[go: up one dir, main page]

US3109044A - Heat treating apparatus - Google Patents

Heat treating apparatus Download PDF

Info

Publication number
US3109044A
US3109044A US825470A US82547059A US3109044A US 3109044 A US3109044 A US 3109044A US 825470 A US825470 A US 825470A US 82547059 A US82547059 A US 82547059A US 3109044 A US3109044 A US 3109044A
Authority
US
United States
Prior art keywords
rolls
sheet
furnace
quench
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US825470A
Inventor
Flowers Ab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crucible Steel Company of America
Original Assignee
Crucible Steel Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crucible Steel Company of America filed Critical Crucible Steel Company of America
Priority to US825470A priority Critical patent/US3109044A/en
Priority to US35867A priority patent/US3201287A/en
Application granted granted Critical
Publication of US3109044A publication Critical patent/US3109044A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Definitions

  • This invention relates to equipment for heat treating high strength materials such as titanium or zirconium and, more particularly, to a heat treat installation in which the workpiece or sheet is held under tension during a quenching operation.
  • quenching is often done by merely passing the sheet under a water spray by means of a roller conveyor.
  • the temperature gradient set up in a quenching operation of this type results in relatively high thermal and transformation stresses which cause the sheet to become warped or twisted so that it becomes necessary to again flatten the product by stretching or tempering.
  • these straightening procedures are satisfactory for steel sheets, they are entirely inapplicable to sheets of high strength materials such as titanium and zirconium which must be processed to thicknesses of 0.010 to 0.187 inch at a desired flatness of 1% or less.
  • the strength of these materials must be improved by aging rather than by tempering and, since the yield strength of a titanium alloy may be in the range of 100,000 to 250,000 p.s.i., no practical stretching apparatus is available for straightening warped sheets of this material.
  • this method possesses the distinct disadvantage of extracting heat preferentially from one surface of the sheet.
  • the consequent difierence in the rate of cooling of the two sides of the sheet accentuates warpage and sheets produced by this method commonly cannot be held the narrow warpage limits allowable for most present day uses of sheets of such high strength materials.
  • the beta structure In order to obtain the best high strength qualities in the finished product, it is desirable to obtain, insofar as possible, the beta structure. This is possible with a very rapid quench, but upon slow cooling, a larger proportion of the alpha crystalline form is obtained thereby decreasing the ability of the -metal to strengthen upon subsequent elevated temperature aging. Moreover, a slow cooling of titanium from elevated temperatures results in a coarse crystalline structure with little ability to harden, whereas a rapid cooling or quenching of the metal gives a finer structure with good ability to harden.
  • an object of the invention resides in the provision of a method and apparatus for cooling sheets :of high strength material by passing the same through a pair of cooled rolls whereby the heat in the sheet material is transferred to the rolls by conduction.
  • a still further object of the invention is to provide a heat treating arrangement incorporating means for producing a uniform, continuous and substantially instantaneous quench.
  • sheets of titanium or other high strength ma terial are first passed through a pair of entry rolls. Thereafter, the sheet is heated to a temperature in the range of 1200 'F. to 1700" F. in a heat treating furnace. The sheet is then passed through a pair of furnace flattening rolls and a roll pass defined between a pair of hollow quench rolls having their axes mutually parallel and substantially vertically aligned with respect to each other. Each of these hollow quench rolls is provided with a pair of back-up drive rolls and with connections for introducing a cooling fluid to the interior of the quench roll.
  • the cooling fluid maintains the temperature of the hollow quench rolls at or about room temperature such that, when the metal sheet or strip passes through the roll pass defined therebetween, the heat rapidly flows from both surfaces of the strip to the quench rolls and thence to the cooling fluid by conduction. Thereafter, the sheet may pass through a quench spray and a pair of exit tension rolls to complete the operation. Tension may be maintained on the strip during the quenching operation by the entry and exit rolls, the flattening rolls and the hollow cooling or quench rolls to maintain the sheet fiat during the quenching operation and prevent any buckling or Warping. Skid tables may be provided for accommodatingthe sheet prior to and after its travel through the heat treating apparatus. 7
  • FIGURE 1 is a side elevational view, partly in cross section, of a portion of the heating and quenching apparatus of the present invention
  • FIG. 2 is a side elevational view of a portion of the exit tension rolls and exit skid table
  • FIG. 3 is an enlarged cross sectional side elevation of the exit end of the heating furnace and a portion of the quenching apparatus
  • FIG. 4 is a top plan view of the apparatus illustrated in FIG. 1;
  • FIG. 5 is a top plan view of the apparatus illustrated in FIG. 2;
  • FIG. 6 is a cross sectional view of the heating furnace I taken along line 66 of FIG. 1, and
  • FIG. .7 is a cross sectional elevation of a portion of the quench rolls and associated cooling means.
  • a furnace designated generally by the numeral 11 which may be of any suitable type, such as of the electrical resistance or induction type, or of the metal bath heating type but is preferably of the radiant gas-fired type, the latter being preferred because of its rapid and uniform heating qualities.
  • the furnace is of the gasafired type and is provided with a plurality of primary heating elements in the form of burners 12.
  • the furnace is preferably of a circular cross section and may be supported on legs 13 which are secured to a base 14 which, as illustrated in FIG. 6, may suitably be formed of steel I-beam-s.
  • Burners 12 are spaced at approximately 90 angles from each other and are fixed within the furnace walls at predetermined angles with respect to a strip or sheet workpiece 16 to give maximum and uniform heating of the strip as it passes through the furnace.
  • the furnace may have interior walls 17 of any suitable insulating material such as firebrick or the like and may have an exterior housing or wall 18 formed of sheet steel. Intermediate walls 19 of any suitable insulating material, such as a plasticizable, hardening insulator, may also be provided.
  • the furnace may conveniently be constructed to any desired length to accommodate the strip therein for the required heating time.
  • the heating time may, alternatively, in some instances, be varied as a function of the rate of travel of the strip through the furnace.
  • the temperature of the strip may be determined continuously by means of a thermocouple 21 inserted through the furnace walls and spaced a short distance from the strip 16.
  • the furnace 11 is provided with adjustable entry doors 22 which are norm-ally adjusted to provide a slot-like entrance into the furnace just large enough to allow entry of the strip. This arrangement conserves heat in the furnace and also reduces the entrance of air into the furnace. If desired or necessary in the processing of any particular high strength material, subject to substantial oxidation at the working furnace temperatures, suitable sealing means may be provided at the entry door and also at the exit end of the furnace to substantially eliminate the entry of air into the furnace. In such instances, it may also be desirable to provide an inert gaseous atmosphere such as argon, nitrogen or the like within the furnace. Such inert gases are normally maintained at a pressure slightly higher than atmospheric in order to further insure the exclusion of air from the furnace.
  • inert gaseous atmosphere such as argon, nitrogen or the like
  • a pair of entry rolls 23 and 24 Positioned adjacent the furnace and in longitudinal alignment therewith are a pair of entry rolls 23 and 24 (FIGS. 1 and 4). These may be mounted in a frame 26 and the upper roll 23 may be vertically movable with respect to the lower roll 24 by means of a pair of pneu matic cylinders 27 provided with piston rods 28 having the extremities thereof secured by suitable means to upper bearing blocks 29 in which the ends of shaft 31 of the roll 23 is journaled.
  • the lower entry roll 24 having a shaft 32, journaled in lower bearing blocks 30, is driven through the shaft 32, by means of a suitable prime mover (not shown), through a first sprocket wheel 33 (FIG. 4) attached to the shaft 32, sprocket chain 34 passing over the sprocket wheel 33 and a second sprocket wheel 36 mounted on a drive shaft 37 driven by the prime mover.
  • a Prony brake designated generally by the numeral 33 and comprising a brake wheel 39 of any suitable material such as wood, having a metallic brake band 41 passing about the periphery thereof, and brake arms 42 and 43 secured to and bearing against a scale 44.
  • an entry skid table 46 is provided adjacent the entry rolls for supporting the strip pnior to its entry between the entry rolls.
  • a pair of furnace flattening rolls designated generally by the numerals '43 and 49. These rolls, having exterior metallic sheaths 51 and insulating bodies 52 are provided with hollow shafts 53 through which water or other'cooling fluid may be circulated during theoperation of the furnace. mounted, as illustrated, on a stand 54 and the upper roll 48 may be mounted on a yoke 56 supported upon the stand 54 and adapted for vertical adjustment with respect to the lower roll 45 whereby pressure may be exerted upon the strip 16 passing therebetween. Movement of the upper roll 48 and associated yoke 56 may be effected, for example, by means of a pair of pneumatic cylinders 57. As shown in FIG.
  • the ends of the shafts 53 of the rolls 48 and 49 may be journaled, respectively, in bearings 58 and 59' externally of the furnace.
  • the shafts 53 pass through metallic housings 61 secured to and projecting from either side of the furnace 11.
  • Each of the furnace flattening rolls 48 and 4% is driven by a prime mover (not shown) through a drive shaft 62 (FIG. 4) and a sprocket chain 63 extending around a first sprocket wheel 64cm the drive shaft 62 and a second sprocket wheel 66 on each of the respective shafts 53 of the flattening rolls.
  • the exit end of the furnace is provided with an extension designated generally by the numeral 67 and comprising a metal housing 68 secured as by a first flange 69.
  • the extension is provided with an elongated nozzle-like extremity 72 defining a slot-like aperture 73 for exit of the strip.
  • the upper and lower external surfaces of the extension are of an arcuate or beveled shape as shown at 74 in order that the ex-' tension may extend radially inwardly of and between a pair of quench rolls to be hereinafter described.
  • the furnace extension 67 is provided with walls 75 of a suitable insulating material defining an elongated cavity or bore 7 6 of generally rectangular cross section.
  • a hollow sleeve 77 for passage therethrough of the strip.
  • a plurality of secondary heating elements 78 for example, of the electrical resistance type, for maintaining, primarily by radiant heat transfer, but also by convective and, to a lesser extent, by gas conductive heat transfer, the elevated temperature of the strip up to the point of exit from the furnace.
  • the quenching apparatus as illustrated in FIGS. 1, 3, 4 and 7, comprises a frame denoted generally by the numeral 79 mounted upon a base 81. If desired the base 81 may be slidably mounted'upon a sub-base (not shown) for adjustment of the frame 79 and associated mechanisms longitudinally with respect to the exit end of the furnace.
  • the lower flattening roll 49 may be.
  • the frame 79 comprises opposed pairs of upright members 82 (FIG. 1), to each pair of which is secured an upper pair of slideways 83 and two lower pairs of slideways 84. Slidably mounted in the latter are a pair of support members 86 upon which are mounted a pair of lower bearing blocks 87.
  • the support members 86 are provided with keys (not shown) for engaging grooves (not shown) in the slideways.
  • the lower bearing blocks have journaled therein the extremities of shafts 88 of a pair of lower backup drive rolls S9 adjustable vertically, in the lower slideways 84, by suitable means, such as by a pair of worm gear jacks 91 secured, at the upper extremities thereof, to the bearing block support members 86.
  • a hollow, cylindrical quench roll 92 of relatively large diameter, e.g., 24 inches, and constructed of thin-walled, high-strength sheet material, such as a titanium alloy, so as to be resiliently deformable to a generally elliptical shape under an applied compressive force.
  • a titanium alloy sheet having a thickness of 0.040 inch has been found suitable for this purpose.
  • an upper quench roll 93 Freely and rotatably supported upon the lower quench roll 92, similar thereto in construction, and defining therewith a roll pass for passage therebetween of the strip 16, is an upper quench roll 93.
  • Slidably mounted in the upper slideways 83 are the extremities of a pair of cross members 94 to each of which is secured a pair of upper bearing blocks 96 having journaled therein the extremities of shafts 97 of a pair of upper backup or drive rolls 98.
  • the latter are vertically extendable and retractable, in the upper slideways 83, by suitable means, as by a pair of pneumatic cylinders 99 supplied with air through line 101 and having associated piston rods 102 secured, at the lower extremities thereof, to the cross members 94.
  • a compressive force may be applied to the quench rolls 92 and 93 whereby the same may be firmly pressed against the strip 16 as it passes therebetween, thereby assuring a good, heat-conductive engagement between the strip and the quench rolls.
  • the quench rolls may be compressed to such an extent that they assume generally elliptical shapes, thereby increasing the heat transfer area of contact with the strip 16 and thereby assuring adequate and rapid cooling or quenching of the heated strip.
  • positioned backup rolls 89 and 98 are mutually vertically aligned and are preferably positioned such that the plane extending through the longitudinal centerlines of the backup rolls and the undeformed quench rolls lies at an angle of about 45 to the horizontal line of travel of the strip 16.
  • Both pairs of backup rolls are preferably power-driven by suitable means.
  • the shafts of the backup rolls may be provided, adjacent the extremities thereof, with a pair of first sprocket wheels, as at 103 and 104 (FIG. 4) the shafts being power-connected through first sprocket chain 106.
  • each of the pairs of shafts 88 and 97 is driven through a second sprocket wheel 107 and a second chain 108 by a third sprocket 109 on a transmission shaft 111 which may, with advantage, be driven through a fourth sprocket 112 and a fourth chain 113 by a drive shaft 114, powered by a prime mover (not shown) through a fifth sprocket 116 and a fifth chain 117.
  • Cooling of the quench rolls is obtained by continuously spraying a cooling fluid, such as water, onto the interior surface of the quench rolls.
  • a cooling fluid such as water
  • This may be achieved, for example, by providing cooling fluid supply lines as illustrated at 118 (FIG. 4) connected to upper and lower hollow header pipes 119 and 121 respectively (FIG. 7) extending along the longitudinal axis of each quench roll and having a number of similar hollow feeder pipes 122 extending radially therefrom.
  • the feeder pipes 122 are connected, at their outer extremities to perforated spray pipes 123 adjacent and slightly spaced from the interior walls of the quench rolls and extending substantially the length thereof. As shown in FIG. 7, it is preferred,
  • each of the quench rolls be located immediately adjacent the area of contact with the strip 16 and, further, that the sprays of coolant from these perforated pipes 123 be directed at an angle to and substantially in the direction of the line of travel of the strip.
  • the resultant, rapidly moving film of coolant greatly enhances the heat transfer capacity at the contact area of the quench rolls.
  • the coolant-supply piping within the quench rolls is of such dimensions and is so arranged as to avoid contact with the interiors of the quench rolls at the maximum extent of deformation.
  • Cooling fluid introduced into the interiors of the quench rolls, flows, by gravity, down the walls of the quench rolls and collects in the lowermost portions thereof from which it flows from both open ends of each of the quench rolls.
  • the cooling fluid may be removed by any suitable means such as, for example, troughs 124, located at both ends of each quench roll and provided with drain lines 126 (FIG. 7).
  • troughs 124 located at both ends of each quench roll and provided with drain lines 126 (FIG. 7).
  • the lower quench roll of slightly less length than the upper quench roll (FIG. 7
  • the maximum width of strip is, moreover, preferably slight 1y less than the length of the perforated spray pipes 123 in order to assure uniform cooling of the strip completely to the edges thereof.
  • the header pipe 121 supplying the lower quench roll 92 may be secured against movement by suitable means, as by a first yoke 127 (FIG. 1) passing thereabout and attached to a cross piece 128 of the frame 79.
  • the header pipe 119 supplying the upper quench roll the same may be secured in position by suitable means, as by a second yoke 129 mounted upon a depending support 131 secured to the frame 79.
  • Lateral movement of the quench rolls 92 and 93 may be prevented by any suitable means, for example, by the provision of grooved rollers 132 (FIG. 7) mounted on the frame 7 9 and bearing against the edges of the quench rolls at the ends thereof.
  • additional cooling of the strip may be achieved by spraying a cooling fluid, such as water, upon the upper and under surfaces of the strip after it leaves the quench rolls. This may be accomplished by introducing the cooling fiuid through suitable spray nozzles such as 133 and 134 illustrated in FIG. 1.
  • a cooling fluid such as water
  • a pair of exit tensioning rolls 136 and 137 (FIGS. 2 and 5).
  • the exit rolls 136 and 137 are provided with shafts 138 and 139, respectively, having the extremities thereof journaled, respectively, in pairs of upper bearing members 141 and in pairs of lower bearing members 142.
  • the upper bearing members 141 are preferably mounted, for vertical movement, in guideways 143 in a framework 144 which is mounted on a base 146. Vertical movement of the upper exit tensioning roll assembly is obtained by means of a pair of pneumatic cylinders 147 having piston rods 148 secured at their lower extremities and through suitable means to the upper bearing members.
  • the lower bearings members 142 are mounted upon the framework 144 and, if desired, may also be provided for vertical adjustment by any suitable means. By this means, and by cooperative adjustment of the Prony brake 38, varying degrees of tension may be applied to the strip as desired.
  • the exit rolls 136 and 137 are power driven, through their respective shafts 138 and 139, by a suitable prime mover (not shown). As illustrated in FIGS. 2 and 5, there is provided an exit skid table 149 for support of the strip as it leaves the exit tension rolls.
  • the furnace 11 is preheated to the operating temperature.
  • Leader strips (not shown) are welded to the ends of a length of sheet or strip 16 to be heat treated and quenched.
  • the entry rolls 23 and 24, the furnace flattening rolls 48 and 49, the quench rolls 92 and SB, and the exit tensioning rolls 136 and 137 are separated to permit the leader strip to be passed between the roll passes defined by the respective pairs of rolls. Thereafter, the various rolls are adjusted to make contact with the strip or leader, each pair of rolls being adjusted to give the desired pressure upon the strip. Thereafter,
  • the prime movers operating the entry rolls, furnace flattening rolls, quench backup drive rolls and exit rolls are actuated to start the strip moving through the furnace where it is heated, for example in the case of certain titanium alloys, to a temperature between 1200 and 1750" F. and maintained at such temperature for a period sufficient to obtain the desired effects upon the strip.
  • the apparatus illustrated is capable, in several ways, of removing from the strip any substantial variation from uniform flatness. For example, in the cases of very slight variation, the portion of the strip within the furnace and between the entry doors and the furnace flattening rolls may be allowed to form, under its own weight, a caternary loop as illustrated by the dot-dash lines in FIG. 1. The tension placed upon the strip by the weight of this loop tends to straighten the strip.
  • Such tensile force applied longitudinally of the strip as it passes through the furnace and quenching apparatus tends to remove or prevent warping of the strip.
  • the elevated temperature of the strip is maintained in the furnace extension 67 by means of the heating elements 78.
  • the nozzle-like configuration of the furnace extension and its position between the quench rolls 92 and 93 assures the maintenance of the elevated temperature of the strip substantially until the strip contacts the quench rolls whereupon the strip is substantially instantaneously quenched to room temperature thereby assuring optimum metallurgical qualities of the strip.
  • further cooling or liquid treatment may be effected by spraying a cooling or a liquid treating medium upon the strip through the nozzles 133 and 134.
  • any suitable disposition may be made of the strip as by coiling, cutting into predetermined lengths, subjection to further mechanical operations or chemical processes, etc.
  • a sheet quenching apparatus comprising a base, a frame mounted upon said base, a plurality of lower backup rolls mounted upon said frame and vertically slidably adjustable with respect thereto, power means to drive said lower backup rolls, a lower quench roll consisting of a cylindrical hollow sleeve constructed of resiliently deformable, heat-conductive material freely and rotatably supported upon said lower backup rolls, a plurality of upper backup rolls vertically slidably mounted upon said frame, power means to drive said upper backup rolls, an upper quench roll similar to said lower quench roll, said upper quench roll freely and rotatably supported between said upper backup rolls and said lower quench roll and defining with the latter a roll pass for passage therebetween of the sheet to be quenched, means to vertically extend and retract said upper backup rolls whereby, in an extended position thereof, .said quench rolls are subjected to a compressive force and are thereby resiliently deformed to a generally elliptical shape thereby
  • a sheet quenching apparatus comprising a pair of opposed quench rolls in the form of hollow, resiliently deformable cylindrical sleeves, said quench rolls being constructed of heatconductive metallic material and defining therebetween a roll pass for passage of the sheet to be quenched, means to drive said quench rolls, and means to compress said quench rolls thereby resiliently to deform the same whereby the heat transfer area of said roll pass is increased and contact of said quench rolls with said sheet is improved.
  • a heating furnace primary heating means within said furnace to heat said sheet to' a predetermined elevated temperature
  • an extension on the exit extremity of said furnace said extension having a generally rectangular cross-section taken normally of the direction of travel of sheet through said furnace, said extension having a tapered portion terminating in an exit end of reduced cross-sectional area and provided with a rectangular slot for passage therethrough of the sheet
  • said extension comprising outer housing walls and inner insulating walls the interior surfaces of which define a cavity of generally rectangular cross-section for passage therethrough of the sheet
  • secondary heating means comprising electrical resistance heating elements embedded within said insulating walls and spaced adjacent said sheet to maintain the elevated temperature of the sheet until the same leaves the furnace.
  • a heating furnace said furnace having a primary heating portion and a terminal portion comprising an outer metallic housing and a lining of suitable insulating material defining an elongated bore, successive cross-sections of said terminal portion and of said bore taken normally of the direction of travel of said sheet through said furnace presenting generally rectangular shapes of successively decreasing areas and terminating, at an extremity of the furnace, in aslot for exit of the sheet from the furnace, a metallic sleeve mounted within said bore for passage therethrough of the sheet, and a plurality of electrical resistance heating elements embedded within said lining whereby said sleeve is heated and whereby said heated sleeve maintains, primarily by radiant heat transfer, an elevated temperature of the sheet until the sheet leaves the furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

Oct. 29, 1963 AB FLOWERS 3,109,044 HEAT TREATING APPARATUS Filed July 7, 1959 4 Sheets-Sheet 1 Fig.l
INVENTOR Ab Flowers ATTORNEY Get. 29, 1963 AB FLOWERS 3,109,044
HEAT TREATING APPARATUS Filed July 7, 1959 4 Sheets-Sheet, 2
INVENTQR I49 Ab Flowers ATTORNEY Oct. 29, 1963 AB F OWERS A 3,1091044 HEAT TREATING APPARATUS Filed July 7, 1959 4 Sheets-Sheet 3 Fig. 7
INVENTOR Ab Ffowers ATTORNEY Oct. 29, 1963 AB FLOWERS HEAT TREATING APPARATUS Filed July 7, 1959 4 Sheets-Sheet 4 IO IO 3,109,044 HEAT TREATING APPARATUS Ab Flowers, Brighton Township, Beaver County, Pa,
assignor to (Irucibie Steel Company of America, Pittsburgh, Pa, a corporation of New Jersey Filed July 7, 1959, Ser. No. 825,470 4 Claims. (Cl. 266-3) This invention relates to equipment for heat treating high strength materials such as titanium or zirconium and, more particularly, to a heat treat installation in which the workpiece or sheet is held under tension during a quenching operation.
This application is a continuation-in-part of my copending application Serial No. 750,204, filed July 22, 1958, now abandoned.
In the continuous heat treating of steel sheets, for example, quenching is often done by merely passing the sheet under a water spray by means of a roller conveyor. The temperature gradient set up in a quenching operation of this type results in relatively high thermal and transformation stresses which cause the sheet to become warped or twisted so that it becomes necessary to again flatten the product by stretching or tempering. Although these straightening procedures are satisfactory for steel sheets, they are entirely inapplicable to sheets of high strength materials such as titanium and zirconium which must be processed to thicknesses of 0.010 to 0.187 inch at a desired flatness of 1% or less. The strength of these materials must be improved by aging rather than by tempering and, since the yield strength of a titanium alloy may be in the range of 100,000 to 250,000 p.s.i., no practical stretching apparatus is available for straightening warped sheets of this material.
Previously to this invention several attempts were made to flatten sheets of high strength material to a flatness of 1%. One of these methods involved solution quenching sheets in a press; however, it was found that excessive warpage occurred with this procedure and a flatness of 1% could not be attained. Another method involved solution quenching under tension from a vertical drop bottom furnace. It was found that with this method flatness ranged from 0.8% to 8.0% so that it is entirely inapplicable to the production of sheets having a uniform flatness of 1% or less. Still another method of quenching was to encase the high strength sheet in a welded steel envelope which was passed through the quenching medium, the idea being that the steel envelope would maintain the flatness of the high strength sheet. Although the quenched properties on sheets processed in this manner have been satisfactory, 1% flatness has not been consistently achieved.
it is also known to cool heated metal sheet material by passing the same over a series of spaced offset rolls.
However, this method possesses the distinct disadvantage of extracting heat preferentially from one surface of the sheet. The consequent difierence in the rate of cooling of the two sides of the sheet accentuates warpage and sheets produced by this method commonly cannot be held the narrow warpage limits allowable for most present day uses of sheets of such high strength materials.
In the use of a series of multiple rolls to cool sheet ma terial, it has been a common practice to lower the temperature of the heated sheet in successive stages by passing the sheet over successive rolls maintained at sucoes sively lower temperatures. Such a procedure is unsatisfactory in the processing of many high strength materials such as titanium and titanium alloys. In the case of titanium, for example, it is highly desirable, indeed necessary, to remove the heat by a substantially instantaneous quenching procedure. Thus, titanium exists in several crystalline forms, at elevated heat treating temperatures 3,109,044 Patented (Pct. 29, 1963 the common form being beta titanium, where-as at room temperature the common form is alpha titanium. -In order to obtain the best high strength qualities in the finished product, it is desirable to obtain, insofar as possible, the beta structure. This is possible with a very rapid quench, but upon slow cooling, a larger proportion of the alpha crystalline form is obtained thereby decreasing the ability of the -metal to strengthen upon subsequent elevated temperature aging. Moreover, a slow cooling of titanium from elevated temperatures results in a coarse crystalline structure with little ability to harden, whereas a rapid cooling or quenching of the metal gives a finer structure with good ability to harden.
In view of the deficiencies of the prior art, it is a primary :object of this invention to provide a method and apparatus for continuously quenching sheets of high strength material under tension while maintaining a flatness of 1% or less.
More specifically, an object of the invention resides in the provision of a method and apparatus for cooling sheets :of high strength material by passing the same through a pair of cooled rolls whereby the heat in the sheet material is transferred to the rolls by conduction.
A still further object of the invention is to provide a heat treating arrangement incorporating means for producing a uniform, continuous and substantially instantaneous quench.
In accordance with the invention, hereinafter described in detail, sheets of titanium or other high strength ma terial are first passed through a pair of entry rolls. Thereafter, the sheet is heated to a temperature in the range of 1200 'F. to 1700" F. in a heat treating furnace. The sheet is then passed through a pair of furnace flattening rolls and a roll pass defined between a pair of hollow quench rolls having their axes mutually parallel and substantially vertically aligned with respect to each other. Each of these hollow quench rolls is provided with a pair of back-up drive rolls and with connections for introducing a cooling fluid to the interior of the quench roll. The cooling fluid maintains the temperature of the hollow quench rolls at or about room temperature such that, when the metal sheet or strip passes through the roll pass defined therebetween, the heat rapidly flows from both surfaces of the strip to the quench rolls and thence to the cooling fluid by conduction. Thereafter, the sheet may pass through a quench spray and a pair of exit tension rolls to complete the operation. Tension may be maintained on the strip during the quenching operation by the entry and exit rolls, the flattening rolls and the hollow cooling or quench rolls to maintain the sheet fiat during the quenching operation and prevent any buckling or Warping. Skid tables may be provided for accommodatingthe sheet prior to and after its travel through the heat treating apparatus. 7
The above and other objects and features of the invention will become apparent from the following detailed description taken in connection with the accompanying drawings which form a part of this specification and in I which:
FIGURE 1 is a side elevational view, partly in cross section, of a portion of the heating and quenching apparatus of the present invention;
FIG. 2 is a side elevational view of a portion of the exit tension rolls and exit skid table;
FIG. 3 is an enlarged cross sectional side elevation of the exit end of the heating furnace and a portion of the quenching apparatus;
FIG. 4 is a top plan view of the apparatus illustrated in FIG. 1;
FIG. 5 is a top plan view of the apparatus illustrated in FIG. 2;
FIG. 6 is a cross sectional view of the heating furnace I taken along line 66 of FIG. 1, and
FIG. .7 is a cross sectional elevation of a portion of the quench rolls and associated cooling means.
Referring now to the drawings wherein the same reference numerals are used to identify similar parts, and more particularly to FIG. 1, there is provided a furnace designated generally by the numeral 11 which may be of any suitable type, such as of the electrical resistance or induction type, or of the metal bath heating type but is preferably of the radiant gas-fired type, the latter being preferred because of its rapid and uniform heating qualities. In the embodiment of the invention shown herein the furnace is of the gasafired type and is provided with a plurality of primary heating elements in the form of burners 12.
As shown in FIG. 6, the furnace is preferably of a circular cross section and may be supported on legs 13 which are secured to a base 14 which, as illustrated in FIG. 6, may suitably be formed of steel I-beam-s. Burners 12 are spaced at approximately 90 angles from each other and are fixed within the furnace walls at predetermined angles with respect to a strip or sheet workpiece 16 to give maximum and uniform heating of the strip as it passes through the furnace. The furnace may have interior walls 17 of any suitable insulating material such as firebrick or the like and may have an exterior housing or wall 18 formed of sheet steel. Intermediate walls 19 of any suitable insulating material, such as a plasticizable, hardening insulator, may also be provided.
The furnace may conveniently be constructed to any desired length to accommodate the strip therein for the required heating time. The heating time may, alternatively, in some instances, be varied as a function of the rate of travel of the strip through the furnace. The temperature of the strip may be determined continuously by means of a thermocouple 21 inserted through the furnace walls and spaced a short distance from the strip 16.
The furnace 11 is provided with adjustable entry doors 22 which are norm-ally adjusted to provide a slot-like entrance into the furnace just large enough to allow entry of the strip. This arrangement conserves heat in the furnace and also reduces the entrance of air into the furnace. If desired or necessary in the processing of any particular high strength material, subject to substantial oxidation at the working furnace temperatures, suitable sealing means may be provided at the entry door and also at the exit end of the furnace to substantially eliminate the entry of air into the furnace. In such instances, it may also be desirable to provide an inert gaseous atmosphere such as argon, nitrogen or the like within the furnace. Such inert gases are normally maintained at a pressure slightly higher than atmospheric in order to further insure the exclusion of air from the furnace.
Positioned adjacent the furnace and in longitudinal alignment therewith are a pair of entry rolls 23 and 24 (FIGS. 1 and 4). These may be mounted in a frame 26 and the upper roll 23 may be vertically movable with respect to the lower roll 24 by means of a pair of pneu matic cylinders 27 provided with piston rods 28 having the extremities thereof secured by suitable means to upper bearing blocks 29 in which the ends of shaft 31 of the roll 23 is journaled. The lower entry roll 24 having a shaft 32, journaled in lower bearing blocks 30, is driven through the shaft 32, by means of a suitable prime mover (not shown), through a first sprocket wheel 33 (FIG. 4) attached to the shaft 32, sprocket chain 34 passing over the sprocket wheel 33 and a second sprocket wheel 36 mounted on a drive shaft 37 driven by the prime mover.
For the purpose of applying tension to the strip as it passes between the entry rolls 23 and 24, there is provided a Prony brake designated generally by the numeral 33 and comprising a brake wheel 39 of any suitable material such as wood, having a metallic brake band 41 passing about the periphery thereof, and brake arms 42 and 43 secured to and bearing against a scale 44. By this means, any
d desired degree of tension, within the capabilities of the apparatus, may be applied to the strip. As illustrated in FIGS. 1 and 4, an entry skid table 46 is provided adjacent the entry rolls for supporting the strip pnior to its entry between the entry rolls. A guide roller 47 having a shaft thereof journaled in bearings 45 and mounted upon a bracket 50 secured to the furnace 11, is provided near the entry doors of the furnace in order to more accurately align the advancing strip 16 with the door slot and to support the underside of the strip prior to its entry into the furnace.
Located within the furnace and adjacent the exit end thereof are a pair of furnace flattening rolls designated generally by the numerals '43 and 49. These rolls, having exterior metallic sheaths 51 and insulating bodies 52 are provided with hollow shafts 53 through which water or other'cooling fluid may be circulated during theoperation of the furnace. mounted, as illustrated, on a stand 54 and the upper roll 48 may be mounted on a yoke 56 supported upon the stand 54 and adapted for vertical adjustment with respect to the lower roll 45 whereby pressure may be exerted upon the strip 16 passing therebetween. Movement of the upper roll 48 and associated yoke 56 may be effected, for example, by means of a pair of pneumatic cylinders 57. As shown in FIG. 4, the ends of the shafts 53 of the rolls 48 and 49 may be journaled, respectively, in bearings 58 and 59' externally of the furnace. The shafts 53 pass through metallic housings 61 secured to and projecting from either side of the furnace 11. Each of the furnace flattening rolls 48 and 4% is driven by a prime mover (not shown) through a drive shaft 62 (FIG. 4) and a sprocket chain 63 extending around a first sprocket wheel 64cm the drive shaft 62 and a second sprocket wheel 66 on each of the respective shafts 53 of the flattening rolls. It is desirable to provide means to move the upper flattening roll 48 a slight distance horizontally with respect to the lower flattening roll 49 and parallel to the longitudinal axis of the furnace, i.e., the direction of travel of the workpiece. In this manner, if excessive warping of the strip occurs during heating, the slight offsetting of the axial center lines of the flattening rolls lends to the compressive force exerted by the rolls upon the strip a horizontal component and causes the strip to travel through an offset path thereby acting to remove the warping and further flatten the strip as it passes between the flattening rolls.
The exit end of the furnace is provided with an extension designated generally by the numeral 67 and comprising a metal housing 68 secured as by a first flange 69.
(FIG. 7) to a second flange 71 of the furnace housing (FIGS. 1 and 3). The extension is provided with an elongated nozzle-like extremity 72 defining a slot-like aperture 73 for exit of the strip. Preferably, the upper and lower external surfaces of the extension are of an arcuate or beveled shape as shown at 74 in order that the ex-' tension may extend radially inwardly of and between a pair of quench rolls to be hereinafter described. Internally, the furnace extension 67 is provided with walls 75 of a suitable insulating material defining an elongated cavity or bore 7 6 of generally rectangular cross section. Centrally mounted as by means of supports 78 within the cavity 76 is a hollow sleeve 77 for passage therethrough of the strip. Embedded within the insulation of the extension above and below the sleeve 77 are a plurality of secondary heating elements 78, for example, of the electrical resistance type, for maintaining, primarily by radiant heat transfer, but also by convective and, to a lesser extent, by gas conductive heat transfer, the elevated temperature of the strip up to the point of exit from the furnace.
The quenching apparatus, as illustrated in FIGS. 1, 3, 4 and 7, comprises a frame denoted generally by the numeral 79 mounted upon a base 81. If desired the base 81 may be slidably mounted'upon a sub-base (not shown) for adjustment of the frame 79 and associated mechanisms longitudinally with respect to the exit end of the furnace.
The lower flattening roll 49 may be.
The frame 79 comprises opposed pairs of upright members 82 (FIG. 1), to each pair of which is secured an upper pair of slideways 83 and two lower pairs of slideways 84. Slidably mounted in the latter are a pair of support members 86 upon which are mounted a pair of lower bearing blocks 87. The support members 86 are provided with keys (not shown) for engaging grooves (not shown) in the slideways. The lower bearing blocks have journaled therein the extremities of shafts 88 of a pair of lower backup drive rolls S9 adjustable vertically, in the lower slideways 84, by suitable means, such as by a pair of worm gear jacks 91 secured, at the upper extremities thereof, to the bearing block support members 86. Freely and rotatably supported upon the lower backup rolls 89 is a hollow, cylindrical quench roll 92 of relatively large diameter, e.g., 24 inches, and constructed of thin-walled, high-strength sheet material, such as a titanium alloy, so as to be resiliently deformable to a generally elliptical shape under an applied compressive force. For example, titanium alloy sheet having a thickness of 0.040 inch has been found suitable for this purpose.
Freely and rotatably supported upon the lower quench roll 92, similar thereto in construction, and defining therewith a roll pass for passage therebetween of the strip 16, is an upper quench roll 93. Slidably mounted in the upper slideways 83 are the extremities of a pair of cross members 94 to each of which is secured a pair of upper bearing blocks 96 having journaled therein the extremities of shafts 97 of a pair of upper backup or drive rolls 98. The latter are vertically extendable and retractable, in the upper slideways 83, by suitable means, as by a pair of pneumatic cylinders 99 supplied with air through line 101 and having associated piston rods 102 secured, at the lower extremities thereof, to the cross members 94. In this manner, and by cooperative adjustment of the lower backup rolls 89, a compressive force may be applied to the quench rolls 92 and 93 whereby the same may be firmly pressed against the strip 16 as it passes therebetween, thereby assuring a good, heat-conductive engagement between the strip and the quench rolls. As illustrated in FIG. 3, the quench rolls may be compressed to such an extent that they assume generally elliptical shapes, thereby increasing the heat transfer area of contact with the strip 16 and thereby assuring adequate and rapid cooling or quenching of the heated strip. Similarly positioned backup rolls 89 and 98 are mutually vertically aligned and are preferably positioned such that the plane extending through the longitudinal centerlines of the backup rolls and the undeformed quench rolls lies at an angle of about 45 to the horizontal line of travel of the strip 16.
Both pairs of backup rolls are preferably power-driven by suitable means. For example, as illustrated in FIGS. 1 and 4, the shafts of the backup rolls may be provided, adjacent the extremities thereof, with a pair of first sprocket wheels, as at 103 and 104 (FIG. 4) the shafts being power-connected through first sprocket chain 106. One of each of the pairs of shafts 88 and 97 is driven through a second sprocket wheel 107 and a second chain 108 by a third sprocket 109 on a transmission shaft 111 which may, with advantage, be driven through a fourth sprocket 112 and a fourth chain 113 by a drive shaft 114, powered by a prime mover (not shown) through a fifth sprocket 116 and a fifth chain 117.
Cooling of the quench rolls is obtained by continuously spraying a cooling fluid, such as water, onto the interior surface of the quench rolls. This may be achieved, for example, by providing cooling fluid supply lines as illustrated at 118 (FIG. 4) connected to upper and lower hollow header pipes 119 and 121 respectively (FIG. 7) extending along the longitudinal axis of each quench roll and having a number of similar hollow feeder pipes 122 extending radially therefrom. The feeder pipes 122 are connected, at their outer extremities to perforated spray pipes 123 adjacent and slightly spaced from the interior walls of the quench rolls and extending substantially the length thereof. As shown in FIG. 7, it is preferred,
in order to obtain maximum cooling effect, that one of the perforated spray pipes 123 in each of the quench rolls be located immediately adjacent the area of contact with the strip 16 and, further, that the sprays of coolant from these perforated pipes 123 be directed at an angle to and substantially in the direction of the line of travel of the strip. The resultant, rapidly moving film of coolant greatly enhances the heat transfer capacity at the contact area of the quench rolls. The coolant-supply piping within the quench rolls is of such dimensions and is so arranged as to avoid contact with the interiors of the quench rolls at the maximum extent of deformation. Cooling fluid, introduced into the interiors of the quench rolls, flows, by gravity, down the walls of the quench rolls and collects in the lowermost portions thereof from which it flows from both open ends of each of the quench rolls. The cooling fluid may be removed by any suitable means such as, for example, troughs 124, located at both ends of each quench roll and provided with drain lines 126 (FIG. 7). The arrangement illustrated and described herein provides means having a high heat capacity for substantially instantaneously extracting the excess heat energy content of the strip uniformly and simultaneously from both sides thereof thereby assuring maximum metallurgical properties obtainable by a rapid quenching operation while at the same time supporting the quenching portion of the strip to prevent warping due to the rapid withdrawal of the heat energy content.
For purposes of convenience in removing cooling fluid,
it is preferred to make the lower quench roll of slightly less length than the upper quench roll (FIG. 7 The maximum width of strip is, moreover, preferably slight 1y less than the length of the perforated spray pipes 123 in order to assure uniform cooling of the strip completely to the edges thereof. The header pipe 121 supplying the lower quench roll 92 may be secured against movement by suitable means, as by a first yoke 127 (FIG. 1) passing thereabout and attached to a cross piece 128 of the frame 79. In the case of the header pipe 119 supplying the upper quench roll, the same may be secured in position by suitable means, as by a second yoke 129 mounted upon a depending support 131 secured to the frame 79.
Lateral movement of the quench rolls 92 and 93 may be prevented by any suitable means, for example, by the provision of grooved rollers 132 (FIG. 7) mounted on the frame 7 9 and bearing against the edges of the quench rolls at the ends thereof.
If desired, or necessary, in the processing of a particular strip material, additional cooling of the strip may be achieved by spraying a cooling fluid, such as water, upon the upper and under surfaces of the strip after it leaves the quench rolls. This may be accomplished by introducing the cooling fiuid through suitable spray nozzles such as 133 and 134 illustrated in FIG. 1.
Downwardly of the strip pass, i.e., to the right of the quench rolls as illustrated in FIGS. 1 and 4, there is located a pair of exit tensioning rolls 136 and 137 (FIGS. 2 and 5). The exit rolls 136 and 137 are provided with shafts 138 and 139, respectively, having the extremities thereof journaled, respectively, in pairs of upper bearing members 141 and in pairs of lower bearing members 142. The upper bearing members 141 are preferably mounted, for vertical movement, in guideways 143 in a framework 144 which is mounted on a base 146. Vertical movement of the upper exit tensioning roll assembly is obtained by means of a pair of pneumatic cylinders 147 having piston rods 148 secured at their lower extremities and through suitable means to the upper bearing members. The lower bearings members 142 are mounted upon the framework 144 and, if desired, may also be provided for vertical adjustment by any suitable means. By this means, and by cooperative adjustment of the Prony brake 38, varying degrees of tension may be applied to the strip as desired. The exit rolls 136 and 137 are power driven, through their respective shafts 138 and 139, by a suitable prime mover (not shown). As illustrated in FIGS. 2 and 5, there is provided an exit skid table 149 for support of the strip as it leaves the exit tension rolls.
In operation, the furnace 11 is preheated to the operating temperature. Leader strips (not shown) are welded to the ends of a length of sheet or strip 16 to be heat treated and quenched. The entry rolls 23 and 24, the furnace flattening rolls 48 and 49, the quench rolls 92 and SB, and the exit tensioning rolls 136 and 137 are separated to permit the leader strip to be passed between the roll passes defined by the respective pairs of rolls. Thereafter, the various rolls are adjusted to make contact with the strip or leader, each pair of rolls being adjusted to give the desired pressure upon the strip. Thereafter,
the prime movers operating the entry rolls, furnace flattening rolls, quench backup drive rolls and exit rolls are actuated to start the strip moving through the furnace where it is heated, for example in the case of certain titanium alloys, to a temperature between 1200 and 1750" F. and maintained at such temperature for a period sufficient to obtain the desired effects upon the strip. The apparatus illustrated is capable, in several ways, of removing from the strip any substantial variation from uniform flatness. For example, in the cases of very slight variation, the portion of the strip within the furnace and between the entry doors and the furnace flattening rolls may be allowed to form, under its own weight, a caternary loop as illustrated by the dot-dash lines in FIG. 1. The tension placed upon the strip by the weight of this loop tends to straighten the strip. The action of the furnace flattening rolls, by application of vertical pressure to the strip as it passes therebetween, also tends to remove any variation from flatness of the strip. Greater warping may often be overcome by offsetting the furnace rolls with respect to each other whereby, as aforementioned, greater degrees of warping may be overcome. If there is considerable warping of the strip within the furnace and a consequent variation from uniform flatness which is not overcome by the aforesaid procedures, then additional tension may be applied to the strip between the entry rolls 23 and 24 and the exit tensioning rolls 136 and 137. Thus, any desired tensile force may be applied by application of a braking force by means of the Prony brake arrangement to the entry rolls. Such tensile force applied longitudinally of the strip as it passes through the furnace and quenching apparatus tends to remove or prevent warping of the strip. As the strip leaves the furnace flattening rolls, the elevated temperature of the strip is maintained in the furnace extension 67 by means of the heating elements 78. The nozzle-like configuration of the furnace extension and its position between the quench rolls 92 and 93 assures the maintenance of the elevated temperature of the strip substantially until the strip contacts the quench rolls whereupon the strip is substantially instantaneously quenched to room temperature thereby assuring optimum metallurgical qualities of the strip. If required, further cooling or liquid treatment may be effected by spraying a cooling or a liquid treating medium upon the strip through the nozzles 133 and 134. After passage of the strip through the quench rolls, it passes through the exit tensioning rolls 136 and 137 and thence onto the exit skid table 149 from which point any suitable disposition may be made of the strip as by coiling, cutting into predetermined lengths, subjection to further mechanical operations or chemical processes, etc.
Thus, it may be seen that by use of the apparatus and processes herein described, it is possible to obtain, through the use of controlled heating, cooling and tensioning means and methods a substantially uniformly fiat sheet having desirable metallurgical properties. In the event that it is desirable to form in the strip as it leaves the furnace higher temperature transformation products, it is possible, of course, to do so by introducing a cooling liquid into the quench rolls at a temperature higher than room temperature.
It can thus be seen that the present invention affords I without departing from the spirit and scope of the invention.
I claim as my invention:
1. In an apparatus for the continuous temperature treatment of sheet material, a sheet quenching apparatus comprising a base, a frame mounted upon said base, a plurality of lower backup rolls mounted upon said frame and vertically slidably adjustable with respect thereto, power means to drive said lower backup rolls, a lower quench roll consisting of a cylindrical hollow sleeve constructed of resiliently deformable, heat-conductive material freely and rotatably supported upon said lower backup rolls, a plurality of upper backup rolls vertically slidably mounted upon said frame, power means to drive said upper backup rolls, an upper quench roll similar to said lower quench roll, said upper quench roll freely and rotatably supported between said upper backup rolls and said lower quench roll and defining with the latter a roll pass for passage therebetween of the sheet to be quenched, means to vertically extend and retract said upper backup rolls whereby, in an extended position thereof, .said quench rolls are subjected to a compressive force and are thereby resiliently deformed to a generally elliptical shape thereby increasing the heat transfer area of said roll pass, and means to prevent movement of said quench rolls in the direction of the longitudinal centerlines thereof.
2. In an apparatus for the continuous temperature treatment of metallic sheet material, a sheet quenching apparatus comprising a pair of opposed quench rolls in the form of hollow, resiliently deformable cylindrical sleeves, said quench rolls being constructed of heatconductive metallic material and defining therebetween a roll pass for passage of the sheet to be quenched, means to drive said quench rolls, and means to compress said quench rolls thereby resiliently to deform the same whereby the heat transfer area of said roll pass is increased and contact of said quench rolls with said sheet is improved.
3. In an apparatus for the continuous temperature treatment of sheet material, a heating furnace, primary heating means within said furnace to heat said sheet to' a predetermined elevated temperature, an extension on the exit extremity of said furnace, said extension having a generally rectangular cross-section taken normally of the direction of travel of sheet through said furnace, said extension having a tapered portion terminating in an exit end of reduced cross-sectional area and provided with a rectangular slot for passage therethrough of the sheet, said extension comprising outer housing walls and inner insulating walls the interior surfaces of which define a cavity of generally rectangular cross-section for passage therethrough of the sheet, and secondary heating means comprising electrical resistance heating elements embedded within said insulating walls and spaced adjacent said sheet to maintain the elevated temperature of the sheet until the same leaves the furnace.
4. In an apparatus for the continuous temperature treatment of sheet material, a heating furnace, said furnace having a primary heating portion and a terminal portion comprising an outer metallic housing and a lining of suitable insulating material defining an elongated bore, successive cross-sections of said terminal portion and of said bore taken normally of the direction of travel of said sheet through said furnace presenting generally rectangular shapes of successively decreasing areas and terminating, at an extremity of the furnace, in aslot for exit of the sheet from the furnace, a metallic sleeve mounted within said bore for passage therethrough of the sheet, and a plurality of electrical resistance heating elements embedded within said lining whereby said sleeve is heated and whereby said heated sleeve maintains, primarily by radiant heat transfer, an elevated temperature of the sheet until the sheet leaves the furnace.
References Cited in the file of this patent UNITED STATES PATENTS 436,969 Edison Sept. 23, 1890 Trist July 23, 1946 Corson et a1 July 24, 1956 Ungerer Mar. 5, 1957 Kessler et a1 Aug. 27, 1957 Holscher June 17, 1958 Joy Nov. 4, 1958 Zwicker et a1 June 30, 1959 Ford et a1 Apr. 18, 1961 FOREIGN PATENTS Great Britain Sept. 21, 1931 Great Britain Mar. 10, 1938

Claims (2)

1. IN AN APPARATUS FOR THE CONTINUOUS TEMPERATURE TREATMENT OF SHEET MATERIAL, A SHEET QUENCHING APPARATUS COMPRISING A BASE, A FRAME MOUNTED UPON SAID BASE, A PLURALITY OF LOWER BACKUP ROLLS MOUNTED UPON SAID FRAME AND VERTICALLY SLIDABLY ADJUSTABLE WITH RESPECT THERETO, POWER MEANS TO DRIVE SAID LOWER BACKUP ROLLS, A LOWER QUENCH ROLL CONSISTING OF A CYLINDRICAL HOLLOW SLEEVE CONTRUCTED OF RESILIENTLY DEFORMABLE, HEAT-CONDUCTIVE MATERIAL FREELY AND ROTATABLY SUPPORTED UPON SAID LOWER BACKUP ROLLS, A PLURALITY OF UPPER BACKUP ROLLS VERTICALLY SLIDABLY MOUNTED UPON SAID FRAME, POWER MEANS TO DRIVE SAID UPPER BACKUP ROLLS, AN UPPER QUENCH ROLL SIMILAR TO SAID LOWER QUENCH ROLL, SAID UPPER QUENCH ROLL FREELY AND ROTATABLY SUPPORTED BETWEEN SAID UPPER BACKUP ROLLS AND SAID LOWER QUENCH ROLL AND DEFINING WITH THE LATTER A ROLL PASS FOR PASSAGE THEREBETWEEN OF THE SHEET TO BE QUENCHED, MEANS TO VERTICALLY EXTEND AND RETRACT SAID UPPER BACKUP ROLLS WHEREBY, IN AN EXTENDED POSITION THEREOF, SAID QUENCH ROLLS ARE SUBJECTED TO A COMPRESSIVE FORCE AND ARE THEREBY RESILIENTLY DEFORMED TO A GENERALLY ELLIPTICAL SHAPE THEREBY INCREASING THE HEAT TRANSFER AREA OF SAID ROLL PASS, AND MEANS TO PREVENT MOVEMENT OF SAID QUENCH ROLLS IN THE DIRECTION OF THE LONGITUDINAL CENTERLINES THEREOF.
3. IN AN APPARATUS FOR THE CONTINUOUS TEMPERATURE TREATMENT OF SHEET MATERIAL, A HEATING FURANCE, PRIMARY HEATING MEANS WITHIN SAID FURNACE TO HEAT SAID SHEET TO A PREDETERMINED ELEVATED TEMPERATURE, AN EXTENSION ON THE EXIT EXTREMITY OF SAID FURNACE, SAID EXTENSION HAVING A GENERALLY RECTANGULAR CROSS-SECTION TAKEN NORMALLY OF THE DIRECTION OF TRAVEL OF SHEET THROUGH SAID FURNACE, SAID EXTENSION HAVING A TAPERED PORTION TERMINATING IN AN EXIT END OF REDUCED CROSS-SECTIONAL AREA AND PROVIDED WITH A RECTANGULAR SLOT FOR PASSAGE THERETHROUGH OF THE SHEET, SAID EXTENSION COMPRISING OUTER HOUSING WALLS AND INNER INSULATING WALLS THE INTERIOR SURFACES OF WHICH DEFINE A CAVITY OF GENERALLY RECTANGULAR CROSS-SECTION FOR PASSAGE THERETHROUGH OF THE SHEET, AND SECONDARY HEATING MEANS COMPRISING ELECTRICAL RESISTANCE HEATING ELEMENTS EMBEDDED WITHIN SAID INSULATING WALLS AND SPACED ADJACENT SAID SHEET TO MAINTAIN THE ELEVATED TEMPERATURE OF THE SHEET UNTIL THE SAME LEAVES THE FURNACE.
US825470A 1959-07-07 1959-07-07 Heat treating apparatus Expired - Lifetime US3109044A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US825470A US3109044A (en) 1959-07-07 1959-07-07 Heat treating apparatus
US35867A US3201287A (en) 1959-07-07 1960-06-10 Heat treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US825470A US3109044A (en) 1959-07-07 1959-07-07 Heat treating apparatus

Publications (1)

Publication Number Publication Date
US3109044A true US3109044A (en) 1963-10-29

Family

ID=25244069

Family Applications (1)

Application Number Title Priority Date Filing Date
US825470A Expired - Lifetime US3109044A (en) 1959-07-07 1959-07-07 Heat treating apparatus

Country Status (1)

Country Link
US (1) US3109044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355159A (en) * 1962-05-23 1967-11-28 British Aluminium Co Ltd Apparatus for continuous heat treatment of sheet or strip material
EP0008423A1 (en) * 1978-08-22 1980-03-05 Ab Asea-Atom Apparatus for the thermal treatment of an elongated metal sheet
US4826138A (en) * 1984-02-24 1989-05-02 Van Dorn Company Apparatus for heat treating steel plates

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US436969A (en) * 1890-09-23 Method of and apparatus for drawing wire
GB357575A (en) * 1930-05-21 1931-09-21 Wellman Smith Owen Eng Co Ltd Improvements in or relating to a method of and means for the heat treatment of metal
GB481379A (en) * 1936-11-04 1938-03-10 Gen Electric Co Ltd Improvements in and relating to heat treatment furnaces
US2404606A (en) * 1942-02-21 1946-07-23 Trist Arthur Ronald Method and machine for burnishing the surface of paper
US2756169A (en) * 1950-10-19 1956-07-24 John A Roebling S Sons Corp Method of heat treating hot rolled steel rods
US2783788A (en) * 1950-07-13 1957-03-05 Rene Van Loo Device and method for hardening sheet metal
US2804409A (en) * 1956-02-06 1957-08-27 Titanium Metals Corp Heat treating titanium-base alloy products
US2839289A (en) * 1954-09-30 1958-06-17 Kaiser Aluminium Chem Corp Frame to support metal sheets under tension during heat treatment
US2859029A (en) * 1955-06-06 1958-11-04 Holcroft & Co Apparatus for treating metal parts
US2892742A (en) * 1956-06-22 1959-06-30 Metallgesellschaft Ag Process for improving the workability of titanium alloys
US2980561A (en) * 1958-08-01 1961-04-18 Westinghouse Electric Corp Method of producing improved magnetic steel strip

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US436969A (en) * 1890-09-23 Method of and apparatus for drawing wire
GB357575A (en) * 1930-05-21 1931-09-21 Wellman Smith Owen Eng Co Ltd Improvements in or relating to a method of and means for the heat treatment of metal
GB481379A (en) * 1936-11-04 1938-03-10 Gen Electric Co Ltd Improvements in and relating to heat treatment furnaces
US2404606A (en) * 1942-02-21 1946-07-23 Trist Arthur Ronald Method and machine for burnishing the surface of paper
US2783788A (en) * 1950-07-13 1957-03-05 Rene Van Loo Device and method for hardening sheet metal
US2756169A (en) * 1950-10-19 1956-07-24 John A Roebling S Sons Corp Method of heat treating hot rolled steel rods
US2839289A (en) * 1954-09-30 1958-06-17 Kaiser Aluminium Chem Corp Frame to support metal sheets under tension during heat treatment
US2859029A (en) * 1955-06-06 1958-11-04 Holcroft & Co Apparatus for treating metal parts
US2804409A (en) * 1956-02-06 1957-08-27 Titanium Metals Corp Heat treating titanium-base alloy products
US2892742A (en) * 1956-06-22 1959-06-30 Metallgesellschaft Ag Process for improving the workability of titanium alloys
US2980561A (en) * 1958-08-01 1961-04-18 Westinghouse Electric Corp Method of producing improved magnetic steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355159A (en) * 1962-05-23 1967-11-28 British Aluminium Co Ltd Apparatus for continuous heat treatment of sheet or strip material
EP0008423A1 (en) * 1978-08-22 1980-03-05 Ab Asea-Atom Apparatus for the thermal treatment of an elongated metal sheet
US4826138A (en) * 1984-02-24 1989-05-02 Van Dorn Company Apparatus for heat treating steel plates

Similar Documents

Publication Publication Date Title
US4433565A (en) Method of and apparatus for the manufacturing of metal profile members, especially steel profile members
US3201287A (en) Heat treating method
US1931912A (en) Method of forming aluminum
US3130088A (en) Thermal-flattening of metallic strip
US3109044A (en) Heat treating apparatus
US5058410A (en) Method and apparatus fo producing thin wire, rod, tube, and profiles, from steels and alloys with low deformability, particularly hardenable steels
KR100340816B1 (en) How to increase yield strength of cold rolled steel
EP0314667B2 (en) Process and apparatus for manufacturing thin wires, rods, pipes or sections made of steels or alloys with a low deformability, particularly of hardenable steels
US4057989A (en) Method for levelling a metal strip or sheet
US4060428A (en) Process for forming ferrous billets into finished product
US2176365A (en) Extrusion mill
JPS5937335B2 (en) Steel strip cooling equipment for continuous annealing
US3738629A (en) Bar quench fixture
US4826138A (en) Apparatus for heat treating steel plates
US3699797A (en) Hot worked steel method and product
EP0362122B1 (en) Method of heat-straightening steel tubes
CN213223819U (en) A kind of machining straightening and shaping equipment
JP2890198B2 (en) Method for producing long member made of steel or steel alloy having low deformability
US4724165A (en) Process and apparatus for coating metal strips on both sides with coats of enamel
JP3350372B2 (en) Copper alloy strip strain relief annealing method and bright annealing furnace
JPS5976615A (en) Method and device for descaling steel material in low pressure
US2267673A (en) Manufacture of carbon electrodes
JPH06330177A (en) Heat treatment apparatus for round corner part of large diameter square steel tube
KR20220080434A (en) Titanium alloy manufacturing method
DE934835C (en) Preheating of steel billets or the like to hot forming temperature