US3151175A - Hydrodealkylation of alkylbenzenes - Google Patents
Hydrodealkylation of alkylbenzenes Download PDFInfo
- Publication number
- US3151175A US3151175A US94134A US9413461A US3151175A US 3151175 A US3151175 A US 3151175A US 94134 A US94134 A US 94134A US 9413461 A US9413461 A US 9413461A US 3151175 A US3151175 A US 3151175A
- Authority
- US
- United States
- Prior art keywords
- catalyst
- platinum
- alkylbenzenes
- percent
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000004996 alkyl benzenes Chemical class 0.000 title claims description 15
- 239000003054 catalyst Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- JOKPITBUODAHEN-UHFFFAOYSA-N sulfanylideneplatinum Chemical compound [Pt]=S JOKPITBUODAHEN-UHFFFAOYSA-N 0.000 claims description 6
- 230000020335 dealkylation Effects 0.000 claims description 5
- 238000006900 dealkylation reaction Methods 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 26
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 22
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 18
- 229910052697 platinum Inorganic materials 0.000 description 10
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- -1 alkylbenzene hydrocarbons Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/08—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
- C07C4/12—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
- C07C4/14—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
- C07C4/18—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/02—Sulfur, selenium or tellurium; Compounds thereof
- C07C2527/04—Sulfides
- C07C2527/043—Sulfides with iron group metals or platinum group metals
- C07C2527/045—Platinum group metals
Definitions
- This invention relates to the hydrodealkylation of alkylbenzene hydrocarbons, and, more particularly, to the hydrodealkylation of alkylbenzenes in the presence of a catalyst comprising platinum sulfide disposed on an alumina support.
- the present invention provides a process for the dealkylation of alkylbenzenes which comprises contacting the alkylbenzenes, along with from one to seven mols of hydrogen per mol of alkylbenzene feed, with a catalyst comprising from 0.1-5.0 percent by weight (as the metal) of the total weight of the catalyst of platinum sulfide disposed on an alumina support.
- the reaction conditions are maintained at superatmospheric pressure and at temperatures of from about 900 to 1250 F.
- the catalyst can be prepared according to any of the numerous methods known in the art for the preparation of platinum on alumina reforming catalysts.
- One method of preparing the catalyst is to form the alumina by the addition of an alkaline precipitant to a solution of an aluminum salt.
- the platinum component can be added in a variety of manners, one such being the addition of an alkaline precipitant (ammonium hydroxide) to an aqueous solution of a platinum salt, and thereafter admixing it with the alumina.
- the resulting mixture is then dried, calcined and the platinum reduced.
- the catalyst may also incorporate various halogens and other components known to improve the activity, selectivity, or other desired characteristic of the catalyst.
- halogens and other components known to improve the activity, selectivity, or other desired characteristic of the catalyst.
- Detailed methods of producing metallic platinum-alumina catalysts can be found, for example, in US. Patent 2,479,109 (Haensel) and US. Patents 2,838,444 and 2,838,445 (Teter et 11.).
- the platinum component of the catalyst can be sulfided by contacting it with hydrogen sulfide or with hydrogen and a relatively low molecular weight mercaptan or organic sulfide at temperatures below about 800 F.
- the sulfiding is done in situ in the reaction zone, and, if desired, the sulfide can be continuously or intermittently added to the zone along with the alkylbenzene feed and/or hydrogen.
- the reaction conditions employed in the present process are maintained under superatrnospheric total pressure, preferably from about 25 to 1500 p.s.i.g.; temperature from about 900 to 1250" F. and preferably from 1050 to 1200 F.; contact times, as measured in terms of liquid hourly space velocity (LHSV), from about 0.05 to 5.0 volumes of feed per volume of catalyst per hour (v./v./ hr.); and at a hydrogen-to-alkylbenzene mol ratio of from about 1:1 to about 7:1, preferably from 2:1 to 5:1.
- superatrnospheric total pressure preferably from about 25 to 1500 p.s.i.g.; temperature from about 900 to 1250" F. and preferably from 1050 to 1200 F.
- contact times as measured in terms of liquid hourly space velocity (LHSV), from about 0.05 to 5.0 volumes of feed per volume of catalyst per hour (v./v./ hr.); and at a hydrogen-to-alkylbenzene mol
- the contact time should be shorter, i.e., the feed should be passed into the reactor at an LHSV approaching the higher end of the space velocity scale. At lower temperatures, the LHSV should also be low.
- EXAMPLE 1 Reagent grade toluene, dried with a molecular sieve, was contacted at a number of different temperatures with a commercial reforming catalyst [comprising approximately 0.75 percent platinum disposed on an alumina support containing about 0.35 chloride and 0.35 fluoride (all percentages are in weight percent based upon the total catalyst)] that had been sulfided in situ by contact with hydrogen sulfide in a hydrogen stream.
- a number of runs were made in identical manner except that the catalyst was not sulfided, the platinum being in the form of metallic platinum. All runs were made at a pressure of 24 p.s.ig, a very short contact time of about 2.5 seconds, in the presence of added hydrogen. Table I shows the results of these runs at the 55 from about 0.01 to 5.0 percent by weight or platinum indicated reaction temperatures.
- a process for the dealkylation of alkylbenzenes which comprises contacting said alkylbenzenes, along with from one to seven mols of hydrogen per mol of alkylbenzenes, with a catalyst consisting essentially of from 0.01 to 5.0 percent by weight (as the metal) of the total weight of said catalyst of platinum sulfide disposed on a halogen containing alumina support at a reaction temperature of from about 1050 to 1200 F. and at superatmospheric pressure.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
United States Patent 3 151 175 nrnnonnarnrm'rrorii on ALKYLBENZENES Edwin A. Goldsmith, @alzland, one, assiguor to Caliiornia Research Qorporation, San Francisco, (321510, a
corporation of Delaware to Drawing. Filed Mar. 8, 1961, Ser. No. 94,134
2 Claims. (til. 260-672) This invention relates to the hydrodealkylation of alkylbenzene hydrocarbons, and, more particularly, to the hydrodealkylation of alkylbenzenes in the presence of a catalyst comprising platinum sulfide disposed on an alumina support.
Present-day refinery processes, for example, catalytic reforming, produce large amounts of alkylbenzene hydrocarbons such as toluene, the xylenes, ethylbenzene, etc. Although these compounds are desirable gasoline components because of their high octane number value, in recent years there has been a considerable increase in demand for them in the relatively pure state for use in the petrochemical industries. However, there has developed a shortage of benzene and processes have been developed commercially for the dealkylation of alkyl aromatics to produce this compound. Since toluene is often produced in quantities in excess of the demand, the dealkylation processes have largely been directed to the demethylation of toluene despite the fact that it is the most difficult alkylbenzene compound to dealkylate. Accordingly, it is an object of the present invention to provide an improved process for the hydrodealkylation of alkylbenzenes, particularly toluene, to produce high yields of dealkylated aromatic hydrocarbons, especially benzene.
The present invention provides a process for the dealkylation of alkylbenzenes which comprises contacting the alkylbenzenes, along with from one to seven mols of hydrogen per mol of alkylbenzene feed, with a catalyst comprising from 0.1-5.0 percent by weight (as the metal) of the total weight of the catalyst of platinum sulfide disposed on an alumina support. The reaction conditions are maintained at superatmospheric pressure and at temperatures of from about 900 to 1250 F.
Except for converting the platinum component of the subject catalyst to the sulfide, the catalyst can be prepared according to any of the numerous methods known in the art for the preparation of platinum on alumina reforming catalysts. One method of preparing the catalyst is to form the alumina by the addition of an alkaline precipitant to a solution of an aluminum salt. The platinum component can be added in a variety of manners, one such being the addition of an alkaline precipitant (ammonium hydroxide) to an aqueous solution of a platinum salt, and thereafter admixing it with the alumina. The resulting mixture is then dried, calcined and the platinum reduced. These alumina-supported catalysts incorporate 3,151,175 Patented Sept. 29, 1964 distributed on the surf-ace of the alumina support, the latter generally having a high surface area exceeding m. /g. In addition to the platinum component, the catalyst may also incorporate various halogens and other components known to improve the activity, selectivity, or other desired characteristic of the catalyst. Detailed methods of producing metallic platinum-alumina catalysts can be found, for example, in US. Patent 2,479,109 (Haensel) and US. Patents 2,838,444 and 2,838,445 (Teter et 11.).
The platinum component of the catalyst (either in the metallic or oxide form) can be sulfided by contacting it with hydrogen sulfide or with hydrogen and a relatively low molecular weight mercaptan or organic sulfide at temperatures below about 800 F. Preferably, the sulfiding is done in situ in the reaction zone, and, if desired, the sulfide can be continuously or intermittently added to the zone along with the alkylbenzene feed and/or hydrogen.
The reaction conditions employed in the present process are maintained under superatrnospheric total pressure, preferably from about 25 to 1500 p.s.i.g.; temperature from about 900 to 1250" F. and preferably from 1050 to 1200 F.; contact times, as measured in terms of liquid hourly space velocity (LHSV), from about 0.05 to 5.0 volumes of feed per volume of catalyst per hour (v./v./ hr.); and at a hydrogen-to-alkylbenzene mol ratio of from about 1:1 to about 7:1, preferably from 2:1 to 5:1. With respect to the relationship of reaction temperature and feed contact time, when the former is at the higher end of the noted temperature range, the contact time should be shorter, i.e., the feed should be passed into the reactor at an LHSV approaching the higher end of the space velocity scale. At lower temperatures, the LHSV should also be low.
The following examples illustrate the process of the present invention, but are not intended to limit the same to the specific materials and conditions employed.
EXAMPLE 1 Reagent grade toluene, dried with a molecular sieve, was contacted at a number of different temperatures with a commercial reforming catalyst [comprising approximately 0.75 percent platinum disposed on an alumina support containing about 0.35 chloride and 0.35 fluoride (all percentages are in weight percent based upon the total catalyst)] that had been sulfided in situ by contact with hydrogen sulfide in a hydrogen stream. For comparative purposes, a number of runs were made in identical manner except that the catalyst was not sulfided, the platinum being in the form of metallic platinum. All runs were made at a pressure of 24 p.s.ig, a very short contact time of about 2.5 seconds, in the presence of added hydrogen. Table I shows the results of these runs at the 55 from about 0.01 to 5.0 percent by weight or platinum indicated reaction temperatures.
Table I Reaction Temperature, F.
Toluene Converted, Wt. Percent Sullidod Cataly D 4. 8 10. 7 29. 5 66. 5
Non-sulfided Catalyst 43.0 55. 3 70.7 77.8 87. 8 92.4 99.3 99.3 BOL.01'1G Product, Wt Percen Sulfdcd Catalyst 0 3.4 7.8 20.9 40.4
Non-sulfidod Catalyst.. 18. 3 23.1 23. 6 29. 4 27.4 29. 4 23. 0 20. 4 Methane Produced, Wt. Percent:
Sulfided Catalyst 0 N 0.8 2.0 7.4 20.1
Non-sulfided Catalyst 22. 0 29.1 46. 1 48.1 60. 2 62. 2 76. 3 79. 4 Molar Yield of Benzene:
Sulfidod Catalyst: 0 86 84 82 Non-sulfided Catalyst 51 49 39 43 37 37 27 24 Under identical conditions, except for the form of the platinum on the catalyst, it can be seen from the table that the sulfided catalyst is superior for use in the hydroclealkyl'ation of alkylbenzencs. This catalyst produces a higher amount of benzene (46.4 weight percent as compared to a maximum of 29.4 weightpercent when using the non-sulfided catalyst) in a considerably higher molar yield (82 percent as compared to only 43 percent).
it might be noted that, under identical conditions, employing a catalyst composed of a silica gel support having 0.5 weight percent (as the metal) platinum sulfide disposed thereon, a maximum of only 3 Weight percent benzene was produced over a range of reaction temperatures from 900 to 1150 F.
EXAMPLE 2 Run No Feed Temperature, F Total Pressure, p.s.i.g LHSV HzzHydrocarbon, mo]. rat Liquid Product Analysis:
Toluene, Wt. Percent Xylene, Wt. Percent..- 4 2 Benzene, Wt. Percent From the data presented, it can be seen that, for the hydrodealkylation of alkylbenzenes, and particularly the most difficult alkylbenzene to deallcylate (toluene), a platinum sulfide, alumina catalyst is superior to either a me tallic platinum-alumina or a platinum sulfide-silica gel catalyst.
I claim as my invention:
1. A process for the dealkylation of alkylbenzenes which comprises contacting said alkylbenzenes, along with from one to seven mols of hydrogen per mol of alkylbenzenes, with a catalyst consisting essentially of from 0.01 to 5.0 percent by weight (as the metal) of the total weight of said catalyst of platinum sulfide disposed on a halogen containing alumina support at a reaction temperature of from about 1050 to 1200 F. and at superatmospheric pressure.
2. The process of claim 1, wherein the alkylbenzene is toluene.
References Cited in the tile of this patent UNITED STATES PATENTS 2,734,929 Doumani Feb. 14, 1956 2,780,661 Hemminger et al Feb. 5, 1957 2,960,545 Seubold Nov. 15, 1960
Claims (1)
1. A PROCESS FOR THE DEALKYLATION OF AKLYLBENZENES WHICH COMPRISES CONTACTING SAID AKLYLBENZENES, ALONG WITH FROM ONE TO SEVEN MOLS OF HYDROGEN PER MOL OF ALKYLBENZENES, WITH A CATALYST CONSISTING ESSENTIALLY OF FROM 0.01 TO 5.0 PERCENT BY WEIGHT (AS THE METAL) OF THE TOTAL WEIGHT OF SAID CATALYST OF PLATINUM SULFIDE DISPOSED ON A HALOGEN CONTAINING ALUMINA SUPPORT AT A REACTION TEMPERATURE OF FROM ABOUT 1050* TO 1200*F. AND AT SUPERATMOSPHERIC PRESSURE.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US94134A US3151175A (en) | 1961-03-08 | 1961-03-08 | Hydrodealkylation of alkylbenzenes |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US94134A US3151175A (en) | 1961-03-08 | 1961-03-08 | Hydrodealkylation of alkylbenzenes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3151175A true US3151175A (en) | 1964-09-29 |
Family
ID=22243310
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US94134A Expired - Lifetime US3151175A (en) | 1961-03-08 | 1961-03-08 | Hydrodealkylation of alkylbenzenes |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3151175A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4012337A (en) * | 1974-03-13 | 1977-03-15 | Exxon Research And Engineering Company | High surface area alpha aluminas |
| US4151118A (en) * | 1977-04-02 | 1979-04-24 | Idemitsu Kosan Co., Ltd. | Process for sulfurization of hydrogenation catalysts |
| US4348274A (en) * | 1979-07-13 | 1982-09-07 | Exxon Research & Engineering Co. | Oil shale upgrading process |
| US11767280B2 (en) | 2019-02-04 | 2023-09-26 | China Petroleum & Chemical Corporation | Process for making phenol and xylenes |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2734929A (en) * | 1956-02-14 | Dealkylation of hydrocarbons | ||
| US2780661A (en) * | 1951-08-15 | 1957-02-05 | Exxon Research Engineering Co | Reforming followed by hydrodealkylation |
| US2960545A (en) * | 1958-11-17 | 1960-11-15 | Union Oil Co | Demethylation process for pseudocumene |
-
1961
- 1961-03-08 US US94134A patent/US3151175A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2734929A (en) * | 1956-02-14 | Dealkylation of hydrocarbons | ||
| US2780661A (en) * | 1951-08-15 | 1957-02-05 | Exxon Research Engineering Co | Reforming followed by hydrodealkylation |
| US2960545A (en) * | 1958-11-17 | 1960-11-15 | Union Oil Co | Demethylation process for pseudocumene |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4012337A (en) * | 1974-03-13 | 1977-03-15 | Exxon Research And Engineering Company | High surface area alpha aluminas |
| US4151118A (en) * | 1977-04-02 | 1979-04-24 | Idemitsu Kosan Co., Ltd. | Process for sulfurization of hydrogenation catalysts |
| US4348274A (en) * | 1979-07-13 | 1982-09-07 | Exxon Research & Engineering Co. | Oil shale upgrading process |
| US11767280B2 (en) | 2019-02-04 | 2023-09-26 | China Petroleum & Chemical Corporation | Process for making phenol and xylenes |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3700745A (en) | Hydrodealkylation process with promoted group viii metals | |
| US5912394A (en) | Catalyst for the dehydrogenation of C6 -C15 paraffins and to a process for making such catalysts | |
| US3686340A (en) | Hydrodealkylation process | |
| US2983670A (en) | Hydrocracking process and catalyst | |
| US2734929A (en) | Dealkylation of hydrocarbons | |
| US3161697A (en) | Catalytic conversion of propene into higher boiling hydrocarbons | |
| EP0174836A2 (en) | Solid strong acid catalyst | |
| US3770616A (en) | Method of reforming hydrocarbons | |
| US4177219A (en) | Process for selective ethyl scission of ethylaromatics to methylaromatics | |
| US3436434A (en) | Dealkylation of alkyl aromatic hydrocarbons | |
| US2960545A (en) | Demethylation process for pseudocumene | |
| US3132110A (en) | Coprecipitated alumina-zirconium oxide sulfate-containing catalyst | |
| US3436433A (en) | Dealkylation of alkyl substituted aromatic hydrocarbons | |
| US4340504A (en) | Catalyst for a process for dealkylating aromatic hydrocarbons in the presence of steam | |
| US2817626A (en) | Process of activating hydrocracking catalysts with hydrogen | |
| US3151175A (en) | Hydrodealkylation of alkylbenzenes | |
| US4202996A (en) | Hydrocarbon isomerization process | |
| US2721226A (en) | Conversion of aromatic hydrocarbons into alkyl cycloparaffins | |
| US3825503A (en) | Hydrogen transfer catalyst | |
| US3651163A (en) | Dealkylation of alkyl benzenes and naphthalenes | |
| US4451687A (en) | Catalyst for the hydrodealkylation of alkylaromatic compounds | |
| US4288347A (en) | Novel catalyst for dealkylating alkyl benzenes and fractions of aromatized benzines by conversion with steam | |
| CA1197830A (en) | Catalyst for the hydrodealkylation of alkylaromatic compounds | |
| US3679768A (en) | Hydrodealkylation process with catalyst of group vib metals promoted by tin oxide or lead oxide | |
| US2498709A (en) | Aromatization catalysts and the preparation thereof |