US3067171A - Process for the production of synthetic resins - Google Patents
Process for the production of synthetic resins Download PDFInfo
- Publication number
- US3067171A US3067171A US862753A US86275359A US3067171A US 3067171 A US3067171 A US 3067171A US 862753 A US862753 A US 862753A US 86275359 A US86275359 A US 86275359A US 3067171 A US3067171 A US 3067171A
- Authority
- US
- United States
- Prior art keywords
- epoxy
- alkali
- reaction
- acid
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000057 synthetic resin Substances 0.000 title description 6
- 229920003002 synthetic resin Polymers 0.000 title description 6
- 239000004593 Epoxy Substances 0.000 claims description 24
- 239000003513 alkali Substances 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 2
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- HDFRDWFLWVCOGP-UHFFFAOYSA-N carbonothioic O,S-acid Chemical class OC(S)=O HDFRDWFLWVCOGP-UHFFFAOYSA-N 0.000 description 9
- 150000004820 halides Chemical class 0.000 description 9
- -1 aromatic carboxylic acids Chemical class 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 238000013019 agitation Methods 0.000 description 6
- 238000007127 saponification reaction Methods 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- YQUVCSBJEUQKSH-UHFFFAOYSA-N protochatechuic acid Natural products OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- WKOLLVMJNQIZCI-UHFFFAOYSA-N vanillic acid Chemical compound COC1=CC(C(O)=O)=CC=C1O WKOLLVMJNQIZCI-UHFFFAOYSA-N 0.000 description 2
- TUUBOHWZSQXCSW-UHFFFAOYSA-N vanillic acid Natural products COC1=CC(O)=CC(C(O)=O)=C1 TUUBOHWZSQXCSW-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- JJHHIJFTHRNPIK-UHFFFAOYSA-N Diphenyl sulfoxide Chemical compound C=1C=CC=CC=1S(=O)C1=CC=CC=C1 JJHHIJFTHRNPIK-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical group 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical group 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical class OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003566 thiocarboxylic acids Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/12—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
- C07D303/18—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
- C07D303/20—Ethers with hydroxy compounds containing no oxirane rings
- C07D303/22—Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/12—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
- C07D303/16—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/34—Compounds containing oxirane rings with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
Definitions
- the aliphatic or aromatic carboxylic acids are used in form .of dry alkali salts or in the presence of no more than catalytic amounts of water, preferably less than 1 percent calculated on the reaction mixture, together with a large excess epoxy halide compound at elevated temperatures, also using, if desired, further catalysts such as tertiary nitrogen compounds and quaternary ammonium compounds.
- the reaction also can be carried out in inert solvents in which the epoxy halide and also the reaction product is soluble.
- solvents are, e.g., ketones, ethers, halogenated hydrocarbons and dioxane.
- the further operation simply consists in filtering the alkali halide from the solution and distilling the excess epoxy halide and solvent.
- the acid salts of oxyand mercaptocarboxylic acids wherein only one reactive hydrogen atom is substituted by alkali can be reacted with epoxy halide.
- compounds which contain glycid esters and glycid ethers or glycid thioethers beside esters, ethers or thioethers of a-chlorohydrin, also addition products containing in the molecule an epoxy group.
- These compounds can be hardened by acid and basic materials, e.g., amines, organic acid anhydrides, sulfochlorides, sulfonic acids or Friedel-Crafts catalysts, into synthetic resins of excellent mechanical properties, also of resistance to chemicals and temperatures. It is surprising that, contrary to former experiences, these monoglycid ethers are converted into usable synthetic resins not only with trifunctional hardeners.
- thermosetting resins can be produced by reaction of epoxy halides or dihalogen hydrins with aromatic oxyor mercapto acids, whereby at least 2 mols epoxy halide are used per mol acid, the reaction to be conducted in aqueous solution and with addition of the alkali in two steps.
- aromatic oxyor mercapto carboxylic acids can be employed, e.g., ortho-, metaand para-oxybenzoic acids or the corresponding mercapto carboxylic acids, furthermore those oxyor mercapto carboxylic acids which are derived from polynuclear aromatic compounds, e.g., from naphthalene, anthracene, diphenyl, diphenyl ether, diphenyl sulfide, diphenyl methane, benzophenone, diphenylsulfone, diphenylsul-foxide and alkyldiphenyl amines. Both the functional groups may be on the same or on different nuclei.
- aromatic rings may have, beside carboxyl-, oxyor sulfydryl groups, still other substituents, e.g., halogen atoms, alkyl or alkoxy groups.
- substituents e.g., halogen atoms, alkyl or alkoxy groups.
- sulfydryl groups present in the molecule is not limited to 1 and may be larger.
- a special significance of the process resides in the utilization of vanillic acid which is cheaply available on a large scale from lignin.
- the reaction of the oxyor mercapto carboxylic acids is carried out, according to the invention, by dissolving the oxyor mercapto carboxylic acids in approximately 10-20 percent aqueous alkali and adding with agitation and at temperatures of 20-100 C., preferably at 50-l00 C., the stoichiometrical amount epoxy halide.
- 1 mol alkali are applied per mol oxyor mercapto carboxylic acid.
- the pH value before addition of the epichlorohydrin should be approximately 7 although a slight deviation therefrom has no disadvantageous effect.
- 2 mols epichlorohydrin are added.
- the remaining portion of the alkali is added in aqueous solution, preferably in 20-30 percent solution, or dry with intensive agitation.
- aqueous solution preferably in 20-30 percent solution, or dry with intensive agitation.
- Particularly good yields are obtained by addition of exactly the amount of alkali required for neutralization.
- the mixture is continued to be agitated for 30 minutes thereafter without external heating whereby a resin forms Which can be refined in the usual manner either by dissolving it in acetone and filtration of the salts adhering to the crude resin or by washing with water.
- a clear resin is obtained. The yields are very good.
- Any non-reacted oxyor mercaptocarboxylic acid can be recovered as glycid ether carboxylic acid by acidulation of the remaining liquor and can be reused.
- This formula can be substantiated by the determina tion of the epoxy value, saponification value, hydroxyl value and molecular weight.
- insufiicient HCl has split oil from the 1.2-chlorohydrin, chlorine still is found.
- a saponification of the epoxy esters under the conditions as described cannot be found to take place.
- a change in the process i.e., addition of the total amount of alkali at the start of the process according to the invention, leads to poor results.
- the addition of a catalyst, e.g., dimethyl aniline, is of no significance for the course of the reaction.
- the resins obtained by this process can be converted in the usual manner and like all other epoxy compounds into technologically valuable synthetic resins by hardening and have the same properties as these.
- the wash fluid is neutral and free of chlorine.
- 'resin then is freed from the adhering water in a vacuum drying cabinet until it is entirely clear and transparent.
- the synthetic resins 'made by the process according to the invention are suitable as excellent adhesives for metals and glass and for the production of casting resins, molded bodies,
- Example 1 In a three-neck flask of 500 ml. capacity, provided with agitator, reflux condenser, thermometer and dropping funnel, 83 g. p-oxybenzoic acid are dissolved in 24 g.
- the resin then hardens through in a drying oven at 130 140 C. within 5-10 hours and at 180 C. within 1 hour and at this temperature is a rubber-like mass which no longer can be shaped.
- a drying oven at 130 140 C. within 5-10 hours and at 180 C. within 1 hour and at this temperature is a rubber-like mass which no longer can be shaped.
- phthalic anhydride instead of phthalic anhydride,
- the mixture is cooled to 5060 C., and as much alkali added as is needed for the complete formation of the epoxy groups. This, corresponding to the molecular weight, is approximately 3 g. alkali.
- the precipitated resin is refined and dried as described above. The yield of epoxy resin is greater than that of the preceding examples because, under the operating conditions, no saponification of the resin already formed can occur.
- thermosetting epoxy ether ester polymers by the reaction of at least two mols epichlorohydrin with one mol of an aromatic oxycarboxylic acid and with addition of more than one and up to two mols alkali, which comprises carrying out said reaction in aqueous solution and with the addition of said alkali in two separate steps.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Epoxy Resins (AREA)
- Epoxy Compounds (AREA)
Description
United States Patent Ofiiice 3,067,171 Patented Dec. 4, 19.62
3,067,171 PROCESS FOR TEE PRODUCTION OF SYNTHETIC RESINS Switzerland, assignor to Inventa Manfred He e Chin W Zurich,
AG. fuer Forschung und Patentverwertung,
Switzerland No Drawing. Filed Dec. 30, 1959, Ser. No. 862,753 Claims priority, application Switzerland Feb. 12, 1959 2 Claims. (Cl. 260-47) -oR-oH0 GH, wherein R is an aromatic radical and n is a whole number.
The aliphatic or aromatic carboxylic acids are used in form .of dry alkali salts or in the presence of no more than catalytic amounts of water, preferably less than 1 percent calculated on the reaction mixture, together with a large excess epoxy halide compound at elevated temperatures, also using, if desired, further catalysts such as tertiary nitrogen compounds and quaternary ammonium compounds. The reaction also can be carried out in inert solvents in which the epoxy halide and also the reaction product is soluble. Such solvents are, e.g., ketones, ethers, halogenated hydrocarbons and dioxane. The further operation simply consists in filtering the alkali halide from the solution and distilling the excess epoxy halide and solvent.
Under the same conditions, the acid salts of oxyand mercaptocarboxylic acids wherein only one reactive hydrogen atom is substituted by alkali, can be reacted with epoxy halide. Thereby compounds are formed which contain glycid esters and glycid ethers or glycid thioethers beside esters, ethers or thioethers of a-chlorohydrin, also addition products containing in the molecule an epoxy group. These compounds can be hardened by acid and basic materials, e.g., amines, organic acid anhydrides, sulfochlorides, sulfonic acids or Friedel-Crafts catalysts, into synthetic resins of excellent mechanical properties, also of resistance to chemicals and temperatures. It is surprising that, contrary to former experiences, these monoglycid ethers are converted into usable synthetic resins not only with trifunctional hardeners.
It now has been found that thermosetting resins can be produced by reaction of epoxy halides or dihalogen hydrins with aromatic oxyor mercapto acids, whereby at least 2 mols epoxy halide are used per mol acid, the reaction to be conducted in aqueous solution and with addition of the alkali in two steps.
As starting material for the process according to the invention, aromatic oxyor mercapto carboxylic acids can be employed, e.g., ortho-, metaand para-oxybenzoic acids or the corresponding mercapto carboxylic acids, furthermore those oxyor mercapto carboxylic acids which are derived from polynuclear aromatic compounds, e.g., from naphthalene, anthracene, diphenyl, diphenyl ether, diphenyl sulfide, diphenyl methane, benzophenone, diphenylsulfone, diphenylsul-foxide and alkyldiphenyl amines. Both the functional groups may be on the same or on different nuclei. Moreover, the aromatic rings may have, beside carboxyl-, oxyor sulfydryl groups, still other substituents, e.g., halogen atoms, alkyl or alkoxy groups. The number of the carboxyl-, oxy, or
sulfydryl groups present in the molecule is not limited to 1 and may be larger. A special significance of the process resides in the utilization of vanillic acid which is cheaply available on a large scale from lignin.
The reaction of the oxyor mercapto carboxylic acids is carried out, according to the invention, by dissolving the oxyor mercapto carboxylic acids in approximately 10-20 percent aqueous alkali and adding with agitation and at temperatures of 20-100 C., preferably at 50-l00 C., the stoichiometrical amount epoxy halide. In the first step, 1 mol alkali are applied per mol oxyor mercapto carboxylic acid. The pH value before addition of the epichlorohydrin should be approximately 7 although a slight deviation therefrom has no disadvantageous effect. For mol oxyor mercapto carboxylic acid, 2 mols epichlorohydrin are added. After at least 2 hours agitation of the reaction mixture, preferably 4 hours, at the temperatures named above, the remaining portion of the alkali is added in aqueous solution, preferably in 20-30 percent solution, or dry with intensive agitation. Particularly good yields are obtained by addition of exactly the amount of alkali required for neutralization. The mixture is continued to be agitated for 30 minutes thereafter without external heating whereby a resin forms Which can be refined in the usual manner either by dissolving it in acetone and filtration of the salts adhering to the crude resin or by washing with water. By drying in vacuo or else at normal pressure at temperatures up to approximately -130 C., a clear resin is obtained. The yields are very good.
Any non-reacted oxyor mercaptocarboxylic acid can be recovered as glycid ether carboxylic acid by acidulation of the remaining liquor and can be reused.
The course of the reaction can be explained in such a manner that, after a reactive hydrogen atom has been replaced by a base, by the action of 1 mol epichlorohydrin under splitting oit, e.g., alkali halide, an epoxy ester or epoxy ether or epoxy thioether forms. The unneutralized reactive hydrogen atom still present in the molecule then reacts with a further mol epichlorohydrin or else with an epoxy group of the epoxy ether, epoxy ester or epoxy thioether already formed under splitting of the ring and thus leads to 1.2-chlorohydrins or to addition compounds. By further addition of alkali, the 1.2-chlorohydrins then are converted into epoxy compounds under splitting off of alkali halide. In the simplest case, using a simple organic oxycarboxylic acid and epichlorohydrin as starting products, the following formula for the composition of the compound formed containing more than one epoxy group obtains:
O -R ooo-OHiooH wherein R is an aromatic radical and n is a small whole number.
This formula can be substantiated by the determina tion of the epoxy value, saponification value, hydroxyl value and molecular weight. When insufiicient HCl has split oil from the 1.2-chlorohydrin, chlorine still is found.
A saponification of the epoxy esters under the conditions as described cannot be found to take place. However, a change in the process, i.e., addition of the total amount of alkali at the start of the process according to the invention, leads to poor results. The addition of a catalyst, e.g., dimethyl aniline, is of no significance for the course of the reaction.
The resins obtained by this process can be converted in the usual manner and like all other epoxy compounds into technologically valuable synthetic resins by hardening and have the same properties as these. As hardenthe wash fluid is neutral and free of chlorine. 'resin then is freed from the adhering water in a vacuum drying cabinet until it is entirely clear and transparent.
ing catalysts all acid and basic compounds can be considered which have been named above for the hardening of epoxy compounds from oxyor thio-carboxylic acids made by another process.
On the basis of their properties, the synthetic resins 'made by the process according to the invention are suitable as excellent adhesives for metals and glass and for the production of casting resins, molded bodies,
laminates, coatings or insulation.
Example 1 In a three-neck flask of 500 ml. capacity, provided with agitator, reflux condenser, thermometer and dropping funnel, 83 g. p-oxybenzoic acid are dissolved in 24 g.
sodium hydroxide and 150 ml. water, and between 50 and 60 C. 111.2 g. epichlorohydrin are added Within 20 minutes. After holding the reaction mixture at that, temperature with agitation for another 4 hours, 24 g.
"sodium' hydroxide are added in small portions and the heating discontinued. After cooling under agitation, the resin formed is washed repeatedly with hot water until The wet p The analysis gave the following data:
Epoxy content per 100 g. resin 0.430
Saponification value 257 Molecular weight 441 Example 2 101.4 g. vanillic acid are dissolved in the apparatus described above in 24 g. sodium hydroxide and 150 ml.
water. At 50-60 C., 111.2 g. epichlorohydrin are added within approximately 20 minutes, and after 4 hours agitaltion at the same temperature another 24 g. sodium hydroxide are added. The mixture then is allowed to cool. The precipitated resin is washed repeatedly in :hot Water until the wash fluid is neutral and free of chl rine. and transparent light-colored resin is obtained which has the following analytical data:
Epoxy content per 100 g. resin 0.377 Saponification value Molecular weight After drying in a vacuum drying cabinet a clear Acid Hardening: 10 parts resin are melted together at approximately 130 C. with 3-5 parts phthalio anhydride,
depending upon the size of the epoxy value, and mixed until a clear and slightly viscous solution has formed.
The resin then hardens through in a drying oven at 130 140 C. within 5-10 hours and at 180 C. within 1 hour and at this temperature is a rubber-like mass which no longer can be shaped. Instead of phthalic anhydride,
In a round-bottom flask, equipped with agitator, thermometer and reflux condenser, 83 g. p-oxyphenzoic acid and 24 g. sodium hydroxide are dissolved in 150 ml. water and reacted at 5060 C. with 112 g. epichlorohydrin.
.After agitation for 4 hours at 100 C., the mixture is cooled to 5060 C., and as much alkali added as is needed for the complete formation of the epoxy groups. This, corresponding to the molecular weight, is approximately 3 g. alkali. The precipitated resin is refined and dried as described above. The yield of epoxy resin is greater than that of the preceding examples because, under the operating conditions, no saponification of the resin already formed can occur.
Epoxy content per g. resin 0.175 Saponification value 236 Molecular weight (measured in acetone) 973.1
It should be understood that these examples are given merely by way of illustration, not of limitation, and that numerous changes may be made in the details without departing from the spirit and the scope of the invention as hereinafter claimed.
I claim as my invention:
1. A process for the production of thermosetting epoxy ether ester polymers by the reaction of at least two mols epichlorohydrin with one mol of an aromatic oxycarboxylic acid and with addition of more than one and up to two mols alkali, which comprises carrying out said reaction in aqueous solution and with the addition of said alkali in two separate steps.
2. The process as claimed in claim 1, wherein in the first of said two separate steps one mol alkali per 1 mol acid is entered into the reaction and, after termination of said reaction, up to one more mol alkali is entered.
References Cited in the file of this patent UNITED STATES PATENTS 2,599,974 Carpenter et a1 June 10, 1952 2,840,541 Pezzaglia June 24, 1958 2,925,426 Schroeder Feb. 16, 1960
Claims (1)
1. A PROCESS FOR THE PRODUCTION OF THERMOSETTING EPOXY ETHER ESTER POLYMERS BY THE REACTION OF AT LEAST TWO MOLS EPICHLOROHYDRIN WITH ONE MOL OF AN AROMATIC OXYCARBOXYLIC ACID AND WITH ADDITION OF MORE THAN ONE AND UP TO TWO MOLS ALKALI, WHICH COMPRISES CARRYING OUT SAID REACTION IN AQUEOUS SOLUTION AND WITH THE ADDITION OF SAID ALKALI IN TWO SEPARATE STEPS.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH6951759A CH392896A (en) | 1959-02-12 | 1959-02-12 | Process for the production of synthetic resins |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3067171A true US3067171A (en) | 1962-12-04 |
Family
ID=4529576
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US862753A Expired - Lifetime US3067171A (en) | 1959-02-12 | 1959-12-30 | Process for the production of synthetic resins |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3067171A (en) |
| CH (1) | CH392896A (en) |
| DE (1) | DE1215728B (en) |
| FR (1) | FR1249559A (en) |
| GB (1) | GB913794A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3369040A (en) * | 1962-10-19 | 1968-02-13 | Shell Oil Co | Polymercaptans and their preparation from epithio compounds |
| US4130549A (en) * | 1977-03-07 | 1978-12-19 | Kabushiki Kaisha Venoseiyaku Oyo Kenkyuso | Process for preparing epoxy resins from hydroxy benzoic acid and bisphenol |
| US4368298A (en) * | 1980-02-20 | 1983-01-11 | Kiyoaki Okayama | Process for producing novolak-type epoxy resin |
| US5182394A (en) * | 1992-01-14 | 1993-01-26 | Akzo N.V. | Liquid crystalline diglycidyl compounds |
| US5294463A (en) * | 1991-07-02 | 1994-03-15 | Thompson-Csf | Thermally reticulated materials for non-linear optical applications |
| CN114573790A (en) * | 2022-03-17 | 2022-06-03 | 宁波锋成先进能源材料研究院有限公司 | Bio-based degradable epoxy resin, preparation method and application thereof |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3960795A (en) * | 1974-08-13 | 1976-06-01 | Ppg Industries, Inc. | Hydrolyzed reaction product of a polyepoxide with a phenolic compound having a group hydrolyzable to carboxyl |
| US4031051A (en) * | 1974-08-13 | 1977-06-21 | Ppg Industries, Inc. | Hydrolyzed reaction product of a polyepoxide with a phenolic compound having a group hydrolyzable to a carboxyl and curing agent therefor |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2599974A (en) * | 1949-03-02 | 1952-06-10 | Courtaulds Ltd | Polymeric compounds condensed from epichlorhydrin and a bifunctional amino compound,and method of production |
| US2840541A (en) * | 1955-01-31 | 1958-06-24 | Shell Dev | Process for manufacture of glycidyl ethers of polyhydric phenols |
| US2925426A (en) * | 1955-12-29 | 1960-02-16 | Shell Dev | Epoxy ether esters |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1034357B (en) * | 1956-04-12 | 1958-07-17 | Henkel & Cie Gmbh | Process for the production of synthetic resins |
-
1959
- 1959-02-12 CH CH6951759A patent/CH392896A/en unknown
- 1959-11-26 DE DEJ17285A patent/DE1215728B/en active Pending
- 1959-12-30 US US862753A patent/US3067171A/en not_active Expired - Lifetime
-
1960
- 1960-01-06 GB GB531/60A patent/GB913794A/en not_active Expired
- 1960-01-11 FR FR815340A patent/FR1249559A/en not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2599974A (en) * | 1949-03-02 | 1952-06-10 | Courtaulds Ltd | Polymeric compounds condensed from epichlorhydrin and a bifunctional amino compound,and method of production |
| US2840541A (en) * | 1955-01-31 | 1958-06-24 | Shell Dev | Process for manufacture of glycidyl ethers of polyhydric phenols |
| US2925426A (en) * | 1955-12-29 | 1960-02-16 | Shell Dev | Epoxy ether esters |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3369040A (en) * | 1962-10-19 | 1968-02-13 | Shell Oil Co | Polymercaptans and their preparation from epithio compounds |
| US4130549A (en) * | 1977-03-07 | 1978-12-19 | Kabushiki Kaisha Venoseiyaku Oyo Kenkyuso | Process for preparing epoxy resins from hydroxy benzoic acid and bisphenol |
| US4368298A (en) * | 1980-02-20 | 1983-01-11 | Kiyoaki Okayama | Process for producing novolak-type epoxy resin |
| US5294463A (en) * | 1991-07-02 | 1994-03-15 | Thompson-Csf | Thermally reticulated materials for non-linear optical applications |
| US5182394A (en) * | 1992-01-14 | 1993-01-26 | Akzo N.V. | Liquid crystalline diglycidyl compounds |
| CN114573790A (en) * | 2022-03-17 | 2022-06-03 | 宁波锋成先进能源材料研究院有限公司 | Bio-based degradable epoxy resin, preparation method and application thereof |
| CN114573790B (en) * | 2022-03-17 | 2023-11-17 | 宁波锋成绿能环保科技有限公司 | Bio-based degradable epoxy resin, preparation method and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| FR1249559A (en) | 1960-12-30 |
| CH392896A (en) | 1965-05-31 |
| DE1215728B (en) | 1966-05-05 |
| GB913794A (en) | 1962-12-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2444333A (en) | Process for the manufacture of thermosetting synthetic resins by the polymerization of alkylene oxide derivatives | |
| US2809942A (en) | Process for making polyglycidyl cyanurates | |
| US2615008A (en) | Epoxide resin compositions | |
| US3067171A (en) | Process for the production of synthetic resins | |
| US3004951A (en) | Diglycidyl ether of dihydroxypoly-chlorobiphenyls and epoxy resins therefrom | |
| JPS6137289B2 (en) | ||
| US2864805A (en) | Epoxide resins | |
| US2069573A (en) | Phenolic compounds | |
| US2582985A (en) | Epoxide resins | |
| US2873299A (en) | Halomethylation of aromatic compounds | |
| US2765322A (en) | Preparation of bis(4-glycidyloxyphenyl)-sulfone | |
| US4560739A (en) | Triglycidyl compounds of aminophenols | |
| US2799694A (en) | Polyfunctional halogenated aromatic compounds | |
| US2947760A (en) | Chroman derivatives | |
| GB785214A (en) | Improvements in or relating to synthetic linear soluble polymers and copolymers comprising a major proportion of carboxylic acid amide linkages | |
| US2971942A (en) | Epoxide resins | |
| US2542417A (en) | Hexamethyl benzene compounds | |
| US2951854A (en) | Bis-epoxides obtained from 2, 2, 3, 3-tetrahalo-1, 4-butanediol and methods of manufacture of the same | |
| US2947726A (en) | Epoxide resins | |
| JPH05222153A (en) | Novel anthracene-based epoxy resin and method for producing the same | |
| US1807729A (en) | Rhe-kalsr-hochst | |
| US3288789A (en) | Process for the production of hardenable compounds containing epoxide groups | |
| US3641064A (en) | Polyglycidyl esters | |
| US3293213A (en) | Terpolymeric resins from bis-(p-hydroxycumyl) benzene | |
| US2273974A (en) | Sulphonataing process |