US3152009A - Electroless nickel plating - Google Patents
Electroless nickel plating Download PDFInfo
- Publication number
- US3152009A US3152009A US195405A US19540562A US3152009A US 3152009 A US3152009 A US 3152009A US 195405 A US195405 A US 195405A US 19540562 A US19540562 A US 19540562A US 3152009 A US3152009 A US 3152009A
- Authority
- US
- United States
- Prior art keywords
- nickel
- aqueous solution
- per liter
- bath
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 108
- 229910052759 nickel Inorganic materials 0.000 title claims description 48
- 238000007747 plating Methods 0.000 title claims description 19
- 239000007864 aqueous solution Substances 0.000 claims description 34
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 32
- 239000011777 magnesium Substances 0.000 claims description 30
- 229910052749 magnesium Inorganic materials 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 19
- 229910001453 nickel ion Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 13
- GQZXNSPRSGFJLY-UHFFFAOYSA-N hydroxyphosphanone Chemical compound OP=O GQZXNSPRSGFJLY-UHFFFAOYSA-N 0.000 claims description 11
- 229940005631 hypophosphite ion Drugs 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 7
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 7
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 7
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 6
- -1 organic acid salt Chemical class 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 5
- 150000002815 nickel Chemical class 0.000 description 5
- 241001156002 Anthonomus pomorum Species 0.000 description 4
- 229910001369 Brass Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000010951 brass Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000004673 fluoride salts Chemical class 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- FBMUYWXYWIZLNE-UHFFFAOYSA-N nickel phosphide Chemical compound [Ni]=P#[Ni] FBMUYWXYWIZLNE-UHFFFAOYSA-N 0.000 description 2
- NLEUXPOVZGDKJI-UHFFFAOYSA-N nickel(2+);dicyanide Chemical compound [Ni+2].N#[C-].N#[C-] NLEUXPOVZGDKJI-UHFFFAOYSA-N 0.000 description 2
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 description 2
- DBJLJFTWODWSOF-UHFFFAOYSA-L nickel(ii) fluoride Chemical compound F[Ni]F DBJLJFTWODWSOF-UHFFFAOYSA-L 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910017665 NH4HF2 Inorganic materials 0.000 description 1
- 229910021205 NaH2PO2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- HQWKKEIVHQXCPI-UHFFFAOYSA-L disodium;phthalate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C([O-])=O HQWKKEIVHQXCPI-UHFFFAOYSA-L 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical compound OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
- C23C18/36—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
Definitions
- This invention relates to the deposition of nickel by chemical reduction as opposed to electrolytic deposition and is more particularly concerned with a bath therefor and a method for the electroless deposition of nickel on magnesium, aluminum, iron and brass and other catalytic basis metals.
- magnesium metal is desired because of its structural advantages including strength and reduced weight, but because its wearability or resistance to corrosion does not meet the requirements of a particular application, coating with a nickel surface would be desirable.
- This nickel coating would increase the corrosion resistance and Wearability of the magnesium base material without appreciably aflecting its structural and Weight advantages.
- Representative applications where the process can be utilized to increase wear resistance and resistance to corrosion of various base metals include printing plates, aircraft tubing, fluid couplings, internal combustion engine parts, electronic equipment parts having complex shapes, etc. ticularly those shapes dificulty plateable by conventional electrolyte methods.
- Another use of the nickel surface is as a base for subsequent coatings of copper, chromium, tin, nickel, zinc, cadmium, silver, gold, etc., using conventional baths and procedures.
- Another object of the present invention is to provide an electroless nickel plating bath suitable for use on magnesium. Another objectof the present invention is to provide an electroless nickel plating procedure applicable to magnesium and which results in a nickel plate which is continuous, hard, semi-bright, has good adhesion, and which can be bufled to a mirror-like surface.
- a further object of the present invention is the Other applications are also possible, par-' provision of an electroless nickel plating procedure whereby hydrogen fluoride, nickel salts other than nickel chloride or sulfate, a compatible hypophosphite ion, an organic acid salt and optionally potassium or ammonium fluoride are mixed in an aqueous solution, and used to treat a catalytic basis metal surface, such as, iron, aluminum, brass or magnesium metal surfaces, at a pH between 3.5 and 7.0 and at a temperature between and 212 degrees Fahrenheit thereby to yield a hard, adherent, semi-bright, nickel plate on the metal.
- a catalytic basis metal surface such as, iron, aluminum, brass or magnesium metal surfaces
- an electroless nickel plating bath comprising nickel ions, fluoride ions, and hypophosphite ions in water.
- This bath also must contain at a maximum only trace quantities of chloride ion and sulfate ion. It has been found that such a bath will plate magnesium without attack of the magnesium.
- a pH for the bath below 7.0 is required and to prevent excessive attack of the metal to be plated, a pH below about 3.5 is usually avoided.
- the pH is maintained between 5.0 and 6.8 and the most desirable pH is 6.5 for most uses.
- Control of the pH may be accomplished by adding ammonium hydroxide, hydrogen fluoride, or other acidic or basic materials compatible with the bath.
- a watersoluble organic acid salt is employed as buffering agent to maintain pH control.
- Representative salts of organic acids which may be employed as buffers include, for example, sodium citrate, sodium succinate, sodium tartrate, sodium phthalate, sodium lactate, potassium citrate, etc. that is, a soluble salt which affects the pH so as to maintain the solution in the desired pH range.
- the presence of the fluoride ion is usually accomplished by the addition of a 50 percent aqueous solution of hydrogen fluoride, however, fluoride salts may be employed, such as, for example, sodium, potassium, ammonium, nickel, etc. fluorides.
- fluoride salts where hydrogen fluoride is also employed, some mass action repression of the hydrogen fluoride is obtained, thereby affording some pH control.
- hydrofluoric acid is used as a 50 percent aqueous solution, quantities from 5.7 cc. per liter to 98 cc. per liter may be employed to obtain a final bath concentration between .15 and 2.5 moles per liter of fluoride.
- the mole per liter concentration of fluoride employed is from .15 to .75 and desirably at .32 mole per liter.
- the concentration of the nickel ion in the final bath may be varied from .04 to 1.4 moles per liter, but is preferably present in concentrations from .08 to .32, from .04 to .16 mole per liter also being satisfactory and desirably a concentration of .08 mole per liter is used.
- nickel chloride and nickel sulfate may not be used in the bath and process of the present invention as the source of nickel ions. When these materials are employed, extensive gassing of magnesium occurs. Therefore, the use of nickel chloride or nickel sulfate is not contemplated within the scope of this invention and are specifically excluded herefrom.
- a water-soluble salt of a hypophosphite is employed such that the resulting gram ion concentration of hypophosphite ion is between .04 and 2.6 moles per liter, preferably .04 to .55 mole per liter and desirably .18 mole per liter.
- 20 grams per liter of NaH PO -H O are employed.
- a bath of the above composition When a bath of the above composition has been prepared, it may be used to treat a catalytic metal surface which has been cleaned to remove any oxide, oil, or other surface contamination which might be present. If such surface contaminations are allowed to remain, a firmly adhered nickel plate is not usually obtained. Either brushing with a steel brush, sand blasting, or the use of pickling and surface activating pre-treatments may be employed. The surface activation and cleaning techniques are conventional and are used in a conventional manner to provide a relatively clean surface for the deposition of the nickel.
- the article to be plated after surface treatment is immersed in a bath such as hereinbefore described while a bath is maintained at a temperature from 90 to 212 degrees Fahrenheit, preferably from 160 to 212 degrees Fahrenheit, and desirably at 170 to 180 degrees Fahrenheit.
- the surfaces to be plated are immersed in the bath at the pre-seleeted temperature for a period of time from 3 minutes to a number of hours depending upon the particular characteristics of the plate desired.
- the article is separated from the bath, washed to remove any bath residue, and, if desired, buffed to give a hard, bright, adherent, nickel plate having thicknesses up to and above three thousandths of an inch.
- the bath of the present invention is particularly suited for magnesium, it may be used on other catalytic basis metal, such as, for example, iron, aluminum, brass, etc. surfaces with facility.
- the bath of the present invention appears to be more stable than the prior art baths by virtue of the absence of substantial precipitation as is found in prior art baths after use.
- Example 2 To show that increased plating rates may be obtained from increased fluoride concentrations, the following baths were prepared and the procedure of Example 1 repeated with the folowing results:
- Example 3 Other examples of baths which have been used to give bright and adherent electroless nickel deposits are:
- Example 4 Many types of magnesium alloys have been plated utilining the baths of the present invention including:
- magnesium used herein and in the appended claims means magnesium and the magnesium base alloys in which the magnesium content exceeds 75 percent by weight.
- a process for electroless nickel plating which comprises;
- aqueous solution maintained at a temperature of from about to about 212 F.
- said aqueous solution consisting essentially of from about 0.15 to about 2.5 moles fluoride ion per liter of said aqueous solution, from about 0.04 to about 1.4 moles nickel ion per liter of said aqueous solution and from about 0.04 to about 2.6 moles hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being buffered to a pH between about 3.7 and 7.0.
- a process for electroless nickel plating which comprises;
- a magnesium based metal article immersing a magnesium based metal article in an aqueous solution maintained at a temperature of from about 90 to about 212 F., said aqueous solution consisting essentially of from about 0.15 to about 2.5 moles fluoride ion per liter of said aqueous solution, from about 0.04 to about 1.4 moles nickel ion per liter of said aqueous solution and from about 0.04 to about 2.6 moles hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being buttered to a pH between about 3.7 and 7.0,
- a process for electroless nickel plating which comprises;
- a magnesium based metal article immersing a magnesium based metal article in an aqueous solution maintained at a temperature of from about 90 to about 212 F., said aqueous solution consisting essentially of from about 0.15 to about 2.5 moles fluoride ion per liter of said aqueous solution, from about 0.04 to about 1.4 moles nickel ion per liter of said aqueous solution and from about 0.04 to about 2.6 moles hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace, quantities of chloride and sulfate ions. and being buffered to a pH between about 3.7 and. 7.0,
- a process for electroless nickel plating which comprises;
- a magnesium based metal article immersing a magnesium based metal article in an aqueous, solution maintained at a temperature of from about 90 to about, 212 F., said aqueous solution consisting essentially of from about 0.15 to about 0.75 mole fluoride ion per liter .of said aqueous solution, from about 0.08 to about 0.32 mole nickel ion per liter of said aqueous solution and from about 0.04 to about 0.55 mole hypophosphite ion per liter of said aqueous solution, said nickel ion being obtained from a nickel compound selected from the group consisting of basic nickelous carbonate, nickel carbonate, nickel cyanide, nickel fluoride, nickel acid fluoride, nickel hydroxide, nickel oxalate, nickel oxide, nickel phosphide and nickel hypophosp-hate, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being bufiered to a pH between about 5.0 and 6.8,
- a process for electroless nickel plating which comprises;
- a bath for nickel plating by chemical reduction of magnesium and its alloys consisting essentially of an aqueous solution of a nickel salt and a hypophosphite and a fluoride, wherein't-he nickel ion is furnished essentially from nickel carbonate and wherein the concentration of nickel is .04 to 1.4 moles .per liter, of hypophosphite ion is .04 to 2.6 moles per liter, and of fluoride ion is .15 to 2.5 moles per liter, buifered to a pH between 3.5 to 7.0.
- a bath for nickel plating by chemical reduction of magnesium and its-alloys consisting essentially of an aqueous solution of a nickel salt and a hypophosphite and a fluoride, wherein the nickel ion is furnished essentially from basic nickel carbonate corresponding to the empirical formula 2NiCO -3Ni(OH) -4H' O and wherein the concentration of nickel is .04 .to 1.4 moles per liter, of hypophosphite ion is .04 to 2.6 moles per liter, and of fluoride ion is .15 to 2.5 moles per liter, buflfered to a pH between 3.5 to 7.0.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Description
United States Patent 3,152,009 ELECTROLESS NICKEL PLATING Herbert K. De Long, Midland, Mich, assignor to The Dow Chemical Company, Midland, Mich, a corporation of Delaware No Drawing. Continuation of application Ser. No. 725,510, Apr. 1, 1958. This application May 17, 1962, Ser. No. 195,405
7 Claims. (Cl. 117-130) This invention relates to the deposition of nickel by chemical reduction as opposed to electrolytic deposition and is more particularly concerned with a bath therefor and a method for the electroless deposition of nickel on magnesium, aluminum, iron and brass and other catalytic basis metals.
This application is a continuation of my prior-filed application Serial No. 725,510, filed April 1, 1958, now abandoned, which was a continuation-in-part of application Serial No. 663,871 filed June 6, 1957, now abandoned.
In United States Patent 2,532,283, Brenner, there is described a method of nickel plating by chemical reduction. This patented process uses nickel chloride or nickel sulfate in combination with a hypophosphite to accomplish deposition of nickel on a metallic surface without the application of an electric current. This process has variously been called electroless or chemical nickel plating. However, when magnesium is placed in the Brenner bath, substantial etching of the magnesium and foaming occurs as the acid solution attacks the metal, or else, the magnesium dissolves in the solution and replaces the nickel therein. Thus, the Brenner bath has not been suitable for the deposition of nickel on magnesium.
Another United States Patent 2,694,019, Gutzeit, shows the feasibility of using fluoride concentrations below 0.12 mole per liter, but indicates that greater concentrations of fluoride ion decrease the plating rate and adversely affects the stability of the bath. This patent, however, shows only the use of nickel chloride as the source of nickel ions. When magnesium is placed in the Gutzeit bath, a similar result is obtained as is obtained vwith the Brenner bath, i.e., etching and foaming of the magnesium surface.
Where the use of magnesium metal is desired because of its structural advantages including strength and reduced weight, but because its wearability or resistance to corrosion does not meet the requirements of a particular application, coating with a nickel surface would be desirable. This nickel coating would increase the corrosion resistance and Wearability of the magnesium base material without appreciably aflecting its structural and Weight advantages. Representative applications where the process can be utilized to increase wear resistance and resistance to corrosion of various base metals include printing plates, aircraft tubing, fluid couplings, internal combustion engine parts, electronic equipment parts having complex shapes, etc. ticularly those shapes dificulty plateable by conventional electrolyte methods. Another use of the nickel surface is as a base for subsequent coatings of copper, chromium, tin, nickel, zinc, cadmium, silver, gold, etc., using conventional baths and procedures.
It is, therefore, a principal object of the present invention to provide an electroless nickel plating bath suitable for use on magnesium. Another objectof the present invention is to provide an electroless nickel plating procedure applicable to magnesium and which results in a nickel plate which is continuous, hard, semi-bright, has good adhesion, and which can be bufled to a mirror-like surface. A further object of the present invention is the Other applications are also possible, par-' provision of an electroless nickel plating procedure whereby hydrogen fluoride, nickel salts other than nickel chloride or sulfate, a compatible hypophosphite ion, an organic acid salt and optionally potassium or ammonium fluoride are mixed in an aqueous solution, and used to treat a catalytic basis metal surface, such as, iron, aluminum, brass or magnesium metal surfaces, at a pH between 3.5 and 7.0 and at a temperature between and 212 degrees Fahrenheit thereby to yield a hard, adherent, semi-bright, nickel plate on the metal. Other objects will become apparent hereinafter.
The foregoing and additional objects have been accomplished by the provision of an electroless nickel plating bath comprising nickel ions, fluoride ions, and hypophosphite ions in water. This bath also must contain at a maximum only trace quantities of chloride ion and sulfate ion. It has been found that such a bath will plate magnesium without attack of the magnesium. In order to maintain the nickel in solution, a pH for the bath below 7.0 is required and to prevent excessive attack of the metal to be plated, a pH below about 3.5 is usually avoided. Preferably, the pH is maintained between 5.0 and 6.8 and the most desirable pH is 6.5 for most uses. Control of the pH may be accomplished by adding ammonium hydroxide, hydrogen fluoride, or other acidic or basic materials compatible with the bath. Preferably, a watersoluble organic acid salt is employed as buffering agent to maintain pH control. Representative salts of organic acids which may be employed as buffers include, for example, sodium citrate, sodium succinate, sodium tartrate, sodium phthalate, sodium lactate, potassium citrate, etc. that is, a soluble salt which affects the pH so as to maintain the solution in the desired pH range. The presence of the fluoride ion is usually accomplished by the addition of a 50 percent aqueous solution of hydrogen fluoride, however, fluoride salts may be employed, such as, for example, sodium, potassium, ammonium, nickel, etc. fluorides. By the addition of fluoride salts where hydrogen fluoride is also employed, some mass action repression of the hydrogen fluoride is obtained, thereby affording some pH control. When hydrofluoric acid is used as a 50 percent aqueous solution, quantities from 5.7 cc. per liter to 98 cc. per liter may be employed to obtain a final bath concentration between .15 and 2.5 moles per liter of fluoride. Preferably the mole per liter concentration of fluoride employed is from .15 to .75 and desirably at .32 mole per liter.
The concentration of the nickel ion in the final bath may be varied from .04 to 1.4 moles per liter, but is preferably present in concentrations from .08 to .32, from .04 to .16 mole per liter also being satisfactory and desirably a concentration of .08 mole per liter is used. Unexpectedly, it has been found that nickel chloride and nickel sulfate may not be used in the bath and process of the present invention as the source of nickel ions. When these materials are employed, extensive gassing of magnesium occurs. Therefore, the use of nickel chloride or nickel sulfate is not contemplated within the scope of this invention and are specifically excluded herefrom. While basic nickelous carbonate is usually employed to obtain the nickel ion concentration, other soluble nickel salts which will furnish the nickel ion to the final bath, such as, for example, nickel carbonate, nickel cyanide, nickel fluoride, nickel acid fluoride, nickel hydroxide, nickel oxalate, nickel oxide, nickel phosphide, nickel hypophosphate, etc. may be used. A water-soluble salt of a hypophosphite is employed such that the resulting gram ion concentration of hypophosphite ion is between .04 and 2.6 moles per liter, preferably .04 to .55 mole per liter and desirably .18 mole per liter. To achieve a concentration of hypophosphite ion of .18 mole per liter, 20 grams per liter of NaH PO -H O are employed.
When a bath of the above composition has been prepared, it may be used to treat a catalytic metal surface which has been cleaned to remove any oxide, oil, or other surface contamination which might be present. If such surface contaminations are allowed to remain, a firmly adhered nickel plate is not usually obtained. Either brushing with a steel brush, sand blasting, or the use of pickling and surface activating pre-treatments may be employed. The surface activation and cleaning techniques are conventional and are used in a conventional manner to provide a relatively clean surface for the deposition of the nickel. The article to be plated after surface treatment is immersed in a bath such as hereinbefore described while a bath is maintained at a temperature from 90 to 212 degrees Fahrenheit, preferably from 160 to 212 degrees Fahrenheit, and desirably at 170 to 180 degrees Fahrenheit. The surfaces to be plated are immersed in the bath at the pre-seleeted temperature for a period of time from 3 minutes to a number of hours depending upon the particular characteristics of the plate desired. Thereafter, the article is separated from the bath, washed to remove any bath residue, and, if desired, buffed to give a hard, bright, adherent, nickel plate having thicknesses up to and above three thousandths of an inch.
While the bath of the present invention is particularly suited for magnesium, it may be used on other catalytic basis metal, such as, for example, iron, aluminum, brass, etc. surfaces with facility. The bath of the present invention appears to be more stable than the prior art baths by virtue of the absence of substantial precipitation as is found in prior art baths after use.
The following examples are given to illustrate the process and bath of the present invention but are not to be construed as limiting the bath or process thereto.
Comparative Prior Art A Mg base alloy having a nominal composition of 3 percent aluminum, 1 percent zinc, balance magnesium, panel Whose dimensions were 1 inch by 2 inches by 0.040 inch were immersed in a conventional nickel chloride electroless nickel solution of the following composition: (US. Patent 2,532,283Brenner).
NiCl 6H O grams/liter 30 NaH PO 'H O dO. NH Cl do 50 Na C H O SH O, sodium citrate do 100 pH 8.4 Temperature degrees Fahrenheit- 170-1 80 A similar panel to that used above was immersed in an acid fluoride electroless nickel bath of the following composition:
HF (50 percent) milliliters/1iter 7 2NiCO 3Ni(OH) -4H O grams/liter NaH PO -H O dO... N9-3C5H507'5Hz0' dQ. KF do 10 pH 6.5 Temperature degrees Fahrenheit 175 The original weight of the panel was 10.6718 grams and the weight of the panel after 30 minutes immersion was 10.8551 grams or a weight gain of .1833 gram. The plating rate for thickness was 0.0006 inch per hour of a continuous, hard, semi-bright metallic in color, nickel plate having a good adhesion to the magnesium surface. There was no evidence of chemical attack on the basis metal.
Example 2 To show that increased plating rates may be obtained from increased fluoride concentrations, the following baths were prepared and the procedure of Example 1 repeated with the folowing results:
HF (70%) cc./l 5 2NiCo +3Ni(OI-I) -4H O gm./l 10 NaH PO -H O grn./l 20 N33C5H507' gm./l Temperature F pH 6.5 Rate, 0.0001" per hour.
HF (70%) cc./l 5 2NiCO +3Ni(OH) -4H O gm./l 10 NaH PO -H O gm./l Na C5H5O72H2O gm./l NH HF gm./l 5 Temperature F 175 pH 6.5 Rate, 0.0005" per hour.
HF (70%) cc./l 5 2NiCO -3Ni(OH) -4H O gm./l 10 NaH PO -H O gm./l 20 Na C H O '2H O glTL/l NH HF gm./1 10 Temperature F 175 pH 6.5 Rate, 0.0008" per hour.
HF (70%) cc./l 5 2NiCO -3Ni(OH) -4H O gm./l 10 NaH PO -H O gm./l 20 Na C I-I O -2H O gm./l NH HF gm./l 15 Temperature F 17 5 pH 6.5 Rate, 0.001 per hour.
HF (70%) cc./1 5 2NiCO -3Ni(OH) -4H O gm./l 10 NaH PO 'H O gm./l Na C H O '2H O gm./l NH HF gm./l 20 Temperature F 175 pH 6.5 Rate, .0010" per hour.
HF (70%) cc./l 5 2NiCO -3Ni(OH) -4H O gm./l 10 NEHZPOZ'HZO gm./l Na C H5O72H2O gm./l NH HF gm./l 25 Temperature F 175 pH 6.5
Rate, .0012" per hour.
with all of the above baths, a bright, nickel deposit having good adhesion was obtained.
Example 3 Other examples of baths which have been used to give bright and adherent electroless nickel deposits are:
NiF -4H O gm./l 14 NaH PO -H O gm./l 20 Na C H O 5H O gm./l KF gm /1 1O Temper ature F 175 pH 6.8 Rate, 0.0009" per hour.
HF (50%) cc./l 7 2NiCO -3Ni(OH) -4H O gm./l 10 NaH PO -H O gm./l 20 Na3C5H5O75H gm./l KF gm./l 10 Temperature F 175 pH 6.5 Rate, 0.0009" per hour.
HF (50%) cc./l 7 Nico g /1 10 NaH PO -H O g./l Na3C H507'5H2O g./l. KF g./l 10 Temperature F 175 pH 6.5 Rate, 0.0010" per hour.
HF (50%) /l 7 2NiCO -3Ni(OH) -4H O g./1 10 NaH2PO2'H2O g./1 N33C5H5072H20 g./l KF g./l 10 Temperature F-.. 17 5 p 6.5 Rate, 0.0008" per hour.
HF (70%) cc./l 5 2NiCO -3Ni(OH) -4H O g./l 10 NEHZPOZ'HZO g./1 N21 C H O -2H O g./l 10 NHJ-IF g /l 10 Temperature F 175 pH 6.5 Rate, 0.0008" per hour.
HF (70%) cc./l 5 2NiCO '3Ni(OH) -4H O g./l 10 NaH PO -H O g./l 20 Na3C5H507'2H2O g./l KF g./l 20 Temperature F 175 p 6.5 Rate, 0.0010 per hour.
HF (70%) cc./l 5 2NiCO -3Ni(OH) -4H O g./l l0 NaHzpogHzo g./1.. N33C5H5072Hz0 g./l NH4HF2 g./l 20 Temperature F 175 P 6.5 Rate, 0.0010" per hour.
6 Example 4 Many types of magnesium alloys have been plated utilining the baths of the present invention including:
While the invention has been particularly described with respect to magnesium and the magnesium base alloys, it is to be understood that the bath and process of the present invention are applicable to other catalytic basis metals including, for example, iron, aluminum, aluminum base alloys, brass, etc.
The term magnesium used herein and in the appended claims means magnesium and the magnesium base alloys in which the magnesium content exceeds 75 percent by weight.
Various modifications may be made in the bath and method of the present invention without departing from the spirit or scope thereof and it is to be understood that I limit myself only as defined in the appended claims.
I claim:
1. A process for electroless nickel plating which comprises;
immersing a magnesium based metal article in an aqueous solution maintained at a temperature of from about to about 212 F., said aqueous solution consisting essentially of from about 0.15 to about 2.5 moles fluoride ion per liter of said aqueous solution, from about 0.04 to about 1.4 moles nickel ion per liter of said aqueous solution and from about 0.04 to about 2.6 moles hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being buffered to a pH between about 3.7 and 7.0.
2. A process for electroless nickel plating which comprises;
(1) immersing a magnesium based metal article in an aqueous solution maintained at a temperature of from about 90 to about 212 F., said aqueous solution consisting essentially of from about 0.15 to about 2.5 moles fluoride ion per liter of said aqueous solution, from about 0.04 to about 1.4 moles nickel ion per liter of said aqueous solution and from about 0.04 to about 2.6 moles hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being buttered to a pH between about 3.7 and 7.0,
(2) maintaining the article in said solution for at least 3 minutes, and
(3) separating the nickel plated article from said solution.
3. A process for electroless nickel plating which comprises;
(1) immersing a magnesium based metal article in an aqueous solution maintained at a temperature of from about 90 to about 212 F., said aqueous solution consisting essentially of from about 0.15 to about 2.5 moles fluoride ion per liter of said aqueous solution, from about 0.04 to about 1.4 moles nickel ion per liter of said aqueous solution and from about 0.04 to about 2.6 moles hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace, quantities of chloride and sulfate ions. and being buffered to a pH between about 3.7 and. 7.0,
(2) maintaining the article in said solution for at least 3 minutes, and
(3) separating the nickel plated article from said solution, and
(4) washing the nickel plated article to, remove bath residue therefrom,
4. A process for electroless nickel plating, which comprises;
(1) immersing a magnesium based metal article in an aqueous, solution maintained at a temperature of from about 90 to about, 212 F., said aqueous solution consisting essentially of from about 0.15 to about 0.75 mole fluoride ion per liter .of said aqueous solution, from about 0.08 to about 0.32 mole nickel ion per liter of said aqueous solution and from about 0.04 to about 0.55 mole hypophosphite ion per liter of said aqueous solution, said nickel ion being obtained from a nickel compound selected from the group consisting of basic nickelous carbonate, nickel carbonate, nickel cyanide, nickel fluoride, nickel acid fluoride, nickel hydroxide, nickel oxalate, nickel oxide, nickel phosphide and nickel hypophosp-hate, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being bufiered to a pH between about 5.0 and 6.8,
(2) maintaining the article in said solution for a period of time of from about 3 minutes to a number of hours, and
(3) separating the resulting nickel plated articles from said solution.
5. A process for electroless nickel plating which comprises;
(l) immersing a magnesium based metal article in an aqueous solution maintained at a temperature of from about to about 212'F., said aqueous solution consisting essentially of about 0.32 mole fluoride ion per liter of said aqueous solution, about 0.08 mole nickel ion per liter of said aqueous solution, said nickel ion being furnished substantially from nickel carbonate and about 0.18 mole hypophosphite ion per liter of said aqueous solution, said solution containing at a maximum only trace quantities of chloride and sulfate ions and being buifered'to a pH of about 6.5,
(2) maintaining the article in said solution for a period of time of from about 3 minutes to a number of hours, and V (3) separating the resulting said solution.
6. A bath for nickel plating by chemical reduction of magnesium and its alloys consisting essentially of an aqueous solution of a nickel salt and a hypophosphite and a fluoride, wherein't-he nickel ion is furnished essentially from nickel carbonate and wherein the concentration of nickel is .04 to 1.4 moles .per liter, of hypophosphite ion is .04 to 2.6 moles per liter, and of fluoride ion is .15 to 2.5 moles per liter, buifered to a pH between 3.5 to 7.0.
7. A bath for nickel plating by chemical reduction of magnesium and its-alloys consisting essentially of an aqueous solution of a nickel salt and a hypophosphite and a fluoride, wherein the nickel ion is furnished essentially from basic nickel carbonate corresponding to the empirical formula 2NiCO -3Ni(OH) -4H' O and wherein the concentration of nickel is .04 .to 1.4 moles per liter, of hypophosphite ion is .04 to 2.6 moles per liter, and of fluoride ion is .15 to 2.5 moles per liter, buflfered to a pH between 3.5 to 7.0.
nickel plated article from Gutzeit l Nov. 9, 1954 Puls Dec. 8, 1959
Claims (1)
1. A PROCESS FOR ELECTROLESS NICKEL PLATING WHICH COMPRISES; IMMERSING A MAGNESIUM BASED METAL ARTICLE IN AN AQUEOUS SOLUTION MAINTAINED AT A TEMPERATURE OF FROM ABOUT 90 TO ABOUT 212*F., SAID AQUEOUS SOLUTION CONSISTING ESSENTIALLY OF FROM ABOUT 0.15 TO ABOUT 2.5 MOLES FLUORIDE ION PER LITER OF SAID AQUEOUS SOLUTION, FROM ABOUT 0.04 TO ABOUT 1.4 MOLES NICKEL ION PER LITER OF SAID AQUEOUS SOLUTION AND FROM ABOUT 0.04 TO ABOUT 2.6 MOLES HYPOPHOSPHITE ION PER LITER OF SAID AQUEOUS SOLUTION, SAID SOLUTION CONTAINING AT A MAXIMUM ONLY TRACE QUANTITIES OF CHLORIDE AND SULFATE IONS AND BEING BUFFERED TO A PH BETWEEN ABOUT 3.7 AND 7.0.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US195405A US3152009A (en) | 1962-05-17 | 1962-05-17 | Electroless nickel plating |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US195405A US3152009A (en) | 1962-05-17 | 1962-05-17 | Electroless nickel plating |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3152009A true US3152009A (en) | 1964-10-06 |
Family
ID=22721299
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US195405A Expired - Lifetime US3152009A (en) | 1962-05-17 | 1962-05-17 | Electroless nickel plating |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3152009A (en) |
Cited By (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3617363A (en) * | 1967-01-18 | 1971-11-02 | Gen Am Transport | Process for electroless metallizing incorporating wear-resisting particles |
| US3887732A (en) * | 1970-10-01 | 1975-06-03 | Gen Am Transport | Stress controlled electroless nickel deposits |
| US4188227A (en) * | 1977-05-27 | 1980-02-12 | Bauer Randy L | Method of preparing multi-component chemical compositions |
| US4371573A (en) * | 1980-12-30 | 1983-02-01 | Siemens Aktiengesellschaft | Electroless deposition of nickel coatings and depositing baths therefor |
| US20110135953A1 (en) * | 2009-12-08 | 2011-06-09 | Zhiyue Xu | Coated metallic powder and method of making the same |
| US20110136707A1 (en) * | 2002-12-08 | 2011-06-09 | Zhiyue Xu | Engineered powder compact composite material |
| US20110132143A1 (en) * | 2002-12-08 | 2011-06-09 | Zhiyue Xu | Nanomatrix powder metal compact |
| US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
| US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
| US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
| US8714268B2 (en) | 2009-12-08 | 2014-05-06 | Baker Hughes Incorporated | Method of making and using multi-component disappearing tripping ball |
| CN103898579A (en) * | 2013-06-03 | 2014-07-02 | 无锡市锡山区鹅湖镇荡口青荡金属制品厂 | Zinc dipping solution of electroplating chromium on surface of magnesium alloy die casting |
| CN103898588A (en) * | 2013-06-04 | 2014-07-02 | 无锡市锡山区鹅湖镇荡口青荡金属制品厂 | Magnesium alloy surface chemical nickel-plating combination solution for pre-electroplated zinc-nickel alloy |
| CN103898487A (en) * | 2013-06-04 | 2014-07-02 | 无锡市锡山区鹅湖镇荡口青荡金属制品厂 | Surface chemical nickel plating solution of magnesium alloy for notebook computer cases |
| US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
| US8783365B2 (en) | 2011-07-28 | 2014-07-22 | Baker Hughes Incorporated | Selective hydraulic fracturing tool and method thereof |
| US9022107B2 (en) | 2009-12-08 | 2015-05-05 | Baker Hughes Incorporated | Dissolvable tool |
| US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
| US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
| US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
| US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
| US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
| US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
| US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
| US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
| US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
| US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
| US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
| US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
| US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
| US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
| US9284812B2 (en) | 2011-11-21 | 2016-03-15 | Baker Hughes Incorporated | System for increasing swelling efficiency |
| US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
| US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
| US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
| US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
| US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
| US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
| US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
| US9926766B2 (en) | 2012-01-25 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Seat for a tubular treating system |
| US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
| US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
| US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
| US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
| US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
| US11365164B2 (en) | 2014-02-21 | 2022-06-21 | Terves, Llc | Fluid activated disintegrating metal system |
| US11649526B2 (en) | 2017-07-27 | 2023-05-16 | Terves, Llc | Degradable metal matrix composite |
| US12018356B2 (en) | 2014-04-18 | 2024-06-25 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2694019A (en) * | 1952-04-23 | 1954-11-09 | Gen Am Transport | Processes of chemical nickel plating and baths therefor |
| US2916401A (en) * | 1958-02-10 | 1959-12-08 | Gen Motors Corp | Chemical reduction nickel plating bath |
-
1962
- 1962-05-17 US US195405A patent/US3152009A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2694019A (en) * | 1952-04-23 | 1954-11-09 | Gen Am Transport | Processes of chemical nickel plating and baths therefor |
| US2916401A (en) * | 1958-02-10 | 1959-12-08 | Gen Motors Corp | Chemical reduction nickel plating bath |
Cited By (68)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3617363A (en) * | 1967-01-18 | 1971-11-02 | Gen Am Transport | Process for electroless metallizing incorporating wear-resisting particles |
| US3887732A (en) * | 1970-10-01 | 1975-06-03 | Gen Am Transport | Stress controlled electroless nickel deposits |
| US4188227A (en) * | 1977-05-27 | 1980-02-12 | Bauer Randy L | Method of preparing multi-component chemical compositions |
| US4371573A (en) * | 1980-12-30 | 1983-02-01 | Siemens Aktiengesellschaft | Electroless deposition of nickel coatings and depositing baths therefor |
| US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
| US20110136707A1 (en) * | 2002-12-08 | 2011-06-09 | Zhiyue Xu | Engineered powder compact composite material |
| US20110132143A1 (en) * | 2002-12-08 | 2011-06-09 | Zhiyue Xu | Nanomatrix powder metal compact |
| US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
| US9022107B2 (en) | 2009-12-08 | 2015-05-05 | Baker Hughes Incorporated | Dissolvable tool |
| US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
| US8714268B2 (en) | 2009-12-08 | 2014-05-06 | Baker Hughes Incorporated | Method of making and using multi-component disappearing tripping ball |
| US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
| US10669797B2 (en) | 2009-12-08 | 2020-06-02 | Baker Hughes, A Ge Company, Llc | Tool configured to dissolve in a selected subsurface environment |
| US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
| US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
| US20110135953A1 (en) * | 2009-12-08 | 2011-06-09 | Zhiyue Xu | Coated metallic powder and method of making the same |
| US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
| US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
| US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
| US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
| US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
| US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
| US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
| US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
| US9631138B2 (en) | 2011-04-28 | 2017-04-25 | Baker Hughes Incorporated | Functionally gradient composite article |
| US10335858B2 (en) | 2011-04-28 | 2019-07-02 | Baker Hughes, A Ge Company, Llc | Method of making and using a functionally gradient composite tool |
| US9926763B2 (en) | 2011-06-17 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Corrodible downhole article and method of removing the article from downhole environment |
| US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
| US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
| US10697266B2 (en) | 2011-07-22 | 2020-06-30 | Baker Hughes, A Ge Company, Llc | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
| US8783365B2 (en) | 2011-07-28 | 2014-07-22 | Baker Hughes Incorporated | Selective hydraulic fracturing tool and method thereof |
| US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US10092953B2 (en) | 2011-07-29 | 2018-10-09 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
| US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
| US10301909B2 (en) | 2011-08-17 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Selectively degradable passage restriction |
| US10737321B2 (en) | 2011-08-30 | 2020-08-11 | Baker Hughes, A Ge Company, Llc | Magnesium alloy powder metal compact |
| US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
| US9925589B2 (en) | 2011-08-30 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
| US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
| US9802250B2 (en) | 2011-08-30 | 2017-10-31 | Baker Hughes | Magnesium alloy powder metal compact |
| US11090719B2 (en) | 2011-08-30 | 2021-08-17 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
| US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
| US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
| US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
| US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
| US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
| US9284812B2 (en) | 2011-11-21 | 2016-03-15 | Baker Hughes Incorporated | System for increasing swelling efficiency |
| US9926766B2 (en) | 2012-01-25 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Seat for a tubular treating system |
| US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
| US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
| US10612659B2 (en) | 2012-05-08 | 2020-04-07 | Baker Hughes Oilfield Operations, Llc | Disintegrable and conformable metallic seal, and method of making the same |
| CN103898579A (en) * | 2013-06-03 | 2014-07-02 | 无锡市锡山区鹅湖镇荡口青荡金属制品厂 | Zinc dipping solution of electroplating chromium on surface of magnesium alloy die casting |
| CN103898487A (en) * | 2013-06-04 | 2014-07-02 | 无锡市锡山区鹅湖镇荡口青荡金属制品厂 | Surface chemical nickel plating solution of magnesium alloy for notebook computer cases |
| CN103898588A (en) * | 2013-06-04 | 2014-07-02 | 无锡市锡山区鹅湖镇荡口青荡金属制品厂 | Magnesium alloy surface chemical nickel-plating combination solution for pre-electroplated zinc-nickel alloy |
| US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
| US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
| US11365164B2 (en) | 2014-02-21 | 2022-06-21 | Terves, Llc | Fluid activated disintegrating metal system |
| US11613952B2 (en) | 2014-02-21 | 2023-03-28 | Terves, Llc | Fluid activated disintegrating metal system |
| US12031400B2 (en) | 2014-02-21 | 2024-07-09 | Terves, Llc | Fluid activated disintegrating metal system |
| US12018356B2 (en) | 2014-04-18 | 2024-06-25 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
| US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
| US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
| US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
| US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
| US11649526B2 (en) | 2017-07-27 | 2023-05-16 | Terves, Llc | Degradable metal matrix composite |
| US11898223B2 (en) | 2017-07-27 | 2024-02-13 | Terves, Llc | Degradable metal matrix composite |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3152009A (en) | Electroless nickel plating | |
| US2983634A (en) | Chemical nickel plating of magnesium and its alloys | |
| CA1177204A (en) | Process and composition for the immersion deposition of gold | |
| US2369620A (en) | Method of coating cupreous metal with tin | |
| US4814205A (en) | Process for rejuvenation electroless nickel solution | |
| US5269838A (en) | Electroless plating solution and plating method with it | |
| US2580773A (en) | Method and composition for coating aluminum with zinc | |
| US4840820A (en) | Electroless nickel plating of aluminum | |
| US3726771A (en) | Process for chemical nickel plating of aluminum and its alloys | |
| US3666529A (en) | Method of conditioning aluminous surfaces for the reception of electroless nickel plating | |
| US5182006A (en) | Zincate solutions for treatment of aluminum and aluminum alloys | |
| JP2004502871A (en) | Electroless silver plating | |
| US3214292A (en) | Gold plating | |
| JP2671612B2 (en) | Zinc-based direct electroplating method for aluminum strip | |
| US3562000A (en) | Process of electrolessly depositing metal coatings having metallic particles dispersed therethrough | |
| US3178311A (en) | Electroless plating process | |
| Pearlstein et al. | Electroless cobalt deposition from acid baths | |
| US4670312A (en) | Method for preparing aluminum for plating | |
| US3050410A (en) | Method of coating aluminum with lead | |
| US3274022A (en) | Palladium deposition | |
| US3917464A (en) | Electroless deposition of cobalt boron | |
| JPH0436498A (en) | Surface treatment of steel wire | |
| US2975073A (en) | Corrosion resistance of electroless nickel plate | |
| US3065154A (en) | Method of plating chromium and the like to titanium, its alloys, and the like | |
| JP3673445B2 (en) | Zinc replacement solution |