US3073760A - Sealing of anodized coatings - Google Patents
Sealing of anodized coatings Download PDFInfo
- Publication number
- US3073760A US3073760A US811014A US81101459A US3073760A US 3073760 A US3073760 A US 3073760A US 811014 A US811014 A US 811014A US 81101459 A US81101459 A US 81101459A US 3073760 A US3073760 A US 3073760A
- Authority
- US
- United States
- Prior art keywords
- metal
- aluminum
- solution
- fingerprinting
- maintained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title description 21
- 238000007789 sealing Methods 0.000 title description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 38
- 239000000243 solution Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 16
- 230000035945 sensitivity Effects 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 230000001681 protective effect Effects 0.000 claims description 12
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 7
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims 2
- XLYOFNOQVPJJNP-PWCQTSIFSA-N Tritiated water Chemical compound [3H]O[3H] XLYOFNOQVPJJNP-PWCQTSIFSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000000034 method Methods 0.000 description 11
- 239000010407 anodic oxide Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 238000007743 anodising Methods 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 150000001450 anions Chemical group 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical group [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical group [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical group [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 2
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
- C25D11/246—Chemical after-treatment for sealing layers
Definitions
- This invention relates to protective oxide coatings on aluminum and aluminum base alloys. More particularly, this invention relates to the elimination or substantial reduction of the sensitivity to fingerprinting of oxide coatmgs on aluminum and aluminum base alloys.
- an oxide coating produced on the surface by exposure as an anode in an acid electrolyte capable of yielding oxygen on electrolysis, such as an aqueous solution of sulfuric acid.
- the operation of forming such coating is commonly termed anodizing and the aluminum surface thus protected commonly term anodized.
- anodizing To improve the corrosion resistance of such coating, it is common practice to immerse the anodic coating in hot water.
- Such process possesses certain inherent disadvantages particularly for outdoor conditions such as encountered in architectural applications.
- anodized aluminum metal treated in a conventional hot water bath may show substantial sensitivity to fingerprinting.
- Anodized aluminum metal articles prepared in a relatively dry climate in accordance with prior art practice may show little evidence of this sensitivity.
- fingerprints will become evident.
- This invention comprises immersing aluminum base metal, which had been previously anodized by conventiona1 methods, in a warm aqueous solution of a salt of carbonic acid and a metal selected from the group consisting of alkali and alkaline earth metals.
- the metal is selected from the group consisting of sodium and calcium.
- the pH and temperature are important factors and whether or not the solution is a carbonate or a bicarbonate, or a mixture of both, is a function of the pH of the solution.
- the aluminum metal may be subjected to various pretreatments prior to anodizing.
- the base metal may be subjected to conventional polishing or brightening treatments, e.g. mechanical, chemical or electrochemical.
- the base metal may be subjected to a suitable etching treatment.
- the anodizing coating of the aluminum base article may be colored by conventional practices prior to treatment according to this invention.
- the metal is first cleaned in an inhibited alkaline cleaner. Where a high lustre or brightness of the ultimate colored composite is desired, the metal should be treated according to a suitable bright dip process such as that described in US. Patent 2,719,781. On the other hand, where a matte appearance is desired in the ultimate composite, the material may be subjected to a caustic etch treatment in a solution of 5% sodium hydroxide plus 2% sodium fluoride maintained at a temperature of 160 F. for a 5 minute immersion period. Next, the so-treated metal may be rinsed in a 50% by volume nitric acid solu tion. After such a pretreatment, the metal is anodized in a conventional manner.
- anodic oxide coating on the metal is immersed for a period of time ranging from 5 to 45 minutes in an aqueous solution consisting essentially of a salt having the general formula MX, where M is a metal selected from the group consisting of sodium and calcium, and X is an anion selected from the group consisting of carbonates and bicarbonates, in an amount ranging from .060 gram/liter to 5.0 grams/liter of solution, balance water.
- M is a metal selected from the group consisting of sodium and calcium
- X is an anion selected from the group consisting of carbonates and bicarbonates
- samples were fabricated from sheets of commercially pure aluminum (i.e., minimum purity 99.00%) cut into 1 /2 inch by 2 inch rectangles providing a total surface area of 6 sq. ins. per sample.
- a second and third set of samples were tested for sensitivity to fingerprinting by impressing a fingerprint on each sample, storing one set of samples for twenty-four hours in a container maintained at a relative humidity of 30%, and storing the other set of samples in a container maintained at a relative humidity of 80%. The samples were then observed without opening the containers. Fingerprinting on the sample is indicated by a in the table, While the space is left blank for those samples which did not show fingerprinting.
- aluminum is meant to cover high purity aluminum, commercial purity aluminum and aluminum alloys.
- the improvement comprising immersing the oxide coated aluminum metal in a warm aqueous solution consisting essentially of a salt of carbonic acid and a metal selected from the group consisting of alkali and alkaline earth metals, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
- the improvement comprising immersing the oxide coated aluminum metal in a warm aqueous solution consisting essentially of a salt having the general formula MX wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
- a method according to claim 2 wherein the salt is sodium bicarbonate.
- aqueous solution consisting essentially of a salt having the formula MX wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, said salt being present in an amount ranging from 0.06 to 5.0 g./l. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from F. to 212 F.
- a composite article having substantially reduced sensitivity to fingerprinting comprising a base portion of aluminum metal and a protective anodic oxide coating adhering thereto which has been treated by immersing the oxide coated article in an aqueous solution consisting essentially of a salt of carbonic acid and a metal selected from the group consisting of an alkali and alkaline earth metal, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
- a composite article having substantially reduced sensitivity to fingerprinting comprising a base portion of aluminum metal and a protective anodic oxide coating adhering thereto which has been treated by immersing the oxide coated article in an aqueous solution consisting essentially of a salt having the general formula MX, wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
- a composite article having substantially reduced sensitivity to fingerprinting comprising a base portion of aluminum metal and a protective anodic oxide coating adhering thereto which has been treated by immersing the oxide coated aluminum metal for a period of from 5 to 45 minutes in an aqueous solution consisting essentially of a salt having the general formula MX, wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, in an amount ranging from 0.06 to 5.0 g./1. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
Description
United States Patent Ofiice 3,073,760 Patented Jan. 15, 1963 3,073,760 SEALIING F ANQDHZED COATINGS Henry J Wittrock, @pportunity, Wash, assigner to Kaiser Aluminum 6; Chemical Corporation, Oakland, Calif., a corporation of Delaware No Drawing. Filed May 5, I959, Ser. No. 811,014 14- Qlaims. ((Ii. 2 04- -35) This invention relates to protective oxide coatings on aluminum and aluminum base alloys. More particularly, this invention relates to the elimination or substantial reduction of the sensitivity to fingerprinting of oxide coatmgs on aluminum and aluminum base alloys.
For many purposes aluminum surfaces are protected by an oxide coating produced on the surface by exposure as an anode in an acid electrolyte capable of yielding oxygen on electrolysis, such as an aqueous solution of sulfuric acid. The operation of forming such coating is commonly termed anodizing and the aluminum surface thus protected commonly term anodized. To improve the corrosion resistance of such coating, it is common practice to immerse the anodic coating in hot water. Such process possesses certain inherent disadvantages particularly for outdoor conditions such as encountered in architectural applications. In such applications, anodized aluminum metal treated in a conventional hot water bath may show substantial sensitivity to fingerprinting. Anodized aluminum metal articles prepared in a relatively dry climate in accordance with prior art practice may show little evidence of this sensitivity. However, after shipping the material to a relatively humid climate, fingerprints will become evident.
This invention comprises immersing aluminum base metal, which had been previously anodized by conventiona1 methods, in a warm aqueous solution of a salt of carbonic acid and a metal selected from the group consisting of alkali and alkaline earth metals. In a preferred embodiment of this invention, the metal is selected from the group consisting of sodium and calcium. The pH and temperature are important factors and whether or not the solution is a carbonate or a bicarbonate, or a mixture of both, is a function of the pH of the solution.
Depending on the lustre or brightness of the anodized aluminum metal desired, that is, the degree of specular reflectance, the aluminum metal may be subjected to various pretreatments prior to anodizing. For example, where high lustre or brightness is desired, the base metal may be subjected to conventional polishing or brightening treatments, e.g. mechanical, chemical or electrochemical. Where it is desired that the ultimate article have a matte or satin appearance, the base metal may be subjected to a suitable etching treatment. If desired, the anodizing coating of the aluminum base article may be colored by conventional practices prior to treatment according to this invention.
A detailed description of a satisfactory procedure embodying the principles of this invention is set forth below, it being understood that the conventional water rinsing operations after the various steps are not recited.
The metal is first cleaned in an inhibited alkaline cleaner. Where a high lustre or brightness of the ultimate colored composite is desired, the metal should be treated according to a suitable bright dip process such as that described in US. Patent 2,719,781. On the other hand, where a matte appearance is desired in the ultimate composite, the material may be subjected to a caustic etch treatment in a solution of 5% sodium hydroxide plus 2% sodium fluoride maintained at a temperature of 160 F. for a 5 minute immersion period. Next, the so-treated metal may be rinsed in a 50% by volume nitric acid solu tion. After such a pretreatment, the metal is anodized in a conventional manner.
Thereafter, the anodic oxide coating on the metal is immersed for a period of time ranging from 5 to 45 minutes in an aqueous solution consisting essentially of a salt having the general formula MX, where M is a metal selected from the group consisting of sodium and calcium, and X is an anion selected from the group consisting of carbonates and bicarbonates, in an amount ranging from .060 gram/liter to 5.0 grams/liter of solution, balance water. This solution is maintained at a pH of from 5.0 to 6.0 and at a temperature from 180 F. to 212 F. Where the metal M is sodium, the preferred range of concentration in grams of salt per liter solution is from 0.126 to 5.0. Where the metal M is calcium, the preferred range of concentration in grams of salt per liter of solution is from 0.076 to 5.0.
In order to establish the superior resistance to fingerprinting of the anodic oxide coatings produced in accordance with this invention, and the composite article coated therewith over those produced by conventional prior art methods, tests described hereinbelow have been conducted.
In these tests samples were fabricated from sheets of commercially pure aluminum (i.e., minimum purity 99.00%) cut into 1 /2 inch by 2 inch rectangles providing a total surface area of 6 sq. ins. per sample.
In these tests all the samples were given the following treatment, it being understood that the conventional cold water rinsing operations after the various steps are not recited:
(1) Cleaned for 5 minutes in a mild inhibited alkaline cleaner of the carbonate, phosphate silicate type at a temperature of 170 F. to a water break-free surface.
(2) Bright dipped according to the teaching of US. Patent 2,719,781.
(3) Rinsed for 15 sees. in 50% by volume nitric acid at room temperature.
(4) Anodized in a 50 gallon rectangular tank equipped with stirring devices and lead cathodes for 60 minutes with direct current in an aqueous sulfuric acid electrolyte containing 15% of sulfuric acid maintained at a temperature of 70 F. The current densities were maintained at 12 est. As used herein the term a.s.f. is an abbreviation of the expression amperes per square foot. In general, the voltages necessary to maintain a given current density vary with the cell and the anodizing conditions, and the required voltage varies as the anodizing progresses. In anodizing the samples employed in these tests, the voltages required to maintain a constant current density of 12 a.s.f. ranged from about 2 to 17 volts.
(5) The aluminum alloy samples treated as above were subsequently immersed for a period of 30 minutes in the solutions indicated in the table below. The solutions were contained in a 4 liter beaker, the pH of all solutions was 5.5 and the temperatures were maintained at 200 F. As employed in the table DW indicates deionized water while TW indicates tap water containing in parts per million 9 sodium, 32 calcium, 14 magnesium, 49 S05, 2 Cl-, 14 co,, 113 HCO;,, 0 hydroxide, balance water having a pH of 8.1. TW Conc. 50% means tap water boiled down to one-half its original volume, while TW Cone. means tap water boiled down to one-tenth its original volume.
(6) All samples were rinsed briefly in distilled water and dried.
All the samples treated as above described were subjected to the following tests:
(1) One set of samples treated as outlined above and in the table were tested for completeness of sealing by the method described in Standard Method of Test For Sealing Anodically Coated Aluminum, A.S.T.M.v Designation B13645, 1955 Standards, Part 2, page 971. This test consists of applying a spot of Antraquinone Violet R (1 gram in 50 ml. of water) to the anodized surface allowing it to stand for minutes, washing with running water and rubbing with soap and water. If the coating is sealed, no color remains. All samples were sealed.
(2) A second and third set of samples were tested for sensitivity to fingerprinting by impressing a fingerprint on each sample, storing one set of samples for twenty-four hours in a container maintained at a relative humidity of 30%, and storing the other set of samples in a container maintained at a relative humidity of 80%. The samples were then observed without opening the containers. Fingerprinting on the sample is indicated by a in the table, While the space is left blank for those samples which did not show fingerprinting.
Table Results, Humidity Sealing Solution TW Cone: 9oa+roo g./l. NaHCO; TW Cone. 90%+2.00 g./l. NaHCO It is readily seen from the table that coated composite articles produced by the method of this invention as illustrated by samples 25, 7-10, 12, 14 and 15 are superior to the oxide coated composite articles produced by sealing the oxide coatings in water as illustrated by samples 1, 6, 11 and 13 with regard to freedom from sensitivity to fingerprinting.
As used herein the term aluminum is meant to cover high purity aluminum, commercial purity aluminum and aluminum alloys.
It will be understood that various changes, omissions and additions may be made to this invention without departing from the spirit and scope thereof as set forth in the appended claims.
What is claimed is:
1. In the art of treating protective oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the oxide coated aluminum metal in a warm aqueous solution consisting essentially of a salt of carbonic acid and a metal selected from the group consisting of alkali and alkaline earth metals, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
2. In the art of treating protective oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the oxide coated aluminum metal in a warm aqueous solution consisting essentially of a salt having the general formula MX wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
3. A method according to claim 2 wherein the salt is sodium bicarbonate.
4. A method according to claim 2 wherein the salt is sodium carbonate.
5. A method according to claim 2 wherein the salt is calcium bicarbonate.
6. A method according to claim 2 wherein the salt is calcium carbonate.
7. In the art of treating protective anodic oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the anodized aluminum metal for a period of time ranging from 5 to 45 minutes in an aqueous solution consisting essentially of a salt having the formula MX wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, said salt being present in an amount ranging from 0.06 to 5.0 g./l. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from F. to 212 F.
8. In the art of treating protective anodic oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the anodized aluminum metal for 5 to 45 minutes in an aqueous solution consisting essentially of sodium bicarbonate in an amount ranging from 0.126 to 5.0 g./l. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
9. In the art of treating protective anodic oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the anodized aluminum metal for a period of time ranging from 5 to 45 minutes in an aqueous solution consisting essentially of sodium carbonate in an amount ranging from 0.126 to 5.0 g./l. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
10. In the art of treating protective anodic oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the anodized aluminum metal for a period of time ranging from 5 to 45 minutes in an aqueous solution consisting essentially of calcium bicarbonate in an amount ranging from 0.076 to 5.0 g./l. of solution, balance water, said solution being maintained at a pH of from 5 .0 to 6.0 and at a temperature of from 180 F. to 212 F.
11. In the art of treating protective anodic oxide coatings on aluminum metal, to substantially reduce their sensitivity to fingerprinting the improvement comprising immersing the anodized aluminum metal for a period of time ranging from 5 to 45 minutes in an aqueous solution consisting essentially of calcium carbonate in an amount ranging from 0.076 to 5.0 g./l. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
12. A composite article having substantially reduced sensitivity to fingerprinting, said article comprising a base portion of aluminum metal and a protective anodic oxide coating adhering thereto which has been treated by immersing the oxide coated article in an aqueous solution consisting essentially of a salt of carbonic acid and a metal selected from the group consisting of an alkali and alkaline earth metal, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
13. A composite article having substantially reduced sensitivity to fingerprinting, said article comprising a base portion of aluminum metal and a protective anodic oxide coating adhering thereto which has been treated by immersing the oxide coated article in an aqueous solution consisting essentially of a salt having the general formula MX, wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
14. A composite article having substantially reduced sensitivity to fingerprinting, said article comprising a base portion of aluminum metal and a protective anodic oxide coating adhering thereto which has been treated by immersing the oxide coated aluminum metal for a period of from 5 to 45 minutes in an aqueous solution consisting essentially of a salt having the general formula MX, wherein M is a metal selected from the group consisting of sodium and calcium and X is an anion selected from the group consisting of carbonates and bicarbonates, in an amount ranging from 0.06 to 5.0 g./1. of solution, balance water, said solution being maintained at a pH of from 5.0 to 6.0 and at a temperature of from 180 F. to 212 F.
References Cited in the file of this patent UNITED STATES PATENTS OTHER REFERENCES Metal Finishing, August 1956, pages 53-58.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No $073,760 January 15, 1963 Henry J, Wittrock' rs in the above numbered pat- It is hereby certified that error appea etters Patent should read as ent requiring correction and that the said L corrected below.
" read anodized line 53, for "anodizing d Anthraquinone "0 Column 1,
for "'Antraquinone" rea column 3, line 3 Signed and sealed this 20th day of August 1963.
(SEAL) Attest:
ERNEST w. SWIDER DAVID LADD Attesting Officer Commissioner of Patents
Claims (1)
1. IN THE ART OF TREATING PROTECTIVE OXIDE COATINGS ON ALUMINIUM METAL, TO SUBSTANTIALLY REDUCE THEIR SENSITIVITY TO FINGERPRINTING THE IMPROVEMENT COMPRISING IMMERSING THE OXIDE COATED ALUMINIUM METAL IN A WARM AQUEOUS SOLUTION CONSISTING ESSENTIALLY OF A SALT OF CARBONIC ACID AND A METAL SELECTED FROM THE GROUP CONSISTING OF ALKALI AND ALKALINE EARTH METALS, BALANCE WATER, SAID SOLUTION BEING MAINTAINED AT A PH OF FROM 5.0 TO 6.0 AND AT A TEMPERATURE OF FROM 180*F. TO 212*F.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US811014A US3073760A (en) | 1959-05-05 | 1959-05-05 | Sealing of anodized coatings |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US811014A US3073760A (en) | 1959-05-05 | 1959-05-05 | Sealing of anodized coatings |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3073760A true US3073760A (en) | 1963-01-15 |
Family
ID=25205293
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US811014A Expired - Lifetime US3073760A (en) | 1959-05-05 | 1959-05-05 | Sealing of anodized coatings |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3073760A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3468767A (en) * | 1965-07-12 | 1969-09-23 | Anderson Mfg Co V E | Process of producing permanently colored aluminum |
| US3891516A (en) * | 1970-08-03 | 1975-06-24 | Polychrome Corp | Process of electrolyically anodizing a mechanically grained aluminum base and article made thereby |
| US20210162700A1 (en) * | 2017-01-26 | 2021-06-03 | Composecure, Llc | Patinated or patina-ready metal transaction cards and manufacturing processes |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US991273A (en) * | 1909-07-21 | 1911-05-02 | Hans Christensen | Process for producing substitute for lithographic stones or metal plates. |
| GB338787A (en) * | 1929-01-10 | 1930-11-27 | I.G. Farbenindustrie Aktiengesellschaft | |
| US1929486A (en) * | 1931-09-15 | 1933-10-10 | Eastman Kodak Co | Dyeing oxidized aluminum |
| FR854932A (en) * | 1938-05-20 | 1940-04-27 | Process for obtaining corrosion resistant layers on aluminum and aluminum alloy objects | |
| US2464596A (en) * | 1945-02-15 | 1949-03-15 | Aluminum Co Of America | Chemical method of coating aluminum |
-
1959
- 1959-05-05 US US811014A patent/US3073760A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US991273A (en) * | 1909-07-21 | 1911-05-02 | Hans Christensen | Process for producing substitute for lithographic stones or metal plates. |
| GB338787A (en) * | 1929-01-10 | 1930-11-27 | I.G. Farbenindustrie Aktiengesellschaft | |
| US1929486A (en) * | 1931-09-15 | 1933-10-10 | Eastman Kodak Co | Dyeing oxidized aluminum |
| FR854932A (en) * | 1938-05-20 | 1940-04-27 | Process for obtaining corrosion resistant layers on aluminum and aluminum alloy objects | |
| US2464596A (en) * | 1945-02-15 | 1949-03-15 | Aluminum Co Of America | Chemical method of coating aluminum |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3468767A (en) * | 1965-07-12 | 1969-09-23 | Anderson Mfg Co V E | Process of producing permanently colored aluminum |
| US3891516A (en) * | 1970-08-03 | 1975-06-24 | Polychrome Corp | Process of electrolyically anodizing a mechanically grained aluminum base and article made thereby |
| US20210162700A1 (en) * | 2017-01-26 | 2021-06-03 | Composecure, Llc | Patinated or patina-ready metal transaction cards and manufacturing processes |
| US12208599B2 (en) * | 2017-01-26 | 2025-01-28 | Composecure, Llc | Patinated or patina-ready metal transaction cards and manufacturing processes |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE25566E (en) | Anodic oxidation of aluminum | |
| US3961111A (en) | Method of increasing corrosion resistance of anodized aluminum | |
| US2231373A (en) | Coating of articles of aluminum or aluminum alloys | |
| US3645862A (en) | Method of making an electrode | |
| JP2006513322A (en) | Color finishing method | |
| US6379523B1 (en) | Method of treating surface of aluminum blank | |
| US2703781A (en) | Anodic treatment of aluminum surfaces | |
| US3440150A (en) | Dual-seal anodized aluminum | |
| US3075896A (en) | Process for coating titanium articles | |
| US3073760A (en) | Sealing of anodized coatings | |
| US3351540A (en) | Method of improving the corrosion resistance of oxidized metal surfaces | |
| US4103048A (en) | Low temperature vapor sealing of anodized aluminum | |
| US4288299A (en) | Enhanced hydrothermal sealing of anodized aluminum | |
| US2620265A (en) | Composition for treating aluminum and aluminum alloys | |
| US1946153A (en) | Protecting aluminum from corrosion | |
| US3365377A (en) | Method of sealing anodized aluminum | |
| US2698262A (en) | Method of sealing anodized aluminum surfaces and article produced thereby | |
| US3313714A (en) | Tin plate treatment and product | |
| US3620939A (en) | Coating for magnesium and its alloys and method of applying | |
| US2682503A (en) | Method and material for electrolytically brightening aluminum surfaces | |
| US3729391A (en) | Surface treatment of zinc/aluminium alloys | |
| US3275537A (en) | Process of anodizing aluminum | |
| US3956082A (en) | Anodizing bath for composite metal material composed of aluminum or aluminum alloy and different metal having a lower ionization tendency | |
| US2836526A (en) | Aluminum surfacing | |
| US3057761A (en) | Coloring oxide coated aluminum and product |