US3080228A - Process for the production of cast iron - Google Patents
Process for the production of cast iron Download PDFInfo
- Publication number
- US3080228A US3080228A US47175A US4717560A US3080228A US 3080228 A US3080228 A US 3080228A US 47175 A US47175 A US 47175A US 4717560 A US4717560 A US 4717560A US 3080228 A US3080228 A US 3080228A
- Authority
- US
- United States
- Prior art keywords
- magnesium
- spheres
- iron
- cast iron
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 10
- 229910001018 Cast iron Inorganic materials 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 34
- 229910052749 magnesium Inorganic materials 0.000 claims description 33
- 239000011777 magnesium Substances 0.000 claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 26
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000005997 Calcium carbide Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0037—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
Definitions
- This invention relates to a process for the production of iron and particularly to a process for adding magnesium to iron to form a workable base iron.
- Patents 2,485,760 and 2,485,761 specifically teach the advantages which may be achieved by the presence of magnesium in cast iron.
- the problem of adding the magnesium has, however, been one of considerable complexity, primarily because of its high vapor pressure and high reactivity and many efforts have been made to devise some satisfactory means or method of placing the magnesium where it would effect the desired result.
- carrier agent or diluent is necessary in order to overcome the high volatility and high reactivity of the magnesium.
- These diluents are in many cases undesirable in the finished iron but are necessary in order to carry the magnesium into the bath.
- the addition of magnesium has been limited to those irons where the diluents could be tolerated.
- magnesium metal spheres in the size range 6 to 100 mesh can be freely injected into a molten iron bath in a stream of non-oxidizing gas such as nitrogen.
- non-oxidizing gas such as nitrogen.
- powdered magnesium, fiake magnesium, magnesium chips and all forms of magnesium other than the afore-described spheres will plug the injection tube and cannot be used unless at least 50% of 6 to 100 mesh spheres are admixed with such other forms.
- the magnesium spheres are injected into the molten metal from a batch tank 10 through a control valve 11 by means of nitrogen from tanks 12 passing through line 13.
- the magnesium spheres are picked up by nitrogen in line 14 and carried through line 15 to carbon tube 16 from which they are discharged beneath the surface of the molten bath 17 in ladle 18 under hood 19.
- For most effective use of the magnesium we use a naturally low sulphur bath of iron or desulphurize by injecting calcium carbide into the bath prior to injecting the magnesium.
- magnesium can be used as the .desulphurizer if one so elects.
- Test bars of the material in the full ferritic state gave a yield of 48,000 p.s.i., a tensile of 67,000 p.s.i., a percent elongation in 2 of 25.00 and a Brinell hardness of 156.
- Example 11 In an iron of composition similar to that of Example I but containing 06% sulfur, calcium carbide was injected with nitrogen through tube 16 until the sulfur was substantially eliminated. The injection of calcium carbide was terminated and magnesium spheres were injected as in Example I with substantially identical results.
- a process for producing a workable base iron comprising entraining a mixture of magnesium particles, at least 50% of which are spheres in the size range 6 to 100 mesh into a gaseous stream, injecting said stream into a molten bath of cast iron at a rate suflicient to maintain free injection of magnesium spheres into the metal and casting said molten iron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
March 5, 1963 E, w. HALE ETAL PROCESS FOR THE PRODUCTION OF CAST IRON Filed Aug. 5. 1960 INVENTORS Everefl W. Hole 8 Harry B. Lnudensluge r United States This invention relates to a process for the production of iron and particularly to a process for adding magnesium to iron to form a workable base iron.
It has long been known that the addition of magnesium to cast iron would result in forming graphite in nodular form and providing a ductile iron. For example, Patents 2,485,760 and 2,485,761 specifically teach the advantages which may be achieved by the presence of magnesium in cast iron. The problem of adding the magnesium has, however, been one of considerable complexity, primarily because of its high vapor pressure and high reactivity and many efforts have been made to devise some satisfactory means or method of placing the magnesium where it would effect the desired result. For example, it has been proposed to form the magnesium into various alloys such as magnesium ferro silicon prior to adding to the bath. It has also been proposed to inject the powdered magnesium or magnesium alloy mixed with a diluent into the bath under pressure as described in Patent 2,870,004. In every case carrier agent or diluent is necessary in order to overcome the high volatility and high reactivity of the magnesium. These diluents are in many cases undesirable in the finished iron but are necessary in order to carry the magnesium into the bath. As a result, the addition of magnesium has been limited to those irons where the diluents could be tolerated.
We have discovered a method of adding magnesium in the form of pure metal without the need for a diluent. We have found that magnesium metal spheres in the size range 6 to 100 mesh can be freely injected into a molten iron bath in a stream of non-oxidizing gas such as nitrogen. We have found that powdered magnesium, fiake magnesium, magnesium chips and all forms of magnesium other than the afore-described spheres will plug the injection tube and cannot be used unless at least 50% of 6 to 100 mesh spheres are admixed with such other forms.
We have obtained satisfactory results by injecting the magnesium spheres through the apparatus illustrated in the accompanying FIGURE. The magnesium spheres are injected into the molten metal from a batch tank 10 through a control valve 11 by means of nitrogen from tanks 12 passing through line 13. The magnesium spheres are picked up by nitrogen in line 14 and carried through line 15 to carbon tube 16 from which they are discharged beneath the surface of the molten bath 17 in ladle 18 under hood 19. For most effective use of the magnesium we use a naturally low sulphur bath of iron or desulphurize by injecting calcium carbide into the bath prior to injecting the magnesium. However, magnesium can be used as the .desulphurizer if one so elects.
The practice of our invention can perhaps be best illustrated by the following examples.
atent was tapped into a ladle and sufficient carbon and silicon were added in the ladle to give a final analysis of The ladle was transferred to the injection point, covered with a ladle cover, the tube 16 was inserted beneath the surface of the metal and 0.5% magnesium was injected in the form of mesh spheres suspended in nitrogen at a pressure of about 32 p.s.i. This produces a flow of about 31 c.f.m. through a A orifice on the feed hopper and a feed rate of about 3 pounds of magnesium per minute so that the complete injection in a 1000 lb. bath consumed about 1.5 minutes and the residual magnesium was .03%. The iron was then cast into molds. Test bars of the material in the full ferritic state gave a yield of 48,000 p.s.i., a tensile of 67,000 p.s.i., a percent elongation in 2 of 25.00 and a Brinell hardness of 156.
Example 11 In an iron of composition similar to that of Example I but containing 06% sulfur, calcium carbide was injected with nitrogen through tube 16 until the sulfur was substantially eliminated. The injection of calcium carbide was terminated and magnesium spheres were injected as in Example I with substantially identical results.
In no case have we had difiiculty where the magnesium was at least 50% spheres between 6 and 100 mesh and a sufficient flow of inert gas maintained to move the spheres. On the other hand, we have been completely unsuccessful in injecting any other form of pure magnesium into the molten bath unless at least 50% of spheres in the range 6 to 100 mesh was present. We prefer to use all spheres when possible. We also prefer to use nitrogen as the carrier gas because of its cost advantage. However, where no adsorption or reaction can be tolerated one of the more inert gases such as argon may be used.
While we have set out certain preferred practices of our invention in the foregoing specification, it will be understood that this invention may be otherwise practiced within the scope of the following claims.
We claim:
1. In a process for producing a workable base iron the improvement which comprises entraining a mixture of magnesium particles, at least 50% of which are spheres in the size range 6 to 100 mesh into a gaseous stream, injecting said stream into a molten bath of cast iron at a rate suflicient to maintain free injection of magnesium spheres into the metal and casting said molten iron.
2. A process as claimed in claim 1 wherein the gas is nitrogen.
3. In a process for producing a workable base iron the improvement which comprises entraining a mixture containing a major part of spheres of elemental magnesium in the size range 6 to 100 mesh into a gaseous stream, injecting said stream into a molten bath of cast iron at a rate sufiicient to maintain free injection of rirriagnesium spheres into the metal and casting said molten References Cited in the file of this patent UNITED STATES PATENTS 2,803,533 Bieniosek et al Aug. 20, 1957 2,858,125 Clenny et a1. Oct. 28, 1958 3,001,864 Muller et al. Sept. 26, 1961 OTHER REFERENCES Schwarzkopf: Power Metallurgy-Its Physics and Production, Macmillan Co., New York, 1947, page 87.
Claims (1)
1. IN A PROCESS FOR PRODUCING A WORKABLE BASE IRON THE IMPROVEMENT WHICH COMPRISES ENTRAINING A MIXTURE OF MAGNESIUM PARTICLES, AT LEAST 50% OF WHICH ARE SPHERES IN THE SIZE RANGE 6 TO 100 MMESH INTO A GASEOUS STREAM, INJECTING SAID STREAM INTO A MOLTEN BATH OF CAST IRON AT A RATE SUFFICIENT TO MAINTAIN FREE INJECTION OF MAGNESIUM SPHERES INTO THE METAL AND CASTING SAID MOLTEN IRON.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US47175A US3080228A (en) | 1960-08-03 | 1960-08-03 | Process for the production of cast iron |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US47175A US3080228A (en) | 1960-08-03 | 1960-08-03 | Process for the production of cast iron |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3080228A true US3080228A (en) | 1963-03-05 |
Family
ID=21947459
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US47175A Expired - Lifetime US3080228A (en) | 1960-08-03 | 1960-08-03 | Process for the production of cast iron |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3080228A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3189443A (en) * | 1963-02-06 | 1965-06-15 | Blackstone Corp | Iron founding |
| US3285739A (en) * | 1964-01-06 | 1966-11-15 | Petrocarb Inc | Process for producing nodular cast iron |
| US3322530A (en) * | 1962-08-24 | 1967-05-30 | Ishikawajima Harima Heavy Ind | Method for adding additives to molten steel |
| US3445299A (en) * | 1968-07-22 | 1969-05-20 | Blackstone Corp | Cast ferrous material of high magnetic permeability |
| US3619172A (en) * | 1966-09-13 | 1971-11-09 | Air Liquide | Process for forming spheroidal graphite in hypereutectoid steels |
| US3880411A (en) * | 1973-08-24 | 1975-04-29 | Natalya Alexandrovna Voronova | Device for treatment of molten cast iron in vessels |
| JPS52115605U (en) * | 1977-02-26 | 1977-09-02 | ||
| US4147533A (en) * | 1977-07-11 | 1979-04-03 | Flinn Richard A | Process for the production of ferro-magnesium and the like |
| WO1980001924A1 (en) * | 1979-03-09 | 1980-09-18 | P Trojan | Process and apparatus for the production of metallic compositions |
| US4762555A (en) * | 1985-12-23 | 1988-08-09 | Georg Fischer Aktiengesellschaft | Process for the production of nodular cast iron |
| US5945063A (en) * | 1997-02-25 | 1999-08-31 | Tokyo Yogyo Kabushiki Kaisha | Bottom blown gas blowing apparatus for molten metal ladle |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2803533A (en) * | 1954-05-03 | 1957-08-20 | Union Carbide Corp | Method of injecting fluidized powders for metallurgical treatment |
| US2858125A (en) * | 1955-02-01 | 1958-10-28 | Air Reduction | Reagent feeding apparatus |
| US3001864A (en) * | 1952-12-09 | 1961-09-26 | Air Reduction | Method for introducing solid materials into molten metal |
-
1960
- 1960-08-03 US US47175A patent/US3080228A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3001864A (en) * | 1952-12-09 | 1961-09-26 | Air Reduction | Method for introducing solid materials into molten metal |
| US2803533A (en) * | 1954-05-03 | 1957-08-20 | Union Carbide Corp | Method of injecting fluidized powders for metallurgical treatment |
| US2858125A (en) * | 1955-02-01 | 1958-10-28 | Air Reduction | Reagent feeding apparatus |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3322530A (en) * | 1962-08-24 | 1967-05-30 | Ishikawajima Harima Heavy Ind | Method for adding additives to molten steel |
| US3189443A (en) * | 1963-02-06 | 1965-06-15 | Blackstone Corp | Iron founding |
| US3285739A (en) * | 1964-01-06 | 1966-11-15 | Petrocarb Inc | Process for producing nodular cast iron |
| US3619172A (en) * | 1966-09-13 | 1971-11-09 | Air Liquide | Process for forming spheroidal graphite in hypereutectoid steels |
| US3445299A (en) * | 1968-07-22 | 1969-05-20 | Blackstone Corp | Cast ferrous material of high magnetic permeability |
| US3880411A (en) * | 1973-08-24 | 1975-04-29 | Natalya Alexandrovna Voronova | Device for treatment of molten cast iron in vessels |
| JPS52115605U (en) * | 1977-02-26 | 1977-09-02 | ||
| US4147533A (en) * | 1977-07-11 | 1979-04-03 | Flinn Richard A | Process for the production of ferro-magnesium and the like |
| WO1980001924A1 (en) * | 1979-03-09 | 1980-09-18 | P Trojan | Process and apparatus for the production of metallic compositions |
| US4762555A (en) * | 1985-12-23 | 1988-08-09 | Georg Fischer Aktiengesellschaft | Process for the production of nodular cast iron |
| US5945063A (en) * | 1997-02-25 | 1999-08-31 | Tokyo Yogyo Kabushiki Kaisha | Bottom blown gas blowing apparatus for molten metal ladle |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3080228A (en) | Process for the production of cast iron | |
| US2803533A (en) | Method of injecting fluidized powders for metallurgical treatment | |
| CN105861915A (en) | Ferritic spheroidal graphite cast iron and preparation method thereof | |
| GB1559964A (en) | Process for treating liquid steel intended in particular for manufacturing machine wire | |
| US3833361A (en) | Method for adding special elements to molten pig iron | |
| GB2043696A (en) | Adjusting carbon contents of steel melts | |
| US2747990A (en) | Process of producing grey cast iron | |
| US3328164A (en) | Prealloy for the treatment of iron and steel melts | |
| US3063828A (en) | Method of producing coppersulfur alloys | |
| US2369213A (en) | Method of degasifying and decarburizing molten metal baths, and improved agent therefor | |
| US2906617A (en) | Method for a thorough desulfurizing of molten metal and in particular of liquid pig iron | |
| US3058822A (en) | Method of making additions to molten metal | |
| US3336118A (en) | Magnesium alloy for cast iron | |
| US2889222A (en) | Process for the production of nodular cast iron | |
| US2874038A (en) | Method of treating molten metals | |
| US3285739A (en) | Process for producing nodular cast iron | |
| US3146090A (en) | Process of producing nodular iron using group iii metal hydride | |
| US2785970A (en) | Addition agents in manufacture of steel | |
| US3306737A (en) | Magnesium and rare earth metal containing prealloy for the treatment of iron and steel melts | |
| US2863764A (en) | Coated magnesium iron treatment | |
| NO115835B (en) | ||
| YU207481A (en) | Process for the homogenizatio of molten cast iron | |
| US2826497A (en) | Addition agent and method for making ferrous products | |
| US2543853A (en) | Process for adding magnesium to cast iron | |
| US3595709A (en) | Process for producing ferrochrome alloys with high nitrogen content and low carbon content |