US3183749A - Automatic memory storage of the operations of a cutting machine - Google Patents
Automatic memory storage of the operations of a cutting machine Download PDFInfo
- Publication number
- US3183749A US3183749A US145914A US14591461A US3183749A US 3183749 A US3183749 A US 3183749A US 145914 A US145914 A US 145914A US 14591461 A US14591461 A US 14591461A US 3183749 A US3183749 A US 3183749A
- Authority
- US
- United States
- Prior art keywords
- back gage
- relay
- knife
- control
- contacts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005520 cutting process Methods 0.000 title description 28
- 230000005055 memory storage Effects 0.000 title description 5
- 230000033001 locomotion Effects 0.000 claims description 40
- 230000004044 response Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 description 20
- 230000005291 magnetic effect Effects 0.000 description 19
- 239000000463 material Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000123 paper Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 241000209219 Hordeum Species 0.000 description 3
- 235000007340 Hordeum vulgare Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 239000011111 cardboard Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/20—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D7/00—Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D7/01—Means for holding or positioning work
- B26D7/015—Means for holding or positioning work for sheet material or piles of sheets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/162—With control means responsive to replaceable or selectable information program
- Y10T83/166—Removable element carries program
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/566—Interrelated tool actuating means and means to actuate work immobilizer
- Y10T83/5815—Work-stop abutment
- Y10T83/5833—With cyclic means to alter work-stopping position
Definitions
- This invention relates to cutting machines, particularly for cutting stacks of sheet material such as paper, paperboard, cardboard, and the like, and particularly to a novel back gage control system for positioning the piles of such material with respect to the cutting knife.
- the stacks of material to be cut are supported upon a work table, and a guillotine type knife is mounted above the table for powered movement toward the table in a cutting plane which intersects the table surface; Immediately adjacent the knife, and independently operable, there is a clamping member which can be moved under power against the stack to hold it stationary during the cutting stroke of the knife.
- the back gage is in the form of a pusher member which is mounted to move over the surface of the work table for pushing and positioning the stacks of material into and through the cutting plane, thus determining the position at which the stack comes to rest for making the desired cut.
- the present invention is concerned with such a back gage which is power operated, preferably by a reversible motor, and which is actuated automatically to move the stack forward in a predetermined sequence of movements to perform a series of cuts through the stacked material, this predetermined sequence being generally known in the art, and hereinafter designated, as a program or job program. 7
- the program is determined by the operator and causes signals to be transmitted to a back gage control system which governs the starting and stopping of the back gage drive motor.
- the program record is prepared from specifications for the job, and subsequently is used to control operation of the back gage.
- the time required for preparing such a job program and placing it on the machine, with proper alignment procedures, etc., is known as set up time, and this is time when the cutting machine is usually inactive or out of production being prepared for the next job.
- a principal object of this invention is to provide a novel back gage control incorporating a program preparing apparatus which will function during the first actual series of cutting operations of the machine according to the job program to make a record of the back gagernovements during this operation, which record is subsequently used for automatic control of the back gage to reproduce the same sequence of cuts constituting that recorded program.
- Another object of the invention is to provide a novel back gage control for paper cutting machines and the like wherein the program for position control of the back gage is in the form of a series of magnetic impulses or marks recorded on a magnetic storage member, lengthwise thcreof in a spaced pattern which corresponds to the desired movements of the back gage for reproducing the program sequence, and in which the impulses are created or placed upon the storage member during a cutting operation of the cutter knife to assure that the impulses is precisely related to the back gage positions at which subsequent cuts are made in reproducing the program of cuts.
- Another object of the invention is to provide such a back gage control incorporating automatic systems for moving the back gage to the next desired position in the program after a out has been made, and including a control for disabling this automatic advance system when the initial cutting sequence of the job is occurring and the program is being recorded for the first time.
- FIG. 1 is a somewhat schematic side View, withcertain parts shown in section, illustrating the general arrangement of a cutting machine and back gage control in accordance with the invention
- FIG. v2 is a detail view on a larger scale, showing the rear mount for the magnetic control storage or program storage member;
- FIG. 3 is a detail view showing the mounting arrangements for the magnetic recording and/ or receiving heads which are carried by the back gage member, and which scan the program record member mounted parallel to the direction of back gage movement;
- FIG. 4 is a view looking from the front, i.e., the left, of PEG. 3 showing further details of the receiving and/or recording head mountings, and particularly the head which operates on the direction control program channels;
- PEG. 5 is a schematic View illustrating the manner in which a number of job program and direction control channels are distributed over the surface of the program record member;
- FIG. 6 is a somewhat schematic view of a job selector and indicator; and I FIGS. 7A, 7B and 7C are the schematic diagrams of the electrical circuits embodied in the back gage control.
- the cutting machine comprises a work table 10 above which is mounted a knife 12 which reciprocates in a generally vertical plane toward and away from the table to make the desired cuts.
- This knife includes a replaceable blade 13.
- Adjacent to the knife is the clamp member 15 which also moves toward and away from the table, independently of the knife, to clamp the stack or pile of material for cutting.
- Various power operated drives and controls for the knife and clamp are known to those skilled in the art, and since they form no specific part of this invention, they are not shown in detail. It should be understood, however, that the knife and clamp can be operated in any suitable manner, and with the usual interlock arrangement withthe back gage control to pre vent movement of the back gage when a clamping and/or cutting operation is under way.
- the back gage 29 is mounted to move over the surface of table it), towardtand awayfrom the cutting plane of knife 12. Power for movementof the back gage is erived from lead screw 22 which is'driven, in a preferred embodiment, by an electrical motor 25, through a suitable two speed transmission 26. This lead screw engages a nut 28 on the hack gage.
- the lead screw may also be rotated manually by the hand wheel 29 which is fixed thereto and positioned at the forward edge of work table 10.
- the position of the face or pushing area of back gage 29 is conveyed accurately to the operator by means of a tape 34 preferably metallic, which is reeved about a front wheel or pulley 31 and a rear wheel 32.
- a mast 35 extends from the back gage member 2t upwardly adjacent to the tape, and is fastened thereto so that movement of the back gage will produce corresponding movement of the tape.
- the tape preferably is marked in convenient graduations of measurement which can be viewed with reference to an index mark at the front of the machine by the operator.
- the rear wheel 32 is mounted on a vertically extending post 3''! at the rear of the work table, and this post provides support for a rear mounting jaw 40 which, together with a spring loaded forward jaw 42 (PEG.
- netic pulse for example by means of minute ferromagnetic particles in the coating which will become and remain magnetized when exposed to an electrical field, and which can be erased by forming a uniformly magnetized path or channel along the material with an opposed field.
- these pulses in the form of discrete segments of the channels which are oppositely polarized from the rest of the channel, can be aptly described as magnetic marks which will produce a pulse of electricity in a reading head when there is relative movement between the magnetized or marked area and the head.
- marks may therefore be placed upon the memory device in a number of longitudinal paths, each path forming a program record, and, for purposes of illustration these have been marked on FIG. as program channels 1 to 20.
- program channels 1 to 20 There are also intermediate channels for a separate recording and/orreading head, to be used in controlling the forward or reverse operation of the back gage motor 25, and these are appropriately marked 1R, 2R, etc., being in the illustrated example diametrically opposed to the corresponding job program channel.
- the back gage motor 25 drives a two speed transmission 26, and is thus capable of advancing the back gage member 2% at a higher speed and moving it subsequently at a slower speed to its precise desired position.
- Such an arrangement is preferred since it overcomes the possibility that inertia of the back gage member after a relatively long and continuous forward motion maycause it to overshoot the "desired position if stopped from the higher speed.
- ing and/or recording head 52 spaced a predetermined distance behind the head 5h, products stop pulses to halt the back gage in the desired positions.
- These heads are mounted on a'frame 55 which is in turn supported by a pair of spring arms 56, and they are anchored to the back gage member lli. During normal operation, the heads are in the position shown in full lines in FIG. 3, and they niove forward, in unison, along with the back gage memberand thus scan the job program channel with which they are aligned.
- a mast or bracket 57 which extends upwardly and direction causing reverse relative movement between the heads and the program memory device with respect to their normal relative movement during forward motion of back gage member 20.
- This so-called pre-scanning movement is accomplished by shifting the frame 55, by reason of its flexible spring-like mountings 56.
- These 7 form a parallogram type of linkage which assures essentially straight line motion of the heads along the selected channel on which the device is operating.
- a lever 60 is pivotally mounted on a bracket or plate 62 which extends upwardly from the back gage member. At its upper end the lever carries a roller 63, and at its lower end the lever is connected through link 64 with a solenoid 6S.
- An adjustable stop screw 67 normally engages the upper arm of lever 60, and the frame and spring mounting is held in contact with roller 63, and thus arm 6%) is held in contact with screw 67, by a spring 63.
- This spring is anchored at one end to the frame 55 and at its other end to an adjustable tensioning screw 69 which is mounted on the plate 62. This screw forms a convenient adjustment of spring tension, and of course the solenoid 65 functions against this spring to move the heads through a pro-scanning motion the limit of which i is shown by the dotted line illustration in FIG. 3.
- the head 50 senses a mark during its scanning motion, a circuit is completed, as will be described, to cause the back gage to start in the slower speed.
- the heads have returned to their forward or at rest position before the back gage member begins to move. This is accomplished by a momentary energization of solenoid 65, causing the scanning motion at the end of which the heads return to their normal position.
- the circuit diagram, FIG. 7, shows the heads 50, 52 and 58 schematically.
- the head 50 functions only as a reading head, and it will transmit an impulse, upon ap proaching a mark on the memory device through the decelerating amplifier 7d which will in turn energize the relay DA.
- the head 52 will cause the stop amplifier '72 to transmit an operating pulse to the relay forms a mounting for a receiving and/or recording head ing portions of the-material 45 in a particular selected program channel. This is accomplished by having the head 52 connected in one polarity for reading, and in an opposite polarity for recording, as will be explained.
- the head 58 performs the same dual function of recording and/ or reading in the ⁇ same general manner.
- the heads 53 and 52 Because of the nature and function of the heads 53 and 52 they must be spaced apart a certain physical distance, and the machine maybe called upon to perform certain trim cut operations which require a forward movement of the back gage member by a distance less than this spacing between these heads. Such slight movement should be accomplished at the slower speed drive. Therefore, in order to assure that a so-called trim cut mark is located between the heads 50 and 52 when the back gage has halted with the head 52 opposite a mark, it is necessary to perform a scanning operation of the heads prior to resumption of back gage movement.
- Relay F also has a contact in the motor control circuit which will then complete a circuit through the fast or higher speed clutch 86, causing the back gage member to move forward at its higher speed.
- this will transmit a pulse through the amplifier 7% to cause the relay DA to be momentarily energized.
- This relay then opens its normally closed contacts in the holding circuit for relay F, and that relay drops out. At the same time, this will open the contacts of relay F in the circuit of the fast clutch (incorporated'in transmisison 26), and close the normally closed contacts of this same relay in the circuit of the slow clutch 82 in the transmission.
- the back gage proceeds forward at its slower speed.
- Suitable interlock arrangements are provided, which per se form no part of the present invention, to assure that the back gage re mains stationary during the clamping and cutting operation.
- a convenient such interlock may be provided by a solenoid (not shown) which has normally open contacts 90 in the energizing circuit of the coil of relay AA.
- this solenoid can be energized as the knife passes through its up stroke, the contacts 539 will be closed, and relay AA energized.
- This relay has a fir t set of normally open contacts AAl in the energizing circuit of the pre-scanning solenoid 65 (see FIGS. 3 and 7B).
- this solenoid begins to move its armature, it closes a switch 92 which in turn energizes the coil of the IS relay.
- This relay has normally open contacts ISll which then close and normally closed contacts KS2 which open, in the circuit of the relay FWD. Also, contacts 183 in the circuit of brake coil 85 are also closed to hold the brake on during the scanning operation.
- This relay is locked in through its contacts A1 and the normally closed 8A3 contacts.
- the contacts A32 of the AS relay also are closed when it is energized, and complete a circuit through the coil of the F relay which also locks inthrough the contacts F1 and A1 and the back contacts of the slow switch '78.
- contacts A2 and F2 close, completing the circuit 7 through the fast or higher speed clutch coil 80.
- relay AA When the relay contacts 90 are opened, as the knife comes to a stop at its raised position, relay AA is de; energized, and its contactsAAi open to deenergize the pro-scanning solenoid 65. As this solenoid releases its armature, the switch 95 is opened, to deenergize the AS relay, and as the armature reaches its terminal deenergized position switch 92 opens to deenergize the IS relay. This in turn causes the contacts 132 to return to their normal closed condition and, so long as the clamp is raised permitting the clamp interlock switch 97 to close, then the relay FWD will be energized, closing its contacts FWDl, 2 and 3 in the directional control circuit of the back gage motor 25' (FIG. 7C). The back gage will thus proceed forward at its higher speed.
- the pickup head 5% crosses a mark on the program channel which rests between the heads St) and 52 as they stopped, it will send a pulse through the decelerating amplifier 7% to energize the DA relay.
- the head .56 first sensed a stop mark it caused the transmission to shift to the slower speed, and also transferred control from itself to the stop head 52.
- the head 54 ⁇ will pass over this second or trim cut mark without effect on the circuit.
- this is the purpose of the scanning operation, namely to determine whether such a trim cut mark is then between the heads.
- relay SA when the head 52 passes over a pulse during the scanning operation, the resultant pulse through amplifier 72 will energize relay SA, causing the normally closed contacts 8A3 to open momentarily. Therefore, to insure that relay A is kept energized, relay IS must be held energized, to keep contacts 181 closed, until relay SA returns to normal, and contacts 8A3 are again closed. This is accomplished by the condenser C4 which is charged through resistor R5 while the switch 92 is closed. When this switch opens, C4 discharges through the coil of relay IS for the overlap interval required.
- the actual scanning operation occurs when the heads 59 and .52 move backto their normal positions, i.e., from the dotted toward the full line position as shown in FIG. 3.
- relays MK, SC and RC are all energized.
- the normally open contactsSCl are closed, and the normally closed contacts 5C2 are open.
- a circuit is completed from the 24 Volt DC. supply line 198, through the adjustingspotentiometer R2 and through head 52 to ground via thenow closed contacts 8C1.
- This circuit is completed at the contacts TDI since the TD relay is energized by closing of contacts MKT whenthe switch contacts 10512 were closed to energize MK.
- a circuit is completed through 186a and the now closed contacts RC1, through head 58 to ground.
- the normally closed RC2 contacts are, of course, open since relay RC is energized, with switch 1061) closed.
- the potentiometer R4 provides a trim adjustment for this energizing circuit.
- Relay REV will thus close its contacts REV 2 and 3 in the circuit of motor 25 (FIG. 7C) and relay 1R will close its contacts 1R1 which form a holding circuit for these three relays through the rear limitswitch 112.
- Relay REV will open, deenergizing these relays, and causing the back gage motor to stop.
- the desired channel is selected, and this may be done by rotating the scribed head 120 (FIGS. 1 and 6).
- This head has a dial on the front marked with the appropriate positions for the number of channels available, and there is a manually moveable pin 122 for each channel which can be depressed to engage with a detent or stop (not shown) hehind the dial head to hold the head and its attached shaft 123 in the desired position with reference to an index mark 124 adjacent to the dial face.
- Shaft 123 is connected, for example, by the chain and drive sprocket 125 shown schematically in FIG. "1, to a countershaft 126 which extends over the memory tube td and is journaled in the rear post 137.
- Gears 12'? provide a drive connection from the countershaft 126 to the rear mounting jaw 40, therefore the tube with its magnetizable surface 45 will rotate in unison with the dial 120.
- This switch has a first contact 130a (FIG. 7A) which completes a power circuit to the transformer 132 which in turn supplies power to the full wave diode rectifier 133.
- the other contact 13Gb (FIG. 7B) of the spacer switch is in a series circuit with the forward limit switch lot) and the reverse switch 119a, and if these are closed it will complete a circuit to line 134 which provides power for energizing the relays A, AA, and FWD, and in some cases relay F, provided the other contacts are appropriately closed.
- the back gage can be moved forward by manual closing j of either the fast switch 75 or the slow switch 78, preferably the latter, and, as previously described, this will com- 1 vvplete circuits through the forward relay FWD to energize the motor 25 and an appropriate one of the clutch coils 80 or 82,
- the back gage is stopped at the desired position by manual operation of stop switch 135 (FIG. 7B) which will cut the power to the relays, and thereby cause both transmission control coils 3t and 82 to. be deenergized, and will cause the brake coil to be energized.
- the operator then causes the back gage to move forward, by appropriate operation of switches and possibly of hand wheel 29, as previously described, and while viewing the tape 35) to ascertain when the back gage reaches the desired position for the first cut.
- the operator closes switches 145a and 1451).
- Switch 1451) will complete energizing circuits'through the relays MK and SC, and due to closing of contacts MR1, through the relay TD.
- the contacts SCZ are of course open at this time, disconnecting head 52 from amplifier 72.
- relays A, FWD and F will be energized.
- Switch 148 (FIG. 7A) which is in circuit for relay RF
- Switch 149 (FIG. 7B) in the circuits of the lFR, ZFR and G relays is operated simultaneously with switch 148.
- switch 149 is moved from contact 14% to contact 1149b. This breaks the circuit of relays IFR and ZFR and energizes relay G, which seals in through contacts G1, holding this condition until the end of reverse travel of the back gage. Simultaneously, switch 148 energizes the RF relay, since contacts 1R2 are closed. This also completes a-circuit through resistor R6 and condenser Co. Contacts RFl and RFZ, in the circuit of the FWD relay (FIG. 7B) are closed at this time, preparing for the following action.
- head 58 When head 58 reaches the mark identifying the rearward end of travel desired for the back gage, it pulses the RA relay, and this opens contacts RAZ and closes contacts RAl and RA3. When RAZ opens this breaks the circuit holding the relays REV, IR and 2R, and when RAl and RAB close, RA3 energizes relays A, FWD and F, through the already closed contacts RFl and RFZ.
- relay IR when relay IR is deenergized it opened its contacts 1R2 in the circuit of the RF relay, but condenser C6 discharges through resistor R6 into the coil of RF relay, holding it until relay A is energized to seal in the FWD circuits.
- the back gage After a slight overrun, the back gage will start forward at fast speed, and then switches 148 and 149 revert to their normal condition, i.e., as shown.
- the head 53 passes the same mark going forward, there is another pulse to the RA relay, however, its contacts cause no change in the circuits, since relay G is still held energized to prevent a false action of lFR and ZFR.
- the circuit to relay G is broken because relay DA is energized, and its normally closed contacts DAZ open.
- switch 150 closes switch 150.
- the contacts AAZ must be closed, but the AA relay will be energized only when the knife is operated, during which time the contacts 96 are momentarily closed.
- Switch 150 is linked mechanically to switch 152, and the latter will open when switch 150 is closed, thereby opening the circuit to the scanning solenoid 65.
- a pile of material thus can be placed before the back gage andbrought to position where the first cut should be made.
- the contacts 90 will close to energize relay AA, and contact AA2 will close completely a circuit to energize relay CM.
- switch 152 Since switch 152 is open, when the cutting operation is complete there will be no energizing of the scanning relay 65, and thus automatic scanning and subsequent forward operation of the back gage will be prevented. Therefore, the operator can again bring the pile forward manually to the position where the next cut is to be made, and when he operates the knife to perform the cut, at the same time another mark will be placed on the memory device. This sequence can be repeated for all desired positions of that particular job, and thus as the operator performs the cutting operation for the first time, with manual control and positioning of the back gage, he is at the same time making a job control program for that job, and the back gage can subsequently be controlled from this program.
- a paper cutter comprising a power operated knife having a knife control selectively operable to cause a cutting stroke of said knife, a back gage movable toward and away from said knife to position a pile for cutting, drive means for said back gage including a back gage drive control for effecting, controlled movement thereof, a memory device capable of storing a plurality of reference marks indicating desired positions of said back gage, a marking means adapted to form reference marks in said memory device, a reading means for reading the reference marks, control circuitry governed by said reading means and connected to actuate said back gage control; means causing relative movement between said memory device and said marking means and said reading means in correlation to back gage movement for marking and/ or reading said memory device with reference to the position of said back gage, and a selectively actuated marking control connected to energize said marking means and place a reference mark in said memory device automatically in response to each operation of said knife during an initial job cycle for creating a job cycle control sequence in said memory device while simultaneously initially performing the desired sequence of back gag
- said memory device is a magnetic recording medium capable of storing a plurality of magnetically created reference marks indicating desired positions of said back gages
- said marking means and said reading means is a magnetic reading and recording head connected selectively for forming reference marks in the magnetic recording medium and for reading such marks to produce a control pulse.
- the magnetic recording medium includes a plurality of different channels each capable of storing reference marks indicating a sequence of desired positions of said back gage according to desired controlled forward and backward movements of said back gage to complete a job cycle, and means mounting the magnetic recording medium for movement to bring individual selected ones of said channels into operative alignment with said magnetic reading and recording head.
- a power operated cutting machine comprising a guillotine type power operated and remotely controlled knife, a work table, means mounting said knife for movement with respect to said table to cut piles of material positioned thereon beneath said knife, a back gage movable over said table to position piles of material beneath said knife for severance of parts of the piles, a drive means for said back gage including a back gage drive control for effecting controlled movement thereof, a memory device incorporated in said back gage control and capable of storing a plurality of reference marks indicating a sequence of desired positions of said back gage, marker means for forming position control marks in said memory device, reader means arranged to read the control marks and control circuitry connected to said reader means arranged to actuate said back gage drive control for positioning of piles in a sequence according to sub.- sequent marks in said memory device, and a selectively actuata-ble marking control incorporated in said back gage control circuitry and responsive to a cutting operation of said knife, said marking control being operable upon
- a paper cutter comprising a power operated knife having a control selectively operable to cause a cutting stroke of said knife, a back gage movable toward and away from said knife to posit-ion a pile for cutting, drive means for said back gage including a back gage drive control for effecting controlled movement thereof, a memory device extending along the path of movement of said back gage and capable of storing a plurality of magnetically created marks indicating desired positions of said back gage, a magnetic head capable of functioning selectively as a recordinghead or a reading head and movable with said back gage along said memory device, a marking circuit connected to said head for forming control marks in said memory device, a reading circuit connected to said head to read said control marks, control circuitry governed by said reading circuit and connected to actuate said back gage control, and a selectively actuated marking control connected to energize said marking circuit and place a control mark in said memory device automatically 7 in response to each operation of said knife control during References Cited by the Examiner UNITED ST
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Cutting Processes (AREA)
Description
AUTOMATIC MEMORY STORAGE OF THE OPERATIONS OF A CUTTING MACHINE Filed Oct. 18. 1961 4 Sheets-Sheet 1 FIG -1 INVENTORS RUSSELL I. HAYWOOD & BY LEO D. BARLEY ATTORNEYS y 1965 R. l. HAYWOOD ETAL 3,183,749
AUTOMATIC MEMORY STORAGE OF THE OPERATIONS OF A CUTTING MACHINE Filed Oct. 18, 1961 4 Sheets-Sheet 2 FIG-3 IN VEN TORS RUSSELL l. HAYWOOD 8 BY LEO D. BARLEY ATTORNEYS y 18, 1965 R. HAYWOOD ETAL 3,183,749
AUTOMATIC MEMORY STORAGE OF THE OPERATIONS OF A CUTTING MACHINE Filed Oct. 18, 1961 4 Sheets-Sheet I5 -1 TO SWI'I'OH ISA INVENTORS RUSSELL l. HAYWOOD 8 BY LEO D. BARLEY AT TORNEYS FIG-7A y 8, 1965 R. 1. HAYWOOD ETAL 3,183,749
AUTOMATIC MEMORY STORAGE OF THE OPERATIONS OF A CUTTING MACHINE Filed Oct. 18, 1961 4 Sheets-Sheet 4 INVENTORS United States Patent 3 rss 749 AUroMATrc Mmrhnir s'ronAoE or ran ornnarroNs or A CUTTING MACHINE Russell E. Haywood and Leo D. Barley, Dayton, Qhio,
This invention relates to cutting machines, particularly for cutting stacks of sheet material such as paper, paperboard, cardboard, and the like, and particularly to a novel back gage control system for positioning the piles of such material with respect to the cutting knife.
In such machines, the stacks of material to be cut are supported upon a work table, and a guillotine type knife is mounted above the table for powered movement toward the table in a cutting plane which intersects the table surface; Immediately adjacent the knife, and independently operable, there is a clamping member which can be moved under power against the stack to hold it stationary during the cutting stroke of the knife. The back gage is in the form of a pusher member which is mounted to move over the surface of the work table for pushing and positioning the stacks of material into and through the cutting plane, thus determining the position at which the stack comes to rest for making the desired cut. The present invention is concerned withsuch a back gage which is power operated, preferably by a reversible motor, and which is actuated automatically to move the stack forward in a predetermined sequence of movements to perform a series of cuts through the stacked material, this predetermined sequence being generally known in the art, and hereinafter designated, as a program or job program. 7
In general, the program is determined by the operator and causes signals to be transmitted to a back gage control system which governs the starting and stopping of the back gage drive motor. The program record is prepared from specifications for the job, and subsequently is used to control operation of the back gage. The time required for preparing such a job program and placing it on the machine, with proper alignment procedures, etc., is known as set up time, and this is time when the cutting machine is usually inactive or out of production being prepared for the next job.
A principal object of this invention is to provide a novel back gage control incorporating a program preparing apparatus which will function during the first actual series of cutting operations of the machine according to the job program to make a record of the back gagernovements during this operation, which record is subsequently used for automatic control of the back gage to reproduce the same sequence of cuts constituting that recorded program.
Another object of the invention is to provide a novel back gage control for paper cutting machines and the like wherein the program for position control of the back gage is in the form of a series of magnetic impulses or marks recorded on a magnetic storage member, lengthwise thcreof in a spaced pattern which corresponds to the desired movements of the back gage for reproducing the program sequence, and in which the impulses are created or placed upon the storage member during a cutting operation of the cutter knife to assure that the impulses is precisely related to the back gage positions at which subsequent cuts are made in reproducing the program of cuts.
Another object of the invention is to provide such a back gage control incorporating automatic systems for moving the back gage to the next desired position in the program after a out has been made, and including a control for disabling this automatic advance system when the initial cutting sequence of the job is occurring and the program is being recorded for the first time.
Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
In the drawings FIG. 1 is a somewhat schematic side View, withcertain parts shown in section, illustrating the general arrangement of a cutting machine and back gage control in accordance with the invention;
FIG. v2 is a detail view on a larger scale, showing the rear mount for the magnetic control storage or program storage member;
FIG. 3 is a detail view showing the mounting arrangements for the magnetic recording and/ or receiving heads which are carried by the back gage member, and which scan the program record member mounted parallel to the direction of back gage movement;
FIG. 4 is a view looking from the front, i.e., the left, of PEG. 3 showing further details of the receiving and/or recording head mountings, and particularly the head which operates on the direction control program channels;
PEG. 5 is a schematic View illustrating the manner in which a number of job program and direction control channels are distributed over the surface of the program record member;
FIG. 6 is a somewhat schematic view of a job selector and indicator; and I FIGS. 7A, 7B and 7C are the schematic diagrams of the electrical circuits embodied in the back gage control.
Referring to the drawing, and particularly to FIGS. 1-4, the cutting machine comprises a work table 10 above which is mounted a knife 12 which reciprocates in a generally vertical plane toward and away from the table to make the desired cuts. This knife includes a replaceable blade 13. Adjacent to the knife is the clamp member 15 which also moves toward and away from the table, independently of the knife, to clamp the stack or pile of material for cutting. Various power operated drives and controls for the knife and clamp are known to those skilled in the art, and since they form no specific part of this invention, they are not shown in detail. It should be understood, however, that the knife and clamp can be operated in any suitable manner, and with the usual interlock arrangement withthe back gage control to pre vent movement of the back gage when a clamping and/or cutting operation is under way.
The back gage 29 is mounted to move over the surface of table it), towardtand awayfrom the cutting plane of knife 12. Power for movementof the back gage is erived from lead screw 22 which is'driven, in a preferred embodiment, by an electrical motor 25, through a suitable two speed transmission 26. This lead screw engages a nut 28 on the hack gage.
Preferably, and particularly for use during setup operation, the lead screw may also be rotated manually by the hand wheel 29 which is fixed thereto and positioned at the forward edge of work table 10.
The position of the face or pushing area of back gage 29 is conveyed accurately to the operator by means of a tape 34 preferably metallic, which is reeved about a front wheel or pulley 31 and a rear wheel 32. A mast 35 extends from the back gage member 2t upwardly adjacent to the tape, and is fastened thereto so that movement of the back gage will produce corresponding movement of the tape. The tape preferably is marked in convenient graduations of measurement which can be viewed with reference to an index mark at the front of the machine by the operator. The rear wheel 32 is mounted on a vertically extending post 3''!" at the rear of the work table, and this post provides support for a rear mounting jaw 40 which, together with a spring loaded forward jaw 42 (PEG. 1), forms a rotatable support for the program record or memory device, which is in the form of a tube 44 having a surface coating 45 of material capable of retaining a mag. netic pulse, for example by means of minute ferromagnetic particles in the coating which will become and remain magnetized when exposed to an electrical field, and which can be erased by forming a uniformly magnetized path or channel along the material with an opposed field. Actually, these pulses, in the form of discrete segments of the channels which are oppositely polarized from the rest of the channel, can be aptly described as magnetic marks which will produce a pulse of electricity in a reading head when there is relative movement between the magnetized or marked area and the head. It will be understood that marks may therefore be placed upon the memory device in a number of longitudinal paths, each path forming a program record, and, for purposes of illustration these have been marked on FIG. as program channels 1 to 20. There are also intermediate channels for a separate recording and/orreading head, to be used in controlling the forward or reverse operation of the back gage motor 25, and these are appropriately marked 1R, 2R, etc., being in the illustrated example diametrically opposed to the corresponding job program channel.
In a preferred embodiment of the invention, the back gage motor 25 drives a two speed transmission 26, and is thus capable of advancing the back gage member 2% at a higher speed and moving it subsequently at a slower speed to its precise desired position. Such an arrangement is preferred since it overcomes the possibility that inertia of the back gage member after a relatively long and continuous forward motion maycause it to overshoot the "desired position if stopped from the higher speed. I
Accordingly, there is a circuit for changing the drive ratio of transmission 26 from fast to slow. when the back gagev is determined to be approachinga magnetic mark indicating a desired position. This circuit, which will be explained further on in detail, responds to a magnetic receiving head 5d, while a separate magnetic receiv;
ing and/or recording head 52, spaced a predetermined distance behind the head 5h, products stop pulses to halt the back gage in the desired positions. These heads are mounted on a'frame 55 which is in turn supported by a pair of spring arms 56, and they are anchored to the back gage member lli. During normal operation, the heads are in the position shown in full lines in FIG. 3, and they niove forward, in unison, along with the back gage memberand thus scan the job program channel with which they are aligned. Similarly, on the opposite side of the tube 2.4, there is a mast or bracket 57 which extends upwardly and direction causing reverse relative movement between the heads and the program memory device with respect to their normal relative movement during forward motion of back gage member 20. This so-called pre-scanning movement is accomplished by shifting the frame 55, by reason of its flexible spring-like mountings 56. These 7 form a parallogram type of linkage which assures essentially straight line motion of the heads along the selected channel on which the device is operating.
A lever 60 is pivotally mounted on a bracket or plate 62 which extends upwardly from the back gage member. At its upper end the lever carries a roller 63, and at its lower end the lever is connected through link 64 with a solenoid 6S. An adjustable stop screw 67 normally engages the upper arm of lever 60, and the frame and spring mounting is held in contact with roller 63, and thus arm 6%) is held in contact with screw 67, by a spring 63. This spring is anchored at one end to the frame 55 and at its other end to an adjustable tensioning screw 69 which is mounted on the plate 62. This screw forms a convenient adjustment of spring tension, and of course the solenoid 65 functions against this spring to move the heads through a pro-scanning motion the limit of which i is shown by the dotted line illustration in FIG. 3.
If the head 50 senses a mark during its scanning motion, a circuit is completed, as will be described, to cause the back gage to start in the slower speed. The heads have returned to their forward or at rest position before the back gage member begins to move. This is accomplished by a momentary energization of solenoid 65, causing the scanning motion at the end of which the heads return to their normal position.
The circuit diagram, FIG. 7, shows the heads 50, 52 and 58 schematically. The head 50 functions only as a reading head, and it will transmit an impulse, upon ap proaching a mark on the memory device through the decelerating amplifier 7d which will in turn energize the relay DA. Similarly, the head 52 will cause the stop amplifier '72 to transmit an operating pulse to the relay forms a mounting for a receiving and/or recording head ing portions of the-material 45 in a particular selected program channel. This is accomplished by having the head 52 connected in one polarity for reading, and in an opposite polarity for recording, as will be explained. The head 58 performs the same dual function of recording and/ or reading in the {same general manner.
Because of the nature and function of the heads 53 and 52 they must be spaced apart a certain physical distance, and the machine maybe called upon to perform certain trim cut operations which require a forward movement of the back gage member by a distance less than this spacing between these heads. Such slight movement should be accomplished at the slower speed drive. Therefore, in order to assure that a so-called trim cut mark is located between the heads 50 and 52 when the back gage has halted with the head 52 opposite a mark, it is necessary to perform a scanning operation of the heads prior to resumption of back gage movement. Thus, scanning movement is provided by moving the heads 50 and 52 in a Read and stop For purposes of explanatiomit will be assumed that the back gage member 2% is at its farthest or full rear position from the knife, and that it is at rest. The operator initiates movement of the back gage by momentarily pressing the fast switch '75 to complete a circuit through the relay F. Contact Fl closes, energizing relay FWD, and energizing relay A through the normally closed contacts SAl. Relay A in turn completes a holding circuit for the relay F through the back contacts of the slow switch 78, via contacts. Al. Thus, once the fast switch is momentarily depressed, the relay F locks in.
Relay F also has a contact in the motor control circuit which will then complete a circuit through the fast or higher speed clutch 86, causing the back gage member to move forward at its higher speed. When the first mark, on that control channel aligned with the heads, is reached by the head 59, this will transmit a pulse through the amplifier 7% to cause the relay DA to be momentarily energized. This relay then opens its normally closed contacts in the holding circuit for relay F, and that relay drops out. At the same time, this will open the contacts of relay F in the circuit of the fast clutch (incorporated'in transmisison 26), and close the normally closed contacts of this same relay in the circuit of the slow clutch 82 in the transmission. The back gage proceeds forward at its slower speed.
s eaves U brake is engaged to hold lead screw 22, stopping the back gage immediately. The normally closed 8A3 contacts in the circuit relay A are opened concurrently at this time, and that relay is deenergized to interrupt the power supply to the fast and slow clutches (only the latter was operative) and to seal in the brake circuit through the normally closed A3 contacts which are in parallel with the normally open SAT contacts.
Scan and continue In normal operation, once the back gage is stopped the operator will actuate the usual controls to cause the clamp to descend, followed by the knife 12 which will sever the pile at the designated place. Suitable interlock arrangements are provided, which per se form no part of the present invention, to assure that the back gage re mains stationary during the clamping and cutting operation. A convenient such interlock may be provided by a solenoid (not shown) which has normally open contacts 90 in the energizing circuit of the coil of relay AA. Thus, with such an arrangement this solenoid can be energized as the knife passes through its up stroke, the contacts 539 will be closed, and relay AA energized. This relay has a fir t set of normally open contacts AAl in the energizing circuit of the pre-scanning solenoid 65 (see FIGS. 3 and 7B). When this solenoid begins to move its armature, it closes a switch 92 which in turn energizes the coil of the IS relay. This relay has normally open contacts ISll which then close and normally closed contacts KS2 which open, in the circuit of the relay FWD. Also, contacts 183 in the circuit of brake coil 85 are also closed to hold the brake on during the scanning operation.
When the armature of the pre-scan solenoid 65 is moved to its full extent, this causes closing of switch 95 which in turn energizes the coil of the AS relay. Thus, the contacts A51 are closed and complete a circuit through the normally closed contacts SA3 to the coil of relay A.
This relay is locked in through its contacts A1 and the normally closed 8A3 contacts. The contacts A32 of the AS relay also are closed when it is energized, and complete a circuit through the coil of the F relay which also locks inthrough the contacts F1 and A1 and the back contacts of the slow switch '78.
In the lower portion of FIG. 73, contacts A2 and F2 close, completing the circuit 7 through the fast or higher speed clutch coil 80.
When the relay contacts 90 are opened, as the knife comes to a stop at its raised position, relay AA is de; energized, and its contactsAAi open to deenergize the pro-scanning solenoid 65. As this solenoid releases its armature, the switch 95 is opened, to deenergize the AS relay, and as the armature reaches its terminal deenergized position switch 92 opens to deenergize the IS relay. This in turn causes the contacts 132 to return to their normal closed condition and, so long as the clamp is raised permitting the clamp interlock switch 97 to close, then the relay FWD will be energized, closing its contacts FWDl, 2 and 3 in the directional control circuit of the back gage motor 25' (FIG. 7C). The back gage will thus proceed forward at its higher speed.
Slow start forward If during the scanning movement the pickup head 5% crosses a mark on the program channel which rests between the heads St) and 52 as they stopped, it will send a pulse through the decelerating amplifier 7% to energize the DA relay. It should be recalled that when the head .56 first sensed a stop mark it caused the transmission to shift to the slower speed, and also transferred control from itself to the stop head 52. Thus, if there is a mark denoting a trim cut which immediately follows the first mark, at a spacing closer than the physical spacing between the heads 59 and 52, then the head 54} will pass over this second or trim cut mark without effect on the circuit. However, this is the purpose of the scanning operation, namely to determine whether such a trim cut mark is then between the heads.
Assuming that there is a trim cut signal mark, when relay DA is energized this will open the normally closed contacts DAT in the holding circuit of relay F, causing it to be deenergized and thereby opening the contact F2 in the circuit of fast clutch 84 At the same time, normally closed contact F3 will close to complete a circuit through the slow clutch coil 32, and the back gage will move forward at its slower speed.
It should be noted that when the head 52 passes over a pulse during the scanning operation, the resultant pulse through amplifier 72 will energize relay SA, causing the normally closed contacts 8A3 to open momentarily. Therefore, to insure that relay A is kept energized, relay IS must be held energized, to keep contacts 181 closed, until relay SA returns to normal, and contacts 8A3 are again closed. This is accomplished by the condenser C4 which is charged through resistor R5 while the switch 92 is closed. When this switch opens, C4 discharges through the coil of relay IS for the overlap interval required.
The actual scanning operation occurs when the heads 59 and .52 move backto their normal positions, i.e., from the dotted toward the full line position as shown in FIG. 3.
Erasing and marking The functions of erasing programs no longer needed from the channels on which they are recorded is somegage will proceed forward until it opens the forward limit switch 160. Then, referring to FIG. 7A, the erase switches are closed manually. These switches each in clude contacts in several difierent circuits which are actually operated in unison. They are, therefore, desig nated as switch a, shown in the read position, and switch 105i; in the circuit of the MK and SC relays, shown open. Switch 1061: is in the circuit of the RC relay, also shown open, and switch 106a in the circuit of the reversing'control head 58; p
With the erase switches actuated, relays MK, SC and RC are all energized. With respect to the stop head 52, the normally open contactsSCl are closed, and the normally closed contacts 5C2 are open. Since only the switch 105a has been actuated, a circuit is completed from the 24 Volt DC. supply line 198, through the adjustingspotentiometer R2 and through head 52 to ground via thenow closed contacts 8C1. This circuit is completed at the contacts TDI since the TD relay is energized by closing of contacts MKT whenthe switch contacts 10512 were closed to energize MK. At the same time, a circuit is completed through 186a and the now closed contacts RC1, through head 58 to ground. The normally closed RC2 contacts are, of course, open since relay RC is energized, with switch 1061) closed. The potentiometer R4 provides a trim adjustment for this energizing circuit.
The operator then can cause the back gage to proceed to its rearmost position by pressing the reverse switch,
which opens the reverse switch contacts 11am and closes the reverse switch contacts 11012. This causes the reverse relay (REV) to be energized, as well as the IR and ER relays. Relay REV will thus close its contacts REV 2 and 3 in the circuit of motor 25 (FIG. 7C) and relay 1R will close its contacts 1R1 which form a holding circuit for these three relays through the rear limitswitch 112. When the back gage reaches its rearmost position this switch will open, deenergizing these relays, and causing the back gage motor to stop. The rearward movement proceeds at high speed, since contacts 2R1 of the relay 2R are closed completing a circuit through the fast speed clutch 80, while the normally closed contacts 2R2 are opened in the circuit of brake coil 85, to prevent energizing of the brake. These contacts, of course, revert to normal when the rear limit switch 112 opens and the relays REV, 1R and ER are all deenergized.
To mark on the magnetic memory system, the desired channel is selected, and this may be done by rotating the scribed head 120 (FIGS. 1 and 6). This head has a dial on the front marked with the appropriate positions for the number of channels available, and there is a manually moveable pin 122 for each channel which can be depressed to engage with a detent or stop (not shown) hehind the dial head to hold the head and its attached shaft 123 in the desired position with reference to an index mark 124 adjacent to the dial face. Shaft 123 is connected, for example, by the chain and drive sprocket 125 shown schematically in FIG. "1, to a countershaft 126 which extends over the memory tube td and is journaled in the rear post 137. Gears 12'? provide a drive connection from the countershaft 126 to the rear mounting jaw 40, therefore the tube with its magnetizable surface 45 will rotate in unison with the dial 120.
To record a program, the operator must first be sure that the manually operable spacer control switch is closed. This switch has a first contact 130a (FIG. 7A) which completes a power circuit to the transformer 132 which in turn supplies power to the full wave diode rectifier 133. The other contact 13Gb (FIG. 7B) of the spacer switch is in a series circuit with the forward limit switch lot) and the reverse switch 119a, and if these are closed it will complete a circuit to line 134 which provides power for energizing the relays A, AA, and FWD, and in some cases relay F, provided the other contacts are appropriately closed.
The back gage can be moved forward by manual closing j of either the fast switch 75 or the slow switch 78, preferably the latter, and, as previously described, this will com- 1 vvplete circuits through the forward relay FWD to energize the motor 25 and an appropriate one of the clutch coils 80 or 82, The back gage is stopped at the desired position by manual operation of stop switch 135 (FIG. 7B) which will cut the power to the relays, and thereby cause both transmission control coils 3t and 82 to. be deenergized, and will cause the brake coil to be energized.
It will be assumed that the back gage has now been located at the rearward positionat which it must go before starting forward on the job program to be recorded, by adjustment of the hand wheel if needed. This position, of course, will be somewhat forward of the rearmost position attainable by the back gage. The operator can now record a reverse mark on the reverse channel aligned with head 58 by closing switch litia and switch 14Gb. Switch .73 while the RC1 contacts will close completing a circuit from line 1G8 through contacts TDl (the TD relay is energized along with the RC relay, through the diode 141) and through the trimming potentiometer R3 to ground. Thus, a D.C. current of reversed direction from that used for erasing is applied through the head 58, and this will in effect create a small spot or mark on the channel opposite in polarity to the entire remainder of that channel, as is well known in the art of magnetic recording and erasing.
To record the various stop marks on the forward control channel the operator then causes the back gage to move forward, by appropriate operation of switches and possibly of hand wheel 29, as previously described, and while viewing the tape 35) to ascertain when the back gage reaches the desired position for the first cut. To record a mark on the control channel at this position, the operator closes switches 145a and 1451). Switch 1451) will complete energizing circuits'through the relays MK and SC, and due to closing of contacts MR1, through the relay TD. This results in completion of a DC. circuit from line 108 through TDl, through the trimming poten 8 tiometer R1, through switch 145a and the now closed contacts SCl through head 52 to ground. Again, this DC. current is in reverse direction to that used for erasing and thus places a magnetic mark on the channel. The contacts SCZ are of course open at this time, disconnecting head 52 from amplifier 72.
The same operation of pro-scanning and advancing the back gage, either starting in high or low speed, depending upon whether a trim cut mark is sensed during the prescanning, will be repeated for each mark of the job program. After the last mark, the operator may place a mark in the reverse channel which will cause the back gage motor to reverse and will return the back gageto the position located by the previous mark at the rear of the reverse channel, or it is possible to permit the back gage merely to come to its forward limit switch 100. If a reverse mark is used, then the back gage will automatically return itself to the begining of thejob control program, ready to start anew.
Automatic-direction reversal The foregoing discussion has assumed only manual control over the forward and reverse movement of the back gage, as would likely be used during recording operations. There are also circuits for automatically reversing the direction of movement of the back gage, as follows.
Assuming first that the last signal in a control program has been passed, relays A, FWD and F will be energized.
again pulse the RA relay, as this head comes back across the same mark which initiate this sequence, but the circuits are not affected as relay ZFR continues to hold relays REV IR and 2R energized. i
Switch 148 (FIG. 7A) which is in circuit for relay RF,
is a mechanically operated switch arranged to. close only during the major portion of reverse travel of the back gage, and through the reverse to forward movement there- Any suitable linkage, such as a disk operated through a slip clutch from the back gage drive, can be arranged to perform this function. Switch 149 (FIG. 7B) in the circuits of the lFR, ZFR and G relays is operated simultaneously with switch 148.
Theresfore, after the back gage proceeds with its reverse movement, switch 149 is moved from contact 14% to contact 1149b. This breaks the circuit of relays IFR and ZFR and energizes relay G, which seals in through contacts G1, holding this condition until the end of reverse travel of the back gage. Simultaneously, switch 148 energizes the RF relay, since contacts 1R2 are closed. This also completes a-circuit through resistor R6 and condenser Co. Contacts RFl and RFZ, in the circuit of the FWD relay (FIG. 7B) are closed at this time, preparing for the following action.
When head 58 reaches the mark identifying the rearward end of travel desired for the back gage, it pulses the RA relay, and this opens contacts RAZ and closes contacts RAl and RA3. When RAZ opens this breaks the circuit holding the relays REV, IR and 2R, and when RAl and RAB close, RA3 energizes relays A, FWD and F, through the already closed contacts RFl and RFZ.
It should be noted that when relay IR is deenergized it opened its contacts 1R2 in the circuit of the RF relay, but condenser C6 discharges through resistor R6 into the coil of RF relay, holding it until relay A is energized to seal in the FWD circuits.
After a slight overrun, the back gage will start forward at fast speed, and then switches 148 and 149 revert to their normal condition, i.e., as shown. The head 53 passes the same mark going forward, there is another pulse to the RA relay, however, its contacts cause no change in the circuits, since relay G is still held energized to prevent a false action of lFR and ZFR. However, the first time the back gage stops at a mark in the control program, the circuit to relay G is broken because relay DA is energized, and its normally closed contacts DAZ open.
Simultaneous cut and mark From the foregoing it will be understood that once the operator has recorded a program in a particular channel, this program can be repeated at will, until it is erased. The marking sequence described above was described with reference to manual placement of the magnetic marks on the job channel, and this of course can be done with or without a stack of material to be cut according to that program actually placed on the table before the back gage. The present invention provides a control whereby the back gage can be operated, with manual manipulation of its controls, through the first sequence of a particular job, and the job actually performed, by making each cut of the job, While at the same time preparing the record by recording into a channel on the memory device.
To accomplish this function, the operator closes switch 150. in order for this switch to complete a circuit, the contacts AAZ must be closed, but the AA relay will be energized only when the knife is operated, during which time the contacts 96 are momentarily closed. Switch 150 is linked mechanically to switch 152, and the latter will open when switch 150 is closed, thereby opening the circuit to the scanning solenoid 65. A pile of material thus can be placed before the back gage andbrought to position where the first cut should be made. When the knife is actuated the contacts 90 will close to energize relay AA, and contact AA2 will close completely a circuit to energize relay CM.
It is necessary, of course, to have the head 52 energized for marking during this procedure, but the switches 145a and b, which as mentioned are moved simultaneously, will remain in the read position. Since 145b will be open, it is necessary to energize the MK and SC relays, and through closing of MK]. contacts, thus energize the TD relay. Since relay CM is energized it will open its normally closed cont acts CMl and close contacts CMZ and M3. This in effect bypasses the switches 345a and 145%. Contacts CM3 thus energize relays MK, SC, and TD. Contacts CMZ complete a circuit through the closed contacts 5C1 to ground, thus momentarily placing an energizing potential on the head 52. Therefore, each time the knife is operated and the contacts 93 are closed the foregoing sequence will occur, resulting in placement of a mark on the channel of the memor device.
Since switch 152 is open, when the cutting operation is complete there will be no energizing of the scanning relay 65, and thus automatic scanning and subsequent forward operation of the back gage will be prevented. Therefore, the operator can again bring the pile forward manually to the position where the next cut is to be made, and when he operates the knife to perform the cut, at the same time another mark will be placed on the memory device. This sequence can be repeated for all desired positions of that particular job, and thus as the operator performs the cutting operation for the first time, with manual control and positioning of the back gage, he is at the same time making a job control program for that job, and the back gage can subsequently be controlled from this program. In effect, therefore, the op- While the form of apparatus herein described constitutes a preferred embodiment of the invention, it is to be understood that the invention is not limited to this precise form of apparatus, and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.
What is claimed is: r
l. A paper cutter comprising a power operated knife having a knife control selectively operable to cause a cutting stroke of said knife, a back gage movable toward and away from said knife to position a pile for cutting, drive means for said back gage including a back gage drive control for effecting, controlled movement thereof, a memory device capable of storing a plurality of reference marks indicating desired positions of said back gage, a marking means adapted to form reference marks in said memory device, a reading means for reading the reference marks, control circuitry governed by said reading means and connected to actuate said back gage control; means causing relative movement between said memory device and said marking means and said reading means in correlation to back gage movement for marking and/ or reading said memory device with reference to the position of said back gage, and a selectively actuated marking control connected to energize said marking means and place a reference mark in said memory device automatically in response to each operation of said knife during an initial job cycle for creating a job cycle control sequence in said memory device while simultaneously initially performing the desired sequence of back gage position and cutting cycles.
2. A paper cutter as defined in claim 1, wherein said memory device is a magnetic recording medium capable of storing a plurality of magnetically created reference marks indicating desired positions of said back gages, and wherein said marking means and said reading means is a magnetic reading and recording head connected selectively for forming reference marks in the magnetic recording medium and for reading such marks to produce a control pulse.
3. A paper cutter as defined in claim 2, wherein the magnetic recording medium includes a plurality of different channels each capable of storing reference marks indicating a sequence of desired positions of said back gage according to desired controlled forward and backward movements of said back gage to complete a job cycle, and means mounting the magnetic recording medium for movement to bring individual selected ones of said channels into operative alignment with said magnetic reading and recording head.
4. In a power operated cutting machine comprising a guillotine type power operated and remotely controlled knife, a work table, means mounting said knife for movement with respect to said table to cut piles of material positioned thereon beneath said knife, a back gage movable over said table to position piles of material beneath said knife for severance of parts of the piles, a drive means for said back gage including a back gage drive control for effecting controlled movement thereof, a memory device incorporated in said back gage control and capable of storing a plurality of reference marks indicating a sequence of desired positions of said back gage, marker means for forming position control marks in said memory device, reader means arranged to read the control marks and control circuitry connected to said reader means arranged to actuate said back gage drive control for positioning of piles in a sequence according to sub.- sequent marks in said memory device, and a selectively actuata-ble marking control incorporated in said back gage control circuitry and responsive to a cutting operation of said knife, said marking control being operable upon actuation to energize said marker means and place a control mark in said memory device each time said knife is operated during an initial job cycle to create a job cycle sequence of control marks in said memory device 1 1 while'simultaneously performing the desired sequence of back gage positions and cuts to be reproduced by the cutter as a job cycle.
5. A paper cutter comprising a power operated knife having a control selectively operable to cause a cutting stroke of said knife, a back gage movable toward and away from said knife to posit-ion a pile for cutting, drive means for said back gage including a back gage drive control for effecting controlled movement thereof, a memory device extending along the path of movement of said back gage and capable of storing a plurality of magnetically created marks indicating desired positions of said back gage, a magnetic head capable of functioning selectively as a recordinghead or a reading head and movable with said back gage along said memory device, a marking circuit connected to said head for forming control marks in said memory device, a reading circuit connected to said head to read said control marks, control circuitry governed by said reading circuit and connected to actuate said back gage control, and a selectively actuated marking control connected to energize said marking circuit and place a control mark in said memory device automatically 7 in response to each operation of said knife control during References Cited by the Examiner UNITED STATES PATENTS 1,965,341 7/34 Houston 8339 2,475,245 7/49 Leaver et a1. 318-462 2,708,968 5/55 Soave 83-39 2,916,801 12/59 Lyttle 83-71 2,992,578 7/ 61 Hribar 8371 2,994,000 7/ 61 Schoppelrey 83-71 3,031,054 4/62 Thumim 83-71 3,118,334 1/64 Blaha 8371 ANDREW R. JUHASZ, Primary Examiner. CARL w; TOMLIN, Examiner.
Claims (1)
1. A PAPER CUTTER COMPRISING A POWER OPERATED KNIFE HAVING A KNIFE CONTROL SELECTIVELY OPERABLE TO CAUSE TO CUTTING STROKE OF SAID KNIFE, A BACK GAGE MOVABLE TOWARD AND AWAY FROM SAID KNIFE TO POSITION A PILE FOR CUTTING, DRIVE MEANS FOR SAID BACK GAGE INCLUDING A BACK GAGE DRIVE CONTROL FOR EFFECTING CONTROLLED MOVEMENT THEREOF, A MEMORY DEVICE CAPABLE OF STORING A PLURALITY OF REFERENCE MARKS INDICATING DESIRED POSITIONS OF SAID BACK GAGE, A MARKING MEANS ADAPTED TO FORM REFERENCE MARKS IN SAID MEMORY DEVICE, A READING MEANS FOR READING THE REFERENCE MARKS, CONTORL CIRCUITRY GOVERNED BY SAID READING MEANS AND CONNECTED TO ACTUATE SAID BACK GAGE CONTROL, MEANS CAUSING RELATIVE MOVEMENT BETWEEN SAID MEMORY DEVICE AND SAID MARKING MEANS AND SAID READING MEANS IN CORRELATION TO BACK GAGE MOVEMENT FOR MARKING AND/OR READING SAID MEMORY DEVICE WITH REFERENCE TO THE POSITION OF SAID BACK GAGE, AND A SELECTIVELY ACTUATED MARKING CONTROL CONNECTED TO ENERGIZE SAID MARKING MEANS AND PLACE A REFERENCE MARK IN SAID MEMORY DEVICE AUTOMATICALLY IN RESPONSE TO EACH OPERATION OF SAID KNIFE DURING AN INITIAL JOB CYCLE FOR CREATING A JOB CYCLE CONTROL SEQUENCE IN SAID MEMORY DEVICE WHILE SIMULTANEOUSLY INITIALLY PERFORMING THE DESIRED SEQUENCE OF BACK GAGE POSITION AND CUTTING CYCLES.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US145914A US3183749A (en) | 1961-10-18 | 1961-10-18 | Automatic memory storage of the operations of a cutting machine |
| US45607065 US3347120A (en) | 1961-10-18 | 1965-05-17 | Automatic memory storage of the operation of a cutting machine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US145914A US3183749A (en) | 1961-10-18 | 1961-10-18 | Automatic memory storage of the operations of a cutting machine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3183749A true US3183749A (en) | 1965-05-18 |
Family
ID=22515099
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US145914A Expired - Lifetime US3183749A (en) | 1961-10-18 | 1961-10-18 | Automatic memory storage of the operations of a cutting machine |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3183749A (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1965341A (en) * | 1934-04-09 | 1934-07-03 | W E Foshee | Method of making automobile loading blocks |
| US2475245A (en) * | 1947-05-01 | 1949-07-05 | Salem Engineering Canada Ltd | Method and apparatus for the automatic control of machinery |
| US2708968A (en) * | 1953-09-22 | 1955-05-24 | Waldes Kohinoor Inc | Method of producing measured lengths of slide fastener chain |
| US2916801A (en) * | 1957-09-19 | 1959-12-15 | Toronto Type Foundry | Machine control means including work feed programming means |
| US2992578A (en) * | 1955-06-25 | 1961-07-18 | Miehle Goss Dexter Inc | Paper cutting machine with control for spacing device |
| US2994000A (en) * | 1959-09-22 | 1961-07-25 | Fichtel & Sachs Ag | Photoelectric program control |
| US3031054A (en) * | 1958-09-15 | 1962-04-24 | Lawson Company Division Of Mie | Automatic indexing bar |
| US3118334A (en) * | 1964-01-21 | Fig-ib |
-
1961
- 1961-10-18 US US145914A patent/US3183749A/en not_active Expired - Lifetime
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3118334A (en) * | 1964-01-21 | Fig-ib | ||
| US1965341A (en) * | 1934-04-09 | 1934-07-03 | W E Foshee | Method of making automobile loading blocks |
| US2475245A (en) * | 1947-05-01 | 1949-07-05 | Salem Engineering Canada Ltd | Method and apparatus for the automatic control of machinery |
| US2708968A (en) * | 1953-09-22 | 1955-05-24 | Waldes Kohinoor Inc | Method of producing measured lengths of slide fastener chain |
| US2992578A (en) * | 1955-06-25 | 1961-07-18 | Miehle Goss Dexter Inc | Paper cutting machine with control for spacing device |
| US2916801A (en) * | 1957-09-19 | 1959-12-15 | Toronto Type Foundry | Machine control means including work feed programming means |
| US3031054A (en) * | 1958-09-15 | 1962-04-24 | Lawson Company Division Of Mie | Automatic indexing bar |
| US2994000A (en) * | 1959-09-22 | 1961-07-25 | Fichtel & Sachs Ag | Photoelectric program control |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2650830A (en) | Electronic memory device | |
| US3118334A (en) | Fig-ib | |
| GB741337A (en) | Magnetic statistical data storing device | |
| US2916801A (en) | Machine control means including work feed programming means | |
| US4670802A (en) | System for controlling loading and ejection of recording medium on a disc unit | |
| US3100090A (en) | Magnetic tape magazine changer mechanism | |
| US2992578A (en) | Paper cutting machine with control for spacing device | |
| US3317212A (en) | Tape cartridge changer | |
| US4253123A (en) | Control device for a recording and reproducing apparatus | |
| US3183749A (en) | Automatic memory storage of the operations of a cutting machine | |
| US3167264A (en) | Automatic control for tape recorders | |
| US2737158A (en) | Automatic back gauge spacer | |
| US2764639A (en) | Indicia tape controlling apparatus | |
| GB1586421A (en) | Apparatus for executing programme cuts on videotape | |
| US3194094A (en) | Cutting machine having magnetic storage mechanism for control of work feed means | |
| US3176556A (en) | Control for the back gage of a cutting machine | |
| US3245556A (en) | Magnetic tape control systems for guillotine type cutting machine | |
| US3347120A (en) | Automatic memory storage of the operation of a cutting machine | |
| US3174370A (en) | Magnetic tape control systems for guillotine type cutting machine | |
| US3383065A (en) | Strip punching and feeding apparatus | |
| JPS6047663B2 (en) | Dake Tating Machine | |
| US3195384A (en) | Cutting machines having magnetic storage means to control work feed means | |
| US3618788A (en) | Paper cutter control | |
| US3623619A (en) | Paper cutter magnetic spacer | |
| US3228537A (en) | Variable back gauge travel adjustment means for guillotine type cutting machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HARRIS GRAPHICS CORPORATION MELBOURNE, FL A DE CO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HARRIS CORPORATION;REEL/FRAME:004227/0467 Effective date: 19830429 |