US3105813A - Hydrogenation of lubricating oils - Google Patents
Hydrogenation of lubricating oils Download PDFInfo
- Publication number
- US3105813A US3105813A US674622A US67462257A US3105813A US 3105813 A US3105813 A US 3105813A US 674622 A US674622 A US 674622A US 67462257 A US67462257 A US 67462257A US 3105813 A US3105813 A US 3105813A
- Authority
- US
- United States
- Prior art keywords
- catalyst
- lubricating oil
- fluoride
- hydrogenation
- viscosity index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010687 lubricating oil Substances 0.000 title claims description 34
- 238000005984 hydrogenation reaction Methods 0.000 title description 14
- 239000003054 catalyst Substances 0.000 claims description 42
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 150000003568 thioethers Chemical class 0.000 claims description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 11
- 239000010941 cobalt Substances 0.000 claims description 11
- 229910017052 cobalt Inorganic materials 0.000 claims description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 11
- 239000011733 molybdenum Substances 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910001506 inorganic fluoride Inorganic materials 0.000 claims description 6
- 239000003921 oil Substances 0.000 description 14
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 13
- 239000000203 mixture Substances 0.000 description 7
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000005078 molybdenum compound Substances 0.000 description 2
- 150000002752 molybdenum compounds Chemical class 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- ZNSMNVMLTJELDZ-UHFFFAOYSA-N Bis(2-chloroethyl)ether Chemical compound ClCCOCCCl ZNSMNVMLTJELDZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940038553 attane Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- SAXCKUIOAKKRAS-UHFFFAOYSA-N cobalt;hydrate Chemical compound O.[Co] SAXCKUIOAKKRAS-UHFFFAOYSA-N 0.000 description 1
- QUEGLSKBMHQYJU-UHFFFAOYSA-N cobalt;oxomolybdenum Chemical compound [Mo].[Co]=O QUEGLSKBMHQYJU-UHFFFAOYSA-N 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- UJHLGDUCOCXGBW-UHFFFAOYSA-N oxocobalt trioxomolybdenum Chemical compound O=[Co].O=[Mo](=O)=O UJHLGDUCOCXGBW-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/10—Lubricating oil
Definitions
- This invention relates to the hydrogenation of lubricating oils, and it particularly concerns the use of an improved catarlyst for use therein.
- An object of the present invention is to provide a method for improving the quality of lubricating oils. Another object is to provide a highly effective catalyst for the hydrogenation of lubricating oils. A further object is to provide a hydrogenation process for improving the quality of lubricating oils which employs a novel catalyst especially effective for improving the viscosity index of the lubricating oil.
- a fluoride promoted catalyst which catalyst is comprised of minor amounts of the oxides and sulfides of cobalt and molybdenum and a major amount of an alumina carrier, is highly effective for the hydrogenation of a lubricating oil for improvement of its properties, especially for improving the viscosity index of the lubricating oil.
- Such a catalyst may contain between 1 and 10% of the oxides and sulfides of cobalt; between 2 and 20% of the oxides and sulfides of molybdenum; between 0.1 and 10% of fluoride added as an inorganic fluoride e.g. ammonium fluoride, hydrogen fluoride; and the remainder essentially alumina.
- Hydrogenation conditions comprise a temperature between 600 and 900 F., preferably between 750 and 850 F. and a pressure between 500 and 3000 psig.
- the lubricating oils which may be processed in accordance with this invention comprise either the total raw lubricating oil as obtained from the high boiling fractions of crude oil, or it may be a refined lubricating oil such as one which has been solvent extracted and/ or dewaxed. It can consist of any of the individual lubricating oil fractions such as are segregated with respect to viscosity and boiling range, or it may consist of the total'lubricating oil obtained from crude oil prior to fractionating the lubricating oil into the individual SAE 5, 10, 2'0, 40, 50, etc. grades.
- the lubricating oils are normally virgin 3,105,813 Fatented Get. l, 1 963 of fluoride added as ammonium fluoride, hydrogen fluoride, or other inorganic fluoride.
- the method of preparing the catalyst is not critical. A highly convenient Way is to first prepare an aluminasupported cobalt oxide-molybdenum oxide catalyst. Such compositions have been employed as catalysts in hydro desulfunizing petroleum oils. Many methods for preparing them have been detailed in the prior art. vCatalyst manufacturing techniques such as co-precipitation, cogelation, impregnation and the like may be used in their manufacture. For example, activated alumina pellets or granules may be impregnated with the proper amounts of aqueous solutions of Water soluable cobalt compounds such as cobalt nitrate and Water soluble molybdenum compounds, such as ammonium molybdate.
- Water soluable cobalt compounds such as cobalt nitrate and Water soluble molybdenum compounds, such as ammonium molybdate.
- composition is then'dried and calcined at an elevated temperature, cg. 1000 -F., whereupon the cobalt and molybdenum compounds are decomposed to their oxides.
- elevated temperature cg. 1000 -F.
- a double impregnation technique is'taught in U.S. 2,687,- 381 to-G. W. Hendricks.
- a preferred method consists of preparing a molybdenum oxide-alumina catalyst (such as have been used for many years as hydroiorming catalysts land which may be prepared by precipitating aqueous solutions of soluble molybdenum and aluminum compounds, drying, and calcining) and impregnating the molybdenum oxide-alumina hydroforming catalyst with an aqueous solution of a soluble cobalt salt, drying and then calcining.
- a molybdenum oxide-alumina catalyst such as have been used for many years as hydroiorming catalysts land which may be prepared by precipitating aqueous solutions of soluble molybdenum and aluminum compounds, drying, and calcining
- impregnating the molybdenum oxide-alumina hydroforming catalyst with an aqueous solution of a soluble cobalt salt, drying and then calcining.
- the fluoride may'be incorporated within the catalyst by any of a number of techniques.
- the calcined cobalt oxide-molybdenum oxide-alumina may'be impregnated with a calculated volume of an. aqueous solution of ammonium fluoride, hydrogen fluoride, etc. of the desired alumina carrier.
- the inorganic fluoride can be added -in small amounts to the lubricating oil charged to the distillates having viscosities at 100 F. in the range from about 100 to l0O0'Saybolt seconds, with viscosity indexes in the range ofabout -50 to 1100. These generally boil above about 700 F. at 760 mm. Hg pressure.
- the catalyst used in this invention is comprised of minor amounts of the oxides and sulfides of cobalt and molybdenum supported on a major proportion of an alumina carrier and promoted with minor amounts of a fluoride. It may contain between 1 and 10% of the oxides and sulfides of cobalt, between 2 and 20% of the oxides and sulfides of molybdenum, between 0.1 and 40% of an inorganic fluoride, and supported on an activated alumina (gamma alumina or forms thereof such as eta alumina, but not alpha alumina) carrier.
- an activated alumina gamma alumina or forms thereof such as eta alumina, but not alpha alumina
- cobalt and molybdenum oxides may become converted in part to their corresponding sulfides.
- Hydrogenation of the lubricating oil is carried out a a temperature between about 600 and 900 F., preferably between about 750 and 850 F. Pressures between about 500 and 3000 p.s.i.g., for example between about 500 and 2000 p.s;i.g.', may be used. "It is not essential to use high purity hydrogen, and hydrogen streams such as are produced during naphtha reforming operations may suitably be employed.
- the hydrogen stream may be used in the amount of from 1000' to 5000'cuifitl'perbarrel of oil, e. g. 3000 cu. ft per ba'rrel'of oil.' Space velocities' of from 0.5 to 20, e.g. between 1 to 10, liquid volumes of oil/hour/volume of catalyst can be used.
- the lubricating oil employed as charge stock in these experiments consisted of a blend of different grades of a dewaxed chlorex extracted lubricating oil.
- the blend was composed of 30 volume percent of SAE E10 oil, 40 volume percent SAE 20 oil, and 30 volume percent SAE 40 oil.
- the viscosity indexes of the blend and the individual SAE 10, 20, and 40 fractions are given in the table which follows hereinafter.
- a stainless steel reactor containing 200 cc. of catalyst supported in its center section was employed. The reactor had a glassbead preheat zone above the catalyst.
- the reactor was maintained under a pressure of 1000 p.s.i.g.; the oil being introduced at a space velocity of 2.5 liquid volumes/hour/volume of catalysts; and the hydrogen was employed at a rate approximating 3000 s.c.f./barrel of oil.
- the reactants passed downwardly through the catalyst bed and were removed from the bottom of the reactor. Gas was removed from the total effluent and the liquid product was topped to remove naphtha and light gas oil.
- the catalyst used in the experiments was a commercial catalyst containing 3.65 weight percent C00, 11.60 weight percent M and the remainder essentially activated alumina.
- fluorided catalyst was used in the experiments, it was prepared by soaking the above defined catalyst in a solution of ammonium fluoride in distilled water so as to incorporate 1% fluoride in the catalyst. This solution was slowly evaporated almost to the point of dryness. The catalyst was dried in an oven and thereafter calcined at 1000 F. for 4 hours,
- the catalyst is comprised of between about 1 and'l0% by weight of the oxides and sulfides of cobalt, between about 2 and 20% by weight of the oxides and sulfides of molybdenum, be tween about 0.1 and 10% by weight of aninorganic fluoride and the remainder essentially alumina.
- SVA process for improving the viscosity index of lubricating oils which comprises contacting a lubricating oil having viscosity index in the-range of 50 to with hydrogen in the amountof about 1000 to 5000 cu. ft. of hydrogen per barrel of oilat a temperature between about 750 and 850 F. and a pressure between about 500 and 2000 p.s.i.g.
- a catalyst comprised of between about .1 and 10% by weight of the oxides and sulfides of cobalt, between about 2 and 20% by weight of the oxides and sulfides of molybdenum, between about :1 and 5% by weight of ammonium fluoride, and the remainder essentially alumina at a space velocity of between about 0.5 and 20 liquid volumes of oil/hour/volume of catalyst, and recovering a lubricating oil having a viscosity index increased by at least 8 umts.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
United States are This invention relates to the hydrogenation of lubricating oils, and it particularly concerns the use of an improved catarlyst for use therein.
An object of the present invention is to provide a method for improving the quality of lubricating oils. Another object is to provide a highly effective catalyst for the hydrogenation of lubricating oils. A further object is to provide a hydrogenation process for improving the quality of lubricating oils which employs a novel catalyst especially effective for improving the viscosity index of the lubricating oil.
It has been found that a fluoride promoted catalyst, which catalyst is comprised of minor amounts of the oxides and sulfides of cobalt and molybdenum and a major amount of an alumina carrier, is highly effective for the hydrogenation of a lubricating oil for improvement of its properties, especially for improving the viscosity index of the lubricating oil. Such a catalyst may contain between 1 and 10% of the oxides and sulfides of cobalt; between 2 and 20% of the oxides and sulfides of molybdenum; between 0.1 and 10% of fluoride added as an inorganic fluoride e.g. ammonium fluoride, hydrogen fluoride; and the remainder essentially alumina. The
amount of fluoride is preferably between 1 and 5% The addition of the fluoride to the catalyst enables the latter to produce a hydrogenated lubricating oil which has a higher viscosity index than if the catalyst had no added fluoride. In this sense it promotes the catalyst. Hydrogenation conditions comprise a temperature between 600 and 900 F., preferably between 750 and 850 F. and a pressure between 500 and 3000 psig.
The lubricating oils which may be processed in accordance with this invention comprise either the total raw lubricating oil as obtained from the high boiling fractions of crude oil, or it may be a refined lubricating oil such as one which has been solvent extracted and/ or dewaxed. It can consist of any of the individual lubricating oil fractions such as are segregated with respect to viscosity and boiling range, or it may consist of the total'lubricating oil obtained from crude oil prior to fractionating the lubricating oil into the individual SAE 5, 10, 2'0, 40, 50, etc. grades. The lubricating oils are normally virgin 3,105,813 Fatented Get. l, 1 963 of fluoride added as ammonium fluoride, hydrogen fluoride, or other inorganic fluoride.
The method of preparing the catalyst is not critical. A highly convenient Way is to first prepare an aluminasupported cobalt oxide-molybdenum oxide catalyst. Such compositions have been employed as catalysts in hydro desulfunizing petroleum oils. Many methods for preparing them have been detailed in the prior art. vCatalyst manufacturing techniques such as co-precipitation, cogelation, impregnation and the like may be used in their manufacture. For example, activated alumina pellets or granules may be impregnated with the proper amounts of aqueous solutions of Water soluable cobalt compounds such as cobalt nitrate and Water soluble molybdenum compounds, such as ammonium molybdate. The composition is then'dried and calcined at an elevated temperature, cg. 1000 -F., whereupon the cobalt and molybdenum compounds are decomposed to their oxides. A double impregnation technique is'taught in U.S. 2,687,- 381 to-G. W. Hendricks. A preferred method consists of preparing a molybdenum oxide-alumina catalyst (such as have been used for many years as hydroiorming catalysts land which may be prepared by precipitating aqueous solutions of soluble molybdenum and aluminum compounds, drying, and calcining) and impregnating the molybdenum oxide-alumina hydroforming catalyst with an aqueous solution of a soluble cobalt salt, drying and then calcining.
The fluoride may'be incorporated within the catalyst by any of a number of techniques. -The calcined cobalt oxide-molybdenum oxide-alumina may'be impregnated with a calculated volume of an. aqueous solution of ammonium fluoride, hydrogen fluoride, etc. of the desired alumina carrier.
concentration so that upon evaporation of the water,
the catalyst is impregnated with the desired amount of within the catalyst during the co-precipitation, -co-gelation or impregnation step during which step the cobalt =oxide-and molybdenum oxide are incorporated with the The inorganic fluoride can be added -in small amounts to the lubricating oil charged to the distillates having viscosities at 100 F. in the range from about 100 to l0O0'Saybolt seconds, with viscosity indexes in the range ofabout -50 to 1100. These generally boil above about 700 F. at 760 mm. Hg pressure.
The catalyst used in this invention is comprised of minor amounts of the oxides and sulfides of cobalt and molybdenum supported on a major proportion of an alumina carrier and promoted with minor amounts of a fluoride. It may contain between 1 and 10% of the oxides and sulfides of cobalt, between 2 and 20% of the oxides and sulfides of molybdenum, between 0.1 and 40% of an inorganic fluoride, and supported on an activated alumina (gamma alumina or forms thereof such as eta alumina, but not alpha alumina) carrier. Minor amounts of impurities may be contained in the catalyst of course, for example graphite may be present therein due to its use as a binder when preparing the catalyst in pelleted form. When the composition of the catalyst is described herein, use of the term percentage is to be understood to mean percent by weight. The fluoride and the amount thereof may suitably be from 1 to 5 hydrogenation reactor and thusdeposited within the catalyst. During its use in the hydrogenation process, the
cobalt and molybdenum oxides may become converted in part to their corresponding sulfides.
Hydrogenation of the lubricating oil is carried out a a temperature between about 600 and 900 F., preferably between about 750 and 850 F. Pressures between about 500 and 3000 p.s.i.g., for example between about 500 and 2000 p.s;i.g.', may be used. "It is not essential to use high purity hydrogen, and hydrogen streams such as are produced during naphtha reforming operations may suitably be employed. The hydrogen stream may be used in the amount of from 1000' to 5000'cuifitl'perbarrel of oil, e. g. 3000 cu. ft per ba'rrel'of oil.' Space velocities' of from 0.5 to 20, e.g. between 1 to 10, liquid volumes of oil/hour/volume of catalyst can be used.
During the hydrogenation step, substantial desulfurization and denitno-genation of the lubricating oil takes 0 oil at various temperatures. tained with respect to the viscosity index of the charge fride. This enables production of a higher viscosity index lubricating oil at a given hydrogenation temperature, or enables the use of lower temperatures during the hydrogenation step when great increases in viscosity index are not as essential.
Certain experiments were carried out which illustrate the advantages of the present invention. The lubricating oil employed as charge stock in these experiments consisted of a blend of different grades of a dewaxed chlorex extracted lubricating oil. The blend was composed of 30 volume percent of SAE E10 oil, 40 volume percent SAE 20 oil, and 30 volume percent SAE 40 oil. The viscosity indexes of the blend and the individual SAE 10, 20, and 40 fractions are given in the table which follows hereinafter. In the experiments, a stainless steel reactor containing 200 cc. of catalyst supported in its center section was employed. The reactor had a glassbead preheat zone above the catalyst. Lubricating oil and the hydrogen, as separate streams, were passed in a concurrent manner into the top of the reactor where they became heated in the preheat zone. The reactor was maintained under a pressure of 1000 p.s.i.g.; the oil being introduced at a space velocity of 2.5 liquid volumes/hour/volume of catalysts; and the hydrogen was employed at a rate approximating 3000 s.c.f./barrel of oil. The reactants passed downwardly through the catalyst bed and were removed from the bottom of the reactor. Gas was removed from the total effluent and the liquid product was topped to remove naphtha and light gas oil. The lubricating oil product was fractionated under 0.=1 to 0.2 mm. Hg abs. to provide 10 fractions. These fractions were analyzed for viscosity index and viscosity, and were thereafter combined in a manner so as to produce SAE 10, 20, and 40 fractions such as had been used in preparing the blend charged to the hydrogenation reaction. The SAE 10, 20, and 40 fractions were then compared with respect to viscosity index with the corresponding fractions that made up the charge lubricating oil.
The catalyst used in the experiments was a commercial catalyst containing 3.65 weight percent C00, 11.60 weight percent M and the remainder essentially activated alumina. When fluorided catalyst was used in the experiments, it was prepared by soaking the above defined catalyst in a solution of ammonium fluoride in distilled water so as to incorporate 1% fluoride in the catalyst. This solution was slowly evaporated almost to the point of dryness. The catalyst was dried in an oven and thereafter calcined at 1000 F. for 4 hours,
during which time ammonia was evolved. 7 Both the fiuorided catalyst and the non-fluorided catalyst were employed for the hydrogenation of the blended lubricating The results which were oband the product lubricating oil fractions are shown in the It should be noted from the above results that when the product, when using a fluorided catalyst in place of a non-fluorided catalyst.
While the invention has been described with reference to certain examples it should not be construed as limited thereto but includes within its scope such modifications as would ordinarily occur to those skilled in the art. 1
Thus having described the invention what is claimed is;
.1. A process for improving the viscosity index of lubricating oil having a viscosity index in the range of -50 to 100 with hydrogen at a temperature between about 600 and 900 F. and a pressure between about 500 and 3000 p.s.i.g. in the presence of a catalyst comprised of a minor amount of the oxides and sulfides of cobalt and molybdenum, 0.1 to 10% by weight of an inorganic fluoride, and an alumina carrier, and recovering a lubricating oil having an increased viscosity index.
2. The process of claim 1 in which the catalyst is comprised of between about 1 and'l0% by weight of the oxides and sulfides of cobalt, between about 2 and 20% by weight of the oxides and sulfides of molybdenum, be tween about 0.1 and 10% by weight of aninorganic fluoride and the remainder essentially alumina.
3. The process of claim 2 in which the fluoride is ammonium fluoride.
4. The process of claim 2 in which the fluoride is hydrogen fluoride.
SVA process for improving the viscosity index of lubricating oils which comprises contacting a lubricating oil having viscosity index in the-range of 50 to with hydrogen in the amountof about 1000 to 5000 cu. ft. of hydrogen per barrel of oilat a temperature between about 750 and 850 F. and a pressure between about 500 and 2000 p.s.i.g. with a catalyst comprised of between about .1 and 10% by weight of the oxides and sulfides of cobalt, between about 2 and 20% by weight of the oxides and sulfides of molybdenum, between about :1 and 5% by weight of ammonium fluoride, and the remainder essentially alumina at a space velocity of between about 0.5 and 20 liquid volumes of oil/hour/volume of catalyst, and recovering a lubricating oil having a viscosity index increased by at least 8 umts.
References Cited in the file of this patent UNITED STATES PATENTS 2,706,167 Harper et al. Apr. 12, 1955 2,734,019 Miller et a1. Feb. 7, 1956 2,760,907 Attane etal Aug. 28, 1956 2,787,582 Watkins et a1. Apr. .2, 1957 2,799,661 De Rosset July-16, 1957 2,800,429 Porter et a1. July 23, 1957 2,878,180 Watkins Mar. 17, 1959 OTHER REFERENCES cal Engineering Reviews), September 1957, part II (page "1526 only).
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent N00 3 1055.313 October 1, 1963 Louis Charles Gutberlet It is hereby certified that error appears in the above numbered patent reqiiring correction and that the said Letters Patent should read as corrected below.
Column 1 line 62, for "40%" read 10% column 4, line 17, for "oil having read oils which comprises contacting a lubricating oil having ""0 Signed and sealed this 7th day of April 1964..
(SEAL) Attest:
ERNEST we SWIDER EDWARD BRENNER Attesting Officer Commissioner of Patents
Claims (1)
1. A PROCESS FOR IMPROVING THE VISCOSITY INDEX OF LUBRICATING OIL HAVING A VISCOSITY INDEX IN THE RANGE OF -50 TO 100 WITH HYDROGEN AT A TEMPERATURE BETWEEN ABOUT 600* AND 900*F. AND A PRESSURE BETWEEN ABOUT 500 AND 3000 P.S.I.G. IN THE PRESENCE OF A CATALYST COMPRISED OF A MINOR AMOUNT OF THE OXIDES AND SULFIDES OF COBALT AND MOLYBDENUM, 0.1 TO 10% BY WEIGHT OF AN INORGANIC FLUORIDE, AND AN ALUMINA CARRIER, AND RECOVERING A LUBRICATING OIL HAVING AN INCREASED VISCOSITY INDEX.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US674622A US3105813A (en) | 1957-07-29 | 1957-07-29 | Hydrogenation of lubricating oils |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US674622A US3105813A (en) | 1957-07-29 | 1957-07-29 | Hydrogenation of lubricating oils |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3105813A true US3105813A (en) | 1963-10-01 |
Family
ID=24707313
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US674622A Expired - Lifetime US3105813A (en) | 1957-07-29 | 1957-07-29 | Hydrogenation of lubricating oils |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3105813A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3189540A (en) * | 1962-01-02 | 1965-06-15 | California Research Corp | Production of lubricating oils by catalytic hydrogenation |
| US3284344A (en) * | 1962-11-16 | 1966-11-08 | British Petroleum Co | Hydrocatalytic refining of chlorine containing lubricating oils |
| US3434964A (en) * | 1966-06-27 | 1969-03-25 | Exxon Research Engineering Co | Removing nitrogen from hydrocarbon oils |
| US3444074A (en) * | 1966-05-02 | 1969-05-13 | Mobil Oil Corp | Hydrodenitrogenation process with a catalyst containing silica-zirconia gel,a metal fluoride and a hydrogenation component |
| DE2127656A1 (en) * | 1970-06-05 | 1971-12-09 | Shell Internationale Research Maatschappij N.V., Den Haag (Niederlande) | Process for the production of lubricating oil with a high viscosity index |
| US4581127A (en) * | 1983-10-28 | 1986-04-08 | Mobil Oil Corporation | Method to decrease the aging rate of petroleum or lube processing catalysts |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2706167A (en) * | 1950-06-16 | 1955-04-12 | Sun Oil Co | Process for hydrogenating hydrocarbon oils |
| US2734019A (en) * | 1956-02-07 | Hydrofining naphthenic lubricating oil | ||
| US2760907A (en) * | 1953-09-01 | 1956-08-28 | Union Oil Co | Hydrocarbon conversion process and catalyst |
| US2787582A (en) * | 1955-04-12 | 1957-04-02 | Universal Oil Prod Co | Production of lubricating oils |
| US2799661A (en) * | 1953-07-15 | 1957-07-16 | Universal Oil Prod Co | Manufacture of molybdenumcontaining catalysts |
| US2800429A (en) * | 1951-10-01 | 1957-07-23 | British Petroleum Co | Desulphurisation with a cobalt molybdate catalyst containing fluorine, and under equilibrium pressure |
| US2878180A (en) * | 1954-06-21 | 1959-03-17 | Universal Oil Prod Co | Hydrofining process and catalyst thereof |
-
1957
- 1957-07-29 US US674622A patent/US3105813A/en not_active Expired - Lifetime
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2734019A (en) * | 1956-02-07 | Hydrofining naphthenic lubricating oil | ||
| US2706167A (en) * | 1950-06-16 | 1955-04-12 | Sun Oil Co | Process for hydrogenating hydrocarbon oils |
| US2800429A (en) * | 1951-10-01 | 1957-07-23 | British Petroleum Co | Desulphurisation with a cobalt molybdate catalyst containing fluorine, and under equilibrium pressure |
| US2799661A (en) * | 1953-07-15 | 1957-07-16 | Universal Oil Prod Co | Manufacture of molybdenumcontaining catalysts |
| US2760907A (en) * | 1953-09-01 | 1956-08-28 | Union Oil Co | Hydrocarbon conversion process and catalyst |
| US2878180A (en) * | 1954-06-21 | 1959-03-17 | Universal Oil Prod Co | Hydrofining process and catalyst thereof |
| US2787582A (en) * | 1955-04-12 | 1957-04-02 | Universal Oil Prod Co | Production of lubricating oils |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3189540A (en) * | 1962-01-02 | 1965-06-15 | California Research Corp | Production of lubricating oils by catalytic hydrogenation |
| US3284344A (en) * | 1962-11-16 | 1966-11-08 | British Petroleum Co | Hydrocatalytic refining of chlorine containing lubricating oils |
| US3444074A (en) * | 1966-05-02 | 1969-05-13 | Mobil Oil Corp | Hydrodenitrogenation process with a catalyst containing silica-zirconia gel,a metal fluoride and a hydrogenation component |
| US3434964A (en) * | 1966-06-27 | 1969-03-25 | Exxon Research Engineering Co | Removing nitrogen from hydrocarbon oils |
| DE2127656A1 (en) * | 1970-06-05 | 1971-12-09 | Shell Internationale Research Maatschappij N.V., Den Haag (Niederlande) | Process for the production of lubricating oil with a high viscosity index |
| US4581127A (en) * | 1983-10-28 | 1986-04-08 | Mobil Oil Corporation | Method to decrease the aging rate of petroleum or lube processing catalysts |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3114701A (en) | Catalytic hydrodenitrification process | |
| US4306964A (en) | Multi-stage process for demetalation and desulfurization of petroleum oils | |
| US3876523A (en) | Catalyst for residua demetalation and desulfurization | |
| US3530066A (en) | Catalytic hydrotreating process of petroleum hydrocarbons containing asphaltenes | |
| US3016347A (en) | Hydrocarbon purification process and catalyst | |
| US3684695A (en) | Hydrocracking process for high viscosity index lubricating oils | |
| US3383301A (en) | Residue desulfurization with catalyst whose pore volume is distributed over wide range of pore sizes | |
| US3732155A (en) | Two-stage hydrodesulfurization process with hydrogen addition in the first stage | |
| US4374020A (en) | Catalytic hydroconversion process with catalyst retainer | |
| JPS5918438B2 (en) | Hydrocarbon conversion method | |
| US3620960A (en) | Catalytic dewaxing | |
| US3642610A (en) | Two-stage hydrocracking-hydrotreating process to make lube oil | |
| US3493493A (en) | Process for enhancing lubricating oils and a catalyst for use in the process | |
| US3026260A (en) | Three-stage hydrocarbon hydrocracking process | |
| US3053760A (en) | Preparing bright stocks by hydrogenation | |
| US3494854A (en) | Two-stage catalytic hydrogen processing of a lube oil | |
| US4052296A (en) | Hydrogenation process employing a zinc promoted catalyst | |
| US2953519A (en) | Start up procedure for catalytic hydrogen treatment of hydrocarbons | |
| US3078221A (en) | Hydrogenation process for preparation of lubricating oils | |
| US3948763A (en) | Sulfiding process for desulfurization catalysts | |
| US2574451A (en) | Catalytic desulfurization of petroleum hydrocarbons | |
| US2365029A (en) | Refining mineral oil | |
| US3322666A (en) | Chemical process for hydrocracking and hydrorefining of hydrocarbon oils | |
| US3105813A (en) | Hydrogenation of lubricating oils | |
| US3923638A (en) | Two-catalyst hydrocracking process |