to substances which liberate heat during burning and which act as a chemical reducing agent, i.e., are themselves oxidized by the oxidizing agent.
A large number of fuels, oxidizers, and binders have been used. The fuels, broadly, are materials which can be oxidized sufilciently rapidly in the combustion chamber of a rocket engine to release gases to provide the desired thrust but are not violently explosive under the prevailing conditions. They may be solid or liquid. Solid fuels commonly employed contain combined hydrogen and/ or combined or elemental carbon in a combustible state. Known fuels include pulverized coal, bitumens, petroleum residium, asphalts, cellulose, rubbers, and a large number of derivatives thereof including metals chemically combined with organic radicals containing hydrogen and/ or carbon. The finely ground metals named above are also fuels but are usually considered as modifiers and are generally employed with another fuel of the hydrogenor carbon-containing type.
Known binders include certain natural and synthetic resins, e.g., butadiene-styrene and butadiene-acrylate rubbers, polyesters, phenol-formaldehyde resins, ureaformaldehyde resins, polyacrylates, polyalkylacrylates, l. polystyrene, polysulfides, polyurethanes, and polyvinyl acetate resins.
The solid propellants may be cast into predesigned geometrical shapes of convenient size, e.g., tubular, cylindrical, triform, hexaform, and a variety of modifications ice thereof including those having multiperforations therein or which may be cast directly in the combustion chamber of the rocket motor.
Solid propellant compositions employing known binders, however, are not completely satisfactory and present problems which have not yet been solved. Many of the known binders require lengthy and complex processing to produce required characteristics for satisfactory use in solid propellants. The introduction of extraneous and undesirable impurities is often necessary in preparing the propellant changes. For example, curing agents and plas ticizers are often required. The curing agents and plasticizers frequently interfere with uniform combustion, give off toxic gases, and leave residues in the combustion chamber. Furthermore, the use of plasticizers to prevent freezing of the solid propellant mass at low temperature, e.g., in the range of from 20 to F. has not been fully satisfactory. Freezing is to be prevented because it causes brittleness which often results in fissures in the charges which increases the burning surface and consequently adversely affects the rate of gas evolution. An undesirable consequence of such fissures is a constricting effect on the exhaust nozzle, thereby causing an inadequate passageway therethrough and often resulting in high internal chamber pressures and sometimes damaging explosions.
It is, therefore, an object of the invention to provide an improved solid propellant composition of superior physical properties. It is a further object of the invention to provide a solid propellant having a high specific impulse and particularly adapted for use in rocket motors. How these and other objects are attained will become apparent as the ensuing description proceeds.
The invention is predicated on the discovery that a mixture of a diphenolic diglycidyl ether and an aliphatic diglycidyl ether containing a curing agent provides both a fuel and binder when admixed with an oxidizing material, with or without a modifying fuel additive such as a pulverized metal, and produces a solid propellant of superior strength, flexibility, and burning properties. The term curing agent as used herein refers to any of the known curing agents, hardeners, or cross-linking agents for epoxy resins and includes the amines, polyamines, dibasic acids and anhydrides thereof, and Lewis acids and ether and amine complexes thereof.
The composition of the invention may be cast into any desired geometric shape or configuration without the necessity of high pressure molding or extrusion. It offers the further advantage of resiliency and excellent dimensional stability; a tensile strength of not less than 175 pounds per square inch, is capable of significant elongation, ranging from 5 percent to greater than percent, and possesses excellent case-bonding properties. Combustion of the solid propellant of the invention in a combustion chamber proceeds at a substantially uniform rate of from about 0.3 to 0.6 inch per second at 1000 p.s.i. chamber pressure without detonation, appreciable smoke, or residue.
The invention, accordingly, is a novel solid propellant employing (A) a fuel-binder having the composite properties of flexibility, bond strength, and uniform combustibility in admixture with (B) a known inorganic oxidizing agent. It consists of the oxidizing agent in admixture with a mixture of two diglycidyl ethers having the Formulae 1 and 2 set out below:
wherein R is an isoalkylidene residue of l to 4 carbon atoms, wherein n is from to 4 and the resulting epoxide equivalent weight is from about 156 to about 773. (Epoxide equivalent weight means the number of grams of the diglycidyl ether necessary to yield one oxirane group.) This ingredient may be referred to, generally, as an aromatic diglycidyl ether.
CHg-CH-CHg-EO-R'3-O-CH1*CHCH:
wherein R is an alkylene residue of from 2 to 4 carbon atoms, wherein m is from zero to about 90, and the resulting epoxide equivalent weight is between 65 and about 3000. This ingredient is referred to hereinafter, at times,
as an aliphatic diglycidyl ether.
Although the term, diglycidyl ether, is employed herein, it is to be understood that the ethers concerned usually contain somewhat less than an average of two glycidyl groups per molecule. It is to be further understood that the diglycidyl ethers include the polyethers containing repeating ether groups represented by the bracketed portions of Formulae 1 and 2 above.
The preferred aromatic diglycidyl ethers to employ are those prepared by reacting epichlorohydrin with a binuclear diphenol, i.e., a bisphenol, especially an isoalkylidene diphenol of which 4,4'-isopropylidene diphenol known as bisphenol A is illustrative. The preferred aliphatic diglycidyl ethers to employ are those prepared by reacting epichlorohydrin with a polyoxyalkylene glycol, sometimes called merely a polyglycol, of which polyoxypropylene glycol having a molecular weight of between 300 and 500 and more often of about 400 is illustrative. They include such compounds as the homopolymers of a1- kylene oxides having from 2 to 4 carbon atoms terminated at either end by oxirane groups and polyhydroxy initiated polyglycols terminated with oxirane groups.
The weight ratio of the aromatic diglycidyl ether to the aliphatic diglycidyl ether to employ is between 0.02 and 1.5 and the preferred ratio to employ is between 0.1 and 1.0. The total amount of the diglycidyl ethers, including the curing agent therefor, to employ is between and 35 percent of the propellant composition, the balance being oxidizer and a supplemental or modifying metallic fuel, when employed. It is preferred that a supplemental or modifying metallic fuel, e.g., pulverized aluminum metal, in an amount up to about 30 weight percent, and preferably between about 10 and 25 weight of the propellant composition, be employed.
One embodiment of the invention contemplates employing, in addition to the diglycidyl ethers represented above, a triglycidyl ether of glycerol or the triglycidyl ether of a glycerol-propylene oxide adduct in amount up to about one-third of the total glycidyl ether components. Similarly, as in the diglycidyl ethers, the material designated triglycidyl ether usually contains slightly less than an average of three glycidyl groups per molecule.
To prepare the composition of the invention, the diglycidyl ethers, as represented by the above formulae, within the weight ratio stated, and containing in intimate admixture therewith a sufiicient amount of a suitable curing agent to set the resin, are admixed in any suitable type mixer, e.g., one provided with baflles and a rotating shaft equipped with impeller blades.
The admixture so made is promptly cast in suitable shaped charges for subsequent loading into a combustion chamber but is preferably cast directly into the combustion chamber of a rocket motor and there permitted to set to the solid charge. The charge so made, when ignited by known means, e.g., a fulminate detonator or a primer charge of black powder which is set off by a timed electric spark, burns evenly. A steady flow of evolving gases proceeds from the burning propellant charge and escapes at high pressure through the nozzle.
The time required to cure or set the resin fuel-binder of the propellant composition made according to the in- I of the invention but are not to be construed as defining the limits thereof.
Example 1 A blend was prepared which consisted of the following parts by weight.
Ingredient: Weight percent Diglycidyl ether of bisphenol A 1 having an epoxide equivalent weight of from 475 to 575 6.57 Diglycidyl ether of polypropylene glycol having an epoxide equivalent weight of about 330 and a viscosity of 42 cps 13.13 Aluminum powder, through 325 mesh (U.S.
sieve series) 14.78 NH ClO through 250 mesh 19.21 NH CIO unground 44.83 Monoethanolamine 1.258 Diethylenetriamine 0.222
1 Bisphenol A is 4,4-isopropylidenediphenol; it has a Durrans softening point of 74 to C.
The above components were mixed for 30 minutes at F. The resulting composition was a fiowable slurry of relatively high viscosity. It was drawn from the mixer and compressed to a uniform thickness of 0.25 inch and placed in an oven and cured therein for 2 hours at 227 F. The cured sheet of propellant thus made was removed from the oven and cut into strips 6 inches long and 0.75 inch wide. These strips were tested and found to have a tensile strength of 176.8 pounds per square inch, an elongation of 55 percent, and excellent adhesion to glass, metal, and ceramic surfaces. The example was repeated except that the fiowable slurry was cast into specimens for use in determining the burning rate.
The cast composition was tested according to standard testing procedures to ascertain its burning rate which was found to be between 0.28 and 0.34 inch per second at 1000 psi. gauge pressure.
The above example was repeated except no aluminum powder was employed. The composition comprised 78 percent NH ClO oxidizer and 22 percent of the mixture of diglycidyl ethers employed above containing the amine curing agents employed therein. The burning rate was found to be between 0.48 and 0.62 inch per second at 1000 p.s.i. gauge pressure.
Example 2 Another composition illustrative of that of the invention was prepared employing the following components.
Ingredient: Weight percent Diglycidyl ether of bisphenol A having an epoxide equivalent weight of 173 9.735 Diglycidyl ether of polyoxypropylene glycol having an epoxide equivalent weight of 330 9.735 Monoethanolamine 2.517 Diethylenetriamine 0.133 Aluminum powder, 325 mesh .f 14.60 NH ClO 250 mesh 18.98 NH ClO unground 44.30
The procedure employed was substantially the same as that of Example 1. After the 2-hour cure, the sheet of propellant composition was removed from the oven and tested and found to have a tensile strength of 633.2 pounds per square inch, an elongation of 15 percent, and excellent adhesion to metals and ceramics.
Example 3 Another composition illustrative of the invention was prepared by admixing the following ingredients.
Ingredient: Weight percent Diglycidyl ether of bisphenol A having an equivalent weight of 173 7.09 Diglycidyl ether of polyoxypropylene glycol having an epoxide equivalent weight of Monoethanolamine 2.166 Diethylenetriamine 0.114 Aluminum powder, 325 mesh 15.00 NH CLO 250 mesh 19.50 NH CIO unground 45.50
The mixing and curing procedure employed in the Examples 2 and 3 was followed. The sheet of propellant so made was tested and found to have a tensile strength of 500 pounds per square inch, an elongation of 14.5 percent, and excellent adhesion to solid surfaces.
Example 4 To illustrate further the composition of the invention, the following ingredients were admixed.
Ingredient: Weight percent Diglycidyl ether of bisphenol A having an epoxide equivalent weight of 173 2.38 Diglycidyl ether of polyoxypropylene glycol having an epoxide equivalent weight of 330 0.44 Curing agent composed of 85 weight percent aniline and 15 weight percent meta-phylene diamine 3.1 Aluminum powder, 325 mesh 20.0
Oxidizer composed of 70 weight percent NH CIO (unground) and 30 weight percent NH ClO ground to 250 mesh 65.0
The above ingredients were admixed in accordance with the procedure employed in the above examples and cast into sheets as above described. The curing temperalow aluminum dish and there cured in the shape of a flat cake. The curing period employed was extended to 40 hours at 85 C. The product so made was tough and flexible.
Example 6 The following composition was prepared to show the effect of incorporating a polyglycidyl ether containing more than an average of two glycidyl groups per molecule with the composition of the invention.
Ingredient: Weight percent Diglycidyl ether of bisphenol A having an epoxide equivalent weight of 475-575--" 3.53 Diglycidyl ether of bisphenol A having an epoxide equivalent weight of 187-193---- 1.76 Diglycidyl ether of polyoxypropylene glycol having an epoxide equivalent weight of 330 7.92 Triglycidyl ether of a glycerolpropylene oxide adduct having an epoxide equivalent weight of 300-400 4.40 Curing agent consisting of 85% aniline and 15% by weight metaphenylene diamine 2.4 Aluminum powder (passing through a 325 mesh screen) 20.0 Oxidizer consisting of 70% of unground NH ClO and 30% by weight of NH C1O pulverized by grinding in a Mikro-Pulverizer at 9800 r.p.m 60.0
The mixture was mixed for 0.5 hour at 30 C. and then cast into sheets and cured at 85 C. for hours. The sheets were then tested and found to have a tensile strength of 389 psi. and an elongation of 5%.
The castings made in the example above had a theoretical specific impulse of greater than 240 seconds as calculated by standard methods based on thermal values.
Having described our invention, what is claimed and desired to be protected by Letters Patent is:
1. The solid propellant composition which comprises an intimate mixture of (A) between 10 and 35 percent by weight of a fuel-binder consisting essentially of a thermosetting glycidyl ether mixture of (1) an aromatic diglycture employed was the same but the period of cure was 45 idyl ether having the formula extended to 16 hours. The product thus made was a particularly flexible and strong propellant composition having good physical properties.
Example 5 A further composition illustrative of the invention was prepared by admixing the following ingredients.
Ingredient: Weight percent Diglycidyl ether of bisphenol A having an epoxide equivalent weight of 173 6.16
The above ingredients were admixed in accordance with the procedure employed in the above examples except that the liquid composition was poured into a shalwherein R is an isoalkylidene residue containing 1 to 4 carbon atoms, n has a value of 0 to 4, and the epoxide equivalent weight is from about 156 to about 773, and (2) an aliphatic diglycidyl ether having the formula wherein R is an alkylene residue containing from 2 to 4 carbon atoms, m has a value of from 0 to about 90, and the epoxide equivalent weight is between about 65 and about 3000, in a weight ratio of (l) to (2) of between 0.02 and 1.5, and a curing agent for said diglycidyl ethers consisting of a mixture of a major portion of (a) a monofunctional amine and a minor portion of (b) difunctional and polyfunctional amines, in an amount suflicient both to extend the chain growth and to effect cross-linking of the diglycidyl ethers, and (B) from to 65 percent by weight of an inorganic oxidizing agent.
2. The composition of claim 1 wherein the weight ratio of (1) the aromatic diglycidyl ether to (2) the aliphatic diglycidyl ether is between 0.1 and 1.0.
3. The composition of claim 1 wherein said monofunctional amine is an alkanol amine and said difunctional amine is a dialkylenepolyamine.
4. The composition of claim 1 wherein said monofunctional amine in aniline and a said polyfunctional amine is metaphenylene diamine.
5. The composition of claim 1 which contains up to 30 percent by weight, based on the weight of said composition, of a readily oxidizable particulate metal selected from the class consisting of aluminum, magnesium, boron, beryllium, and lithium.
6. The composition of claim 3 wherein the percent by weight of (A) said fuel-binder is between 15 and 30, of (B) said inorganic oxidizing agent is between 45 and 60, and said readily oxidizable particulate metal is between 10 and 30 percent.
7. The composition of claim 6 wherein (A) is a di- References Cited in the file of this patent UNITED STATES PATENTS 3,002,830 Barr Oct. 3, 1961 3,022,149 Cramer Feb. 20, 1962 3,028,271 Dixon et a1 Apr. 3, 1962
Claims (1)
1. THE SOLID PROPELLANT COMPOSITION WHICH COMPRISES AN INTIMATE MIXTURE OF (A) BETWEEN 10 AND 35 PERCENT BY WEIGHT OF A FUEL-BINDER CONSISTING ESSENTIALLY OF A THERMOSETTING GLYCIDLY ETHER MIXTURE OF (1) AN AROMATIC DIGLYCIDYL ETHER HAVING THE FORMULA
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US151165A US3130096A (en) | 1961-11-09 | 1961-11-09 | Solid combustible composition containing epoxy resin |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US151165A US3130096A (en) | 1961-11-09 | 1961-11-09 | Solid combustible composition containing epoxy resin |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3130096A true US3130096A (en) | 1964-04-21 |
Family
ID=22537588
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US151165A Expired - Lifetime US3130096A (en) | 1961-11-09 | 1961-11-09 | Solid combustible composition containing epoxy resin |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3130096A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3184352A (en) * | 1964-01-10 | 1965-05-18 | Walter S Baker | Solvent process for preparing epoxybase propellants |
| US3203842A (en) * | 1963-09-09 | 1965-08-31 | Atlantic Res Corp | Linear polyester resin gas-generating compositions containing ammonium nitrate and perchlorate |
| US3296160A (en) * | 1961-11-08 | 1967-01-03 | O Brien Corp | Epoxy resins based on diphenolic acid derivatives |
| US3309249A (en) * | 1965-03-15 | 1967-03-14 | Paul L Allen | Thermite-resin binder solid fuel composition |
| US3467558A (en) * | 1967-09-01 | 1969-09-16 | Dow Chemical Co | Pyrotechnic disseminating composition containing an agent to be disseminated |
| US3507721A (en) * | 1967-08-01 | 1970-04-21 | United Aircraft Corp | Crosslinked carboxy-terminated polyether propellant compositions containing nitrato esters |
| US3720553A (en) * | 1969-02-07 | 1973-03-13 | Standard Oil Co | Ammonium nitrate propellant compositions |
| US4141768A (en) * | 1970-05-18 | 1979-02-27 | Rockwell International Corporation | Fuel rich solid propellant of boron and a fluoro-nitro-epoxide polymer binder |
| US5401341A (en) * | 1993-04-14 | 1995-03-28 | The Lubrizol Corporation | Cross-linked emulsion explosive composition |
| US11384196B2 (en) | 2018-04-12 | 2022-07-12 | Nano And Advanced Materials Institute Limited | Fire retardant compositions |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3002830A (en) * | 1959-01-02 | 1961-10-03 | Olin Mathieson | Method of manufacturing solid propellants having a polymeric fuel-binder using a plurality of crosslinking agents |
| US3022149A (en) * | 1957-11-29 | 1962-02-20 | North American Aviation Inc | Process for dispersing solids in polymeric propellent fuel binders |
| US3028271A (en) * | 1956-08-24 | 1962-04-03 | North American Aviation Inc | Solid composite rocket propellants containing amide epoxide polymers |
-
1961
- 1961-11-09 US US151165A patent/US3130096A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3028271A (en) * | 1956-08-24 | 1962-04-03 | North American Aviation Inc | Solid composite rocket propellants containing amide epoxide polymers |
| US3022149A (en) * | 1957-11-29 | 1962-02-20 | North American Aviation Inc | Process for dispersing solids in polymeric propellent fuel binders |
| US3002830A (en) * | 1959-01-02 | 1961-10-03 | Olin Mathieson | Method of manufacturing solid propellants having a polymeric fuel-binder using a plurality of crosslinking agents |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3296160A (en) * | 1961-11-08 | 1967-01-03 | O Brien Corp | Epoxy resins based on diphenolic acid derivatives |
| US3203842A (en) * | 1963-09-09 | 1965-08-31 | Atlantic Res Corp | Linear polyester resin gas-generating compositions containing ammonium nitrate and perchlorate |
| US3184352A (en) * | 1964-01-10 | 1965-05-18 | Walter S Baker | Solvent process for preparing epoxybase propellants |
| US3309249A (en) * | 1965-03-15 | 1967-03-14 | Paul L Allen | Thermite-resin binder solid fuel composition |
| US3507721A (en) * | 1967-08-01 | 1970-04-21 | United Aircraft Corp | Crosslinked carboxy-terminated polyether propellant compositions containing nitrato esters |
| US3467558A (en) * | 1967-09-01 | 1969-09-16 | Dow Chemical Co | Pyrotechnic disseminating composition containing an agent to be disseminated |
| US3720553A (en) * | 1969-02-07 | 1973-03-13 | Standard Oil Co | Ammonium nitrate propellant compositions |
| US4141768A (en) * | 1970-05-18 | 1979-02-27 | Rockwell International Corporation | Fuel rich solid propellant of boron and a fluoro-nitro-epoxide polymer binder |
| US5401341A (en) * | 1993-04-14 | 1995-03-28 | The Lubrizol Corporation | Cross-linked emulsion explosive composition |
| US11384196B2 (en) | 2018-04-12 | 2022-07-12 | Nano And Advanced Materials Institute Limited | Fire retardant compositions |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3924405A (en) | Solid propellants with stability enhanced additives of particulate refractory carbides or oxides | |
| US5074938A (en) | Low pressure exponent propellants containing boron | |
| US3130096A (en) | Solid combustible composition containing epoxy resin | |
| US3309249A (en) | Thermite-resin binder solid fuel composition | |
| US5837931A (en) | Liquid oxidizer composition perparation | |
| US3734789A (en) | Gas generating solid propellant containing 5-aminotetrazole nitrate | |
| US4332631A (en) | Castable silicone based magnesium fueled propellant | |
| US3006743A (en) | Solid composite propellants containing decaborane | |
| CN110818518B (en) | High-power heat-resistant explosive | |
| US3830672A (en) | Solid porous, coated oxidizer, method of preparation and novel propellant compositions | |
| US3197348A (en) | Thixotropic propellant | |
| US4084992A (en) | Solid propellant with alumina burning rate catalyst | |
| US3418184A (en) | Smoke producing propellant | |
| CN109467495B (en) | Solid propellant with polyether-butyl hydroxyl block polymer as adhesive | |
| US3305413A (en) | Solid propellant formulation based on hydroxylamine perchlorates | |
| US3762972A (en) | Reaction product of phosphine oxide with carboxylic acids | |
| US3734786A (en) | Solid propellants fabricated from a mixed polymer system | |
| US3170283A (en) | Compacted hydrazine bisborane fuel and method of operating gas generators | |
| US4392895A (en) | Ramjet fuel | |
| US3755019A (en) | Solid propellant compositions containing plasticized nitrocellulose and aluminum hydride | |
| US3844856A (en) | Nitrocellulose propellant composition containing aluminum hydride | |
| US3738878A (en) | High burning rate solid propellant having a silicon-carboranyl copolymer fuel binder | |
| US3028271A (en) | Solid composite rocket propellants containing amide epoxide polymers | |
| US3793097A (en) | Method of increasing propellant burning rate by the use of high conductive wires | |
| US3767489A (en) | Nitrasol propellant |