[go: up one dir, main page]

US3054660A - Manufacture of ammonia - Google Patents

Manufacture of ammonia Download PDF

Info

Publication number
US3054660A
US3054660A US9240A US924060A US3054660A US 3054660 A US3054660 A US 3054660A US 9240 A US9240 A US 9240A US 924060 A US924060 A US 924060A US 3054660 A US3054660 A US 3054660A
Authority
US
United States
Prior art keywords
gases
rotor
compressor
turbine
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US9240A
Inventor
William R Crooks
Fullemann John
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cooper Bessemer Corp
Original Assignee
Cooper Bessemer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US594808A external-priority patent/US2929548A/en
Application filed by Cooper Bessemer Corp filed Critical Cooper Bessemer Corp
Priority to US9240A priority Critical patent/US3054660A/en
Priority to US9239A priority patent/US3054269A/en
Application granted granted Critical
Publication of US3054660A publication Critical patent/US3054660A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0417Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0447Apparatus other than synthesis reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/22Lubricating arrangements using working-fluid or other gaseous fluid as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/20Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/91Expander

Definitions

  • centrifugal compressors In a size range to handle gas flows much below 800 c.f.m. because of excessive gas friction in the narrow impeller passages that are required in so small a unit, and also because the speed of rotation is so high that the lubrication of bearings, gears and couplings becomes a major concern.
  • a centrifugal compressor operating at speeds higher than 20,000 rpm. to 30,000 rpm. presents a problem in connecting it to a power source, such as an electric motor or an internal combustion engine because it cannot be directly driven, but must be coupled to the power source by gearing or the like which will impart the necessary high rotative speed to the compressor from the low speed prime mover.
  • the present invention provides a process of synthesizing ammonia or the like, which process utilizes a turbocompressor.
  • nitrogen and hydrogen are compressed to high pressure, normally from 3000 p.s.i. to 15,000 p.s.i. by means of a multi-stage reciprocating compressor and passed to a catalytic chamber in which a quantity of the gases unite to form ammonia which is taken from the catalytic chamber as a liquid.
  • the free, uncombined gases which have failed to unite in the chamber are taken from it and recirculated.
  • the recirculation compressors are large reciprocating machines driven by, for example, a 300 horsepower motor or engine.
  • the gases should be kept from contact with hydrocarbon lubricants since these materials if entrained in the gas stream act to poison the catalyst.
  • This consideration requires that the piston of the reciprocating compressor be supported at its ends by stufling boxes and held from hearing cont-act with the walls of the compressor cylinder which can then be operated without lubrication. It will be appreciated that such a recirculation machine is an expensive unit and one that requires very careful maintenance.
  • the primary object of the present invention is to improve a process for synthesizing ammonia or the like by utilizing a small, high speed turbine-driven compressor.
  • FIGURE 1 is a central vertical sectional View, somewhat diagrammatic, of a turbocompressor constructed in accordance with the present invention
  • FIGURE 2 is an enlargement of the encircled area of the edge of the turbine shown in FIG. 1;
  • FIGURE 3 is a diagrammatic view of a circuit in which the turbocompressor is used in a process for the synthesis of ammonia.
  • FIGURE 1 of the drawings there is shown a crosssectional view of a turbocompressor unit that is applicable to the problems involved in the ammonia synthesis process above described.
  • the turbocompressor comprises a housing or body 10 which may be made quite massive to contain gas at several thousand pounds per square inch pressure.
  • the housing is provided with an inlet passage 12, a turbine discharge passage 14 and a compressor discharge passage 16.
  • the housing 10 is provided with a central cavity into which a rotor 20 and a center assembly 22 are inserted from the top, the assembly 22 being split for insertion along a diameter and being retained by an upper retainer 24.
  • the rotor 20 comprises a central shaft 26 carrying compressor blading 28 at one end and a turbine rotor 30 at the opposite end.
  • the compressor blading may be of any well-known form use-d for centrifugal compressors and is chosen for the particular compression ratio, mass flow of gas and other conditions for which it is designed.
  • the specific form of the centrifugal compressor does not comprise a part of the present invention and while a single stage compressor is shown a multi-stage compressor may be used as Well. Gas taken from the inlet passage 12 enters the blading adjacent the hub and is forced radially outward by the blades into a discharge space 32 which connects tangentially with the compressor discharge conduit 16 in a manner well known in the art.
  • the turbine rotor 30 at the opposite end of the shaft 26 may include a single stage or a multiplicity of stages.
  • the turbine includes a first impulse stage and a second reaction stage, but this may obviously be varied at the selection of the designer.
  • the impulse stage comprises a series of radial blades 36 extending from the periphery of the rotor and receiving gas from a plurality of circumferentially spaced nozzle openings 38 by which the gas is directed tangentially and downwardly with respect to the blades 36.
  • the supply of gas for the turbine is taken from the compressor inlet passage 12 through one or more side passages 39.
  • the turbine inlet pressure thus approximates closely the compressor inlet pressure in the form shown. It will be apparent that the turbine may be supplied from the compressor discharge passage 16 with equal facility if a higher inlet pressure is desired.
  • the how of gas in the impulse stage is in a generally axial direction through the blading so that the first turbine stage formed by the blades 36 discharges into an axial flow discharge chamber 40 which is formed by the periphcry of the hub and by an opposed stationary wall of the retainer 24.
  • the rotor of the turbine 30, below the first stage is provided with a somewhat enlarged flanged portion immediately below the discharge chamber 40 so that the gas is caused to flow outwardly from the center of the rotor into an inlet passage 42 for the second, reaction turbine stage.
  • the inlet passage 42 is formed in a stationary member that is bolted or otherwise fixed to the center assembly 22 so that it is stationary with respect to the rotor.
  • a labyrinth seal 43 is formed on the periphery of the rotor adjacent the stationary member in which the second stage inlet passage is formed.
  • the inlet passage 42 is further provided with guide vanes 44 which direct the gas first downwardly and then radially inwardly into the second turbine stage containing blades 45.
  • the rotor 30 is formed in upper and lower sections which are subsequently attached into a unitary structure and which are spaced apart by the series of blades between the upper and lower sections.
  • the upper and lower sections are held together as by rivets '50 which pass through the blades 45 so as to fix the parts in position without introducing the impedance to gas flow of a fastening element.
  • the gas directed from the guide vanes 44 flows into the blading of the second stage, radially inwardly and is discharged into a discharge passage 51 which merges with the axial discharge passage 14.
  • the entire rotor assembly operates suspended in gas and without frictional engagement with the surrounding stationary wall portions.
  • the present invention provides that the suspending fluid shall have a definite flow pattern, however, and wherever a restriction exists in the flow path a body of material of low dry friction properties is inserted in the stationary housing.
  • This material may be of a graphite, plastic or metallic base, or of any other suitable kind.
  • Gas for the suspension of the rotor in case of vertical installation is taken originally from the inlet passage 12 into a central passage 55 in the shaft 20 and thence by radial openings into a chamber 56 around the shaft.
  • a lower graphite block 57 separates chamber 56 from the space above the back of the compressor rotor, but the bore of the block has an internal diameter from .003 inch to .005 inch greater than the diameter of the shaft 20. Since the pressure above the back of the compressor rotor will approach the discharge pressure of the com pressor, while the pressure in chamber 56' is slightly less than the compressor inlet pressure, the flow of gas around the shaft will always be into the chamber.
  • the suspension of the rotor and vertical centering thereof is accomplished by the restriction at the underside of the turbine rotor where a second block of heat resistant material 58 is inserted in the center assembly and which separates chamber 56 from the space immediately surrounding the upper portion of the rotor.
  • the gas flows radially outward past the stationary block since the pressure in chamber 56 is always higher than the inlet pressure to the second turbine stage.
  • the surface of the graphite block 58 is normally very close to the underside of the turbine rotor, the clearance in practice being only a few thousandths of an inch. For a given set of pressure conditions the spacing between the moving rotor and the stationary block is critical and only one condition of equilibrium will exist.
  • the compressor inlet pressure is 2715 p.s.i. and the compressor operation is such that the compressor discharge pressure is 3015 p.s.i.
  • the pressure behind the compressor rotor is slightly less than the discharge pressure and greater than the inlet pressure (which exists in chamber 56) and is approximately 2900 p.s.i. but depends somewhat on the clearance between the bore of the lower heat resistant block 57 and the rotor shaft.
  • the compressor rotor has an upward component of force equal to its projected area times some pressure between the inlet and discharge pressures, as well as a downward component equal to the projected area of the rotor less the area of the rotor shaft and times a pressure slightly less than the discharge, pressure. It Will thus be apparent that the net effect of the axial pressures on the compressor rotor will be in a direction tending to move the rotor upwardly.
  • the pressures on the turbine rotor may be summed up algebraically in the same manner, by multiplying the effective area of the upper face of the turbine rotor by the pressure of the gas issuing from the nozzle openings which expands down to about 1920 p.s.i. Beneath the turbine rotor, and thus acting upwardly, the pressure is equal to about 1500 p.s.i. which is the inlet pressure of the second turbine stage, and also acting downwardly is the turbine discharge pressure in conduit 16.
  • the net effect of the axial pressures on the turbine rotor will be in a direction tending to move it downwardly, and the magnitude of the pressures is equal and opposite to the upward pressures developed at the compressor end of the rotor.
  • the rotor is thus free to spin on the gas bearing thus formed and its speed is not limited by the friction inherent in a lubricant film.
  • the speed of rotation of the rotor is about 48,500 r.p.m.
  • the maximum diameter of the rotor is 3.75 inches
  • the compressor input is about 168 c.f.rn. of which 38 c.f.m. is diverted in passage 39 to operate the turbine.
  • FIG. 3 An ammonia synthesis process according to the invention is shown in FIG. 3. Accordingly, a plurality of stages of reciprocating compressors are used to raise the pressure of the reactable gases to the desired pressure which usually is about 3000 p.s.i.
  • the last stage of the reciprocating compressor is diagrammatically shown and designated in the drawing and is of conventional form.
  • the gas from the last stage is passed through a catalytic tower 101 in which a variable percentage of the reactable gases combine in the presence of the catalyst to form ammonia which is withdrawn through suitable valves (not shown).
  • the uncombined fraction of the gases is taken from the tower in a line 102 at about 2700 p.s.i. and recirculated.
  • FIG. 1 The turbocompressor shown in FIG. 1 is designated 103 in this figure and it will be seen that the compressor intake 12 is connected to the tower 101 while the compressor discharge is connected to a suitable one-way valve 104 to the tower input.
  • the turbine discharge 14 is connected back into the system by a line 105 which conducts the small quantity of gas used in the turbine to an intermediate stage of the reciprocating compressor (not shown) where it re-enters the system.
  • the recirculation is thus accomplished without the addition of a separate prime mover, by deriving energy from the gases that are recirculated, and the spent gases issuing from the turbine exhaust are recovered and recompressed in the system in an intermediate stage.
  • a method of making ammonia by synthesis of its component gases which comprises compressing gases in a reciprocating compressor, passing said compressed gases through a chamber containing a catalyst, wherein some of said gases combine, withdrawing from said chamber the combined gases in the form of ammonia, removing from said chamber the fraction of compressed gases that remain uncombined, expanding a portion of said uncombined, removed gases in a turbine, utilizing part of the energy of the expanded gases to drive a centrifugal compressor, and passing the remainder of said uncombined, removed gases through said centrifugal compressor and back into said catalytic chamber.
  • a method of making ammonia by synthesis of its component gases which comprises compressing gases in a reciprocating compressor, passing said compressed gases through a chamber containing a catalyst, wherein some of said gases combine, withdrawing from said chamber the combined gases in the form of ammonia, removing from said chamber the fraction of compressed gases that remain uncombined, expanding a portion of said uncombined, removed gases in a turbine, utilizing part of the energy of the expanded gases to drive a centrifugal compressor, passing the portion of said gas from which energy has been removed back to the reciprocating compressor, and passing the remainder of said uncom-bined, removed gases through said centrifugal compressor and back into said catalytic chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Clinical Laboratory Science (AREA)
  • Emergency Medicine (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

3,054,660 MANUFACTURE F AMMUNIA William R. Crooks and .lohn Fullernann, Mount Vernon, @hio, assignors to The Uooper-Bessemer Corporation, Mount Vernon, Ohio, a corporation of Ohio Original application June 29, 1956, Ser. No. 594,808, now Patent No. 2,929,548, dated Mar. 22, 1960. Divided and this application Feb. 17, 1960, Ser. No. 9,240 2 Claims. (Ci. 23-199) This invention relates to catalytic synthesis of ammonia or the like with the use of a small, high speed turbocompressor.
It has heretofore been considered impractical to build centrifugal compressors in a size range to handle gas flows much below 800 c.f.m. because of excessive gas friction in the narrow impeller passages that are required in so small a unit, and also because the speed of rotation is so high that the lubrication of bearings, gears and couplings becomes a major concern. Further, a centrifugal compressor operating at speeds higher than 20,000 rpm. to 30,000 rpm. presents a problem in connecting it to a power source, such as an electric motor or an internal combustion engine because it cannot be directly driven, but must be coupled to the power source by gearing or the like which will impart the necessary high rotative speed to the compressor from the low speed prime mover.
Where small flows of air or gas in the order of 15 c.f.m. to 200 c.f.m. are desired at pressure ratios of more than 1.5 to 1, compression has always been accomplished by reciprocating machines. The present invention makes it possible to utilize a rotating machine even for these small flows. The present invention is shown and described herein in an embodiment in which small flows at high pressures are produced.
The present invention provides a process of synthesizing ammonia or the like, which process utilizes a turbocompressor. In such a process, nitrogen and hydrogen are compressed to high pressure, normally from 3000 p.s.i. to 15,000 p.s.i. by means of a multi-stage reciprocating compressor and passed to a catalytic chamber in which a quantity of the gases unite to form ammonia which is taken from the catalytic chamber as a liquid. The free, uncombined gases which have failed to unite in the chamber are taken from it and recirculated. At the present time the recirculation compressors are large reciprocating machines driven by, for example, a 300 horsepower motor or engine. In the synthesis process the gases should be kept from contact with hydrocarbon lubricants since these materials if entrained in the gas stream act to poison the catalyst. This consideration requires that the piston of the reciprocating compressor be supported at its ends by stufling boxes and held from hearing cont-act with the walls of the compressor cylinder which can then be operated without lubrication. It will be appreciated that such a recirculation machine is an expensive unit and one that requires very careful maintenance. By utilizing the compressor of the present invention in place of the above described reciprocating machine, the cost of the installation can be reduced to about percent of the cost of the machines now in use, and the possibility of contaminating the gas stream by lubricants can be completely eliminated.
The primary object of the present invention is to improve a process for synthesizing ammonia or the like by utilizing a small, high speed turbine-driven compressor.
Other objects and advantages of the invention will become apparent from the following specification, reference being bad to the accompanying drawings, in which FIGURE 1 is a central vertical sectional View, somewhat diagrammatic, of a turbocompressor constructed in accordance with the present invention;
3,054,000 Patented Sept. 18, 1962 ice FIGURE 2 is an enlargement of the encircled area of the edge of the turbine shown in FIG. 1; and
FIGURE 3 is a diagrammatic view of a circuit in which the turbocompressor is used in a process for the synthesis of ammonia.
In FIGURE 1 of the drawings there is shown a crosssectional view of a turbocompressor unit that is applicable to the problems involved in the ammonia synthesis process above described. As shown in the drawing, the turbocompressor comprises a housing or body 10 which may be made quite massive to contain gas at several thousand pounds per square inch pressure. The housing is provided with an inlet passage 12, a turbine discharge passage 14 and a compressor discharge passage 16. The housing 10 is provided with a central cavity into which a rotor 20 and a center assembly 22 are inserted from the top, the assembly 22 being split for insertion along a diameter and being retained by an upper retainer 24.
The rotor 20 comprises a central shaft 26 carrying compressor blading 28 at one end and a turbine rotor 30 at the opposite end. The compressor blading may be of any well-known form use-d for centrifugal compressors and is chosen for the particular compression ratio, mass flow of gas and other conditions for which it is designed. The specific form of the centrifugal compressor does not comprise a part of the present invention and while a single stage compressor is shown a multi-stage compressor may be used as Well. Gas taken from the inlet passage 12 enters the blading adjacent the hub and is forced radially outward by the blades into a discharge space 32 which connects tangentially with the compressor discharge conduit 16 in a manner well known in the art.
The turbine rotor 30 at the opposite end of the shaft 26 may include a single stage or a multiplicity of stages. In the form shown, the turbine includes a first impulse stage and a second reaction stage, but this may obviously be varied at the selection of the designer. The impulse stage comprises a series of radial blades 36 extending from the periphery of the rotor and receiving gas from a plurality of circumferentially spaced nozzle openings 38 by which the gas is directed tangentially and downwardly with respect to the blades 36. The supply of gas for the turbine is taken from the compressor inlet passage 12 through one or more side passages 39. The turbine inlet pressure thus approximates closely the compressor inlet pressure in the form shown. It will be apparent that the turbine may be supplied from the compressor discharge passage 16 with equal facility if a higher inlet pressure is desired.
The how of gas in the impulse stage is in a generally axial direction through the blading so that the first turbine stage formed by the blades 36 discharges into an axial flow discharge chamber 40 which is formed by the periphcry of the hub and by an opposed stationary wall of the retainer 24. The rotor of the turbine 30, below the first stage, is provided with a somewhat enlarged flanged portion immediately below the discharge chamber 40 so that the gas is caused to flow outwardly from the center of the rotor into an inlet passage 42 for the second, reaction turbine stage. The inlet passage 42 is formed in a stationary member that is bolted or otherwise fixed to the center assembly 22 so that it is stationary with respect to the rotor. A labyrinth seal 43 is formed on the periphery of the rotor adjacent the stationary member in which the second stage inlet passage is formed. The inlet passage 42 is further provided with guide vanes 44 which direct the gas first downwardly and then radially inwardly into the second turbine stage containing blades 45.
In order to provide the second turbine stage the rotor 30 is formed in upper and lower sections which are subsequently attached into a unitary structure and which are spaced apart by the series of blades between the upper and lower sections. The upper and lower sections are held together as by rivets '50 which pass through the blades 45 so as to fix the parts in position without introducing the impedance to gas flow of a fastening element. The gas directed from the guide vanes 44 flows into the blading of the second stage, radially inwardly and is discharged into a discharge passage 51 which merges with the axial discharge passage 14.
The entire rotor assembly operates suspended in gas and without frictional engagement with the surrounding stationary wall portions. The present invention provides that the suspending fluid shall have a definite flow pattern, however, and wherever a restriction exists in the flow path a body of material of low dry friction properties is inserted in the stationary housing. This material may be of a graphite, plastic or metallic base, or of any other suitable kind.
Gas for the suspension of the rotor in case of vertical installation is taken originally from the inlet passage 12 into a central passage 55 in the shaft 20 and thence by radial openings into a chamber 56 around the shaft. A lower graphite block 57 separates chamber 56 from the space above the back of the compressor rotor, but the bore of the block has an internal diameter from .003 inch to .005 inch greater than the diameter of the shaft 20. Since the pressure above the back of the compressor rotor will approach the discharge pressure of the com pressor, while the pressure in chamber 56' is slightly less than the compressor inlet pressure, the flow of gas around the shaft will always be into the chamber.
The suspension of the rotor and vertical centering thereof is accomplished by the restriction at the underside of the turbine rotor where a second block of heat resistant material 58 is inserted in the center assembly and which separates chamber 56 from the space immediately surrounding the upper portion of the rotor. The gas, at this point, flows radially outward past the stationary block since the pressure in chamber 56 is always higher than the inlet pressure to the second turbine stage. it will be seen that the surface of the graphite block 58 is normally very close to the underside of the turbine rotor, the clearance in practice being only a few thousandths of an inch. For a given set of pressure conditions the spacing between the moving rotor and the stationary block is critical and only one condition of equilibrium will exist. If the rotor should tend to move downwardly and close off the clearance space between the rotor and block the pressure beneath it would rise, tending to restore the rotor to the balanced position. Conversely, if the rotor should tend to move upwardly, the pressure in chamber 56 would tend to drop and cause the rotor to move back into its balanced position. While a vertical orientation of the rotor has been described, it will be apparent that the device will operate in the same manner regardless of the attitude of the shaft. The Weight of the rotor is only a few ounces so that bearing loadings would be negligible in comparison to the pressure forces acting on the rotor.
The operation of the turbocompressors so far described can best be understood with reference to a specific set of pressure conditions. In a particular design, the compressor inlet pressure is 2715 p.s.i. and the compressor operation is such that the compressor discharge pressure is 3015 p.s.i. The pressure behind the compressor rotor is slightly less than the discharge pressure and greater than the inlet pressure (which exists in chamber 56) and is approximately 2900 p.s.i. but depends somewhat on the clearance between the bore of the lower heat resistant block 57 and the rotor shaft. It will be noted that the compressor rotor, then, has an upward component of force equal to its projected area times some pressure between the inlet and discharge pressures, as well as a downward component equal to the projected area of the rotor less the area of the rotor shaft and times a pressure slightly less than the discharge, pressure. It Will thus be apparent that the net effect of the axial pressures on the compressor rotor will be in a direction tending to move the rotor upwardly.
The pressures on the turbine rotor may be summed up algebraically in the same manner, by multiplying the effective area of the upper face of the turbine rotor by the pressure of the gas issuing from the nozzle openings which expands down to about 1920 p.s.i. Beneath the turbine rotor, and thus acting upwardly, the pressure is equal to about 1500 p.s.i. which is the inlet pressure of the second turbine stage, and also acting downwardly is the turbine discharge pressure in conduit 16. The net effect of the axial pressures on the turbine rotor will be in a direction tending to move it downwardly, and the magnitude of the pressures is equal and opposite to the upward pressures developed at the compressor end of the rotor. As above noted, the balance of pressures will be preserved by movement of the rotor to increase or decrease the axial extent of the radial passage formed beneath the turbine rotor and above the block 58, there being a pressure drop of about 1200 p.s.i. across the surface of the block 58 with the parts in normal position.
"The rotor is thus free to spin on the gas bearing thus formed and its speed is not limited by the friction inherent in a lubricant film. In the example in which the pressures above set forth occur, the speed of rotation of the rotor is about 48,500 r.p.m., and the maximum diameter of the rotor is 3.75 inches and the compressor input is about 168 c.f.rn. of which 38 c.f.m. is diverted in passage 39 to operate the turbine.
It would not be possible to compress such a small quantity of gas efficiently in known compressors with conventional driving mechanisms. While the art is fully conversant with turbine driven compressors used, for example, as superchargers for internal combustion engines, the flow of gas normally occurring in such units is so high that they have never been considered to be applicable to small flow conditions.
An ammonia synthesis process according to the invention is shown in FIG. 3. Accordingly, a plurality of stages of reciprocating compressors are used to raise the pressure of the reactable gases to the desired pressure which usually is about 3000 p.s.i. The last stage of the reciprocating compressor is diagrammatically shown and designated in the drawing and is of conventional form. The gas from the last stage is passed through a catalytic tower 101 in which a variable percentage of the reactable gases combine in the presence of the catalyst to form ammonia which is withdrawn through suitable valves (not shown). The uncombined fraction of the gases is taken from the tower in a line 102 at about 2700 p.s.i. and recirculated. Conventional recirculation compressors are expensive reciprocating machines that are provided with a separate prime mover, usually developing about 300 horsepower. The turbocompressor shown in FIG. 1 is designated 103 in this figure and it will be seen that the compressor intake 12 is connected to the tower 101 while the compressor discharge is connected to a suitable one-way valve 104 to the tower input. The turbine discharge 14 is connected back into the system by a line 105 which conducts the small quantity of gas used in the turbine to an intermediate stage of the reciprocating compressor (not shown) where it re-enters the system. The recirculation is thus accomplished without the addition of a separate prime mover, by deriving energy from the gases that are recirculated, and the spent gases issuing from the turbine exhaust are recovered and recompressed in the system in an intermediate stage.
This is a division of United States application Serial No. 594,808, filed June 29, 1956, for Turbocompressor, now Patent No. 2,929,548.
Various modifications of the above described embodiment of the invention and, in particular, of the turbocompressor can be made without departing from the scope of the invention, if such modifications are within the spirit and tenor of the appended claims.
We claim:
1. A method of making ammonia by synthesis of its component gases which comprises compressing gases in a reciprocating compressor, passing said compressed gases through a chamber containing a catalyst, wherein some of said gases combine, withdrawing from said chamber the combined gases in the form of ammonia, removing from said chamber the fraction of compressed gases that remain uncombined, expanding a portion of said uncombined, removed gases in a turbine, utilizing part of the energy of the expanded gases to drive a centrifugal compressor, and passing the remainder of said uncombined, removed gases through said centrifugal compressor and back into said catalytic chamber.
2. A method of making ammonia by synthesis of its component gases which comprises compressing gases in a reciprocating compressor, passing said compressed gases through a chamber containing a catalyst, wherein some of said gases combine, withdrawing from said chamber the combined gases in the form of ammonia, removing from said chamber the fraction of compressed gases that remain uncombined, expanding a portion of said uncombined, removed gases in a turbine, utilizing part of the energy of the expanded gases to drive a centrifugal compressor, passing the portion of said gas from which energy has been removed back to the reciprocating compressor, and passing the remainder of said uncom-bined, removed gases through said centrifugal compressor and back into said catalytic chamber.
Great Britain Dec. 13, 1912 Canada Nov. 18, 1952

Claims (1)

1. A METHOD OF MAKING AMMONIA BY SYNTHESIS OF ITS COMPONENT GASES WHICH COMPRISES COMPRESSED GASES RECIPROCATING COMPRESSOR, PASSING SAID COMPRESSED GASES THROUGH A CHAMBER CONTAINING A CATALYST, WHEREIN SOME OF SAID GASES COMBINED, WITHDRAWING FROM SAID CHAMBER THE COMBINED GASES IN THE FROMJ OF AMMONIA, REMOVING FROM SAID CHAMBER THE FRACTION OF COMPRESSES GASES THAT REMAIN UNCOMBINED. EXPANDING A PORTION OIF SAID UNCOMBINED, REMOVED GASES IN A TURBINE, UTILIZING PART OF THE ENERGY OF THE EXPANDED GASES TO DRIVE A CENTRIFUGAL COMPRESSOR, AND PASSING THE REMAINDER OF SAID UNCOMBINED, REMOVED GASES THROUGH SAID CENTRIFUGAL COMPRESSOR AND BACK INTO SAID CATALYST CHAMBER.
US9240A 1956-06-29 1960-02-17 Manufacture of ammonia Expired - Lifetime US3054660A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US9240A US3054660A (en) 1956-06-29 1960-02-17 Manufacture of ammonia
US9239A US3054269A (en) 1956-06-29 1960-02-17 Liquification of gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US594808A US2929548A (en) 1956-06-29 1956-06-29 Turbocompressor
US9240A US3054660A (en) 1956-06-29 1960-02-17 Manufacture of ammonia
US9239A US3054269A (en) 1956-06-29 1960-02-17 Liquification of gas

Publications (1)

Publication Number Publication Date
US3054660A true US3054660A (en) 1962-09-18

Family

ID=27358812

Family Applications (2)

Application Number Title Priority Date Filing Date
US9240A Expired - Lifetime US3054660A (en) 1956-06-29 1960-02-17 Manufacture of ammonia
US9239A Expired - Lifetime US3054269A (en) 1956-06-29 1960-02-17 Liquification of gas

Family Applications After (1)

Application Number Title Priority Date Filing Date
US9239A Expired - Lifetime US3054269A (en) 1956-06-29 1960-02-17 Liquification of gas

Country Status (1)

Country Link
US (2) US3054660A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350170A (en) * 1965-10-29 1967-10-31 Pullman Inc Process for carrying out cyclic synthesis reactions at elevated pressures
US3354615A (en) * 1964-08-07 1967-11-28 Snam Spa Process for the separation of ammonia produced in medium and low pressure synthesizing plants
US3368869A (en) * 1964-09-10 1968-02-13 Air Prod & Chem Ammonia synthesis
US3615200A (en) * 1967-06-14 1971-10-26 Toyo Engineering Corp Process for concentrating inert components in pressurized synthesis loop
US3965253A (en) * 1972-05-01 1976-06-22 Shell Oil Company Process for producing hydrogen
FR2349753A1 (en) * 1976-04-29 1977-11-25 Klein Schanzlin & Becker Ag SUPPORT OF THE ROTATING PART OF A MULTICELLULAR CENTRIFUGAL PUMP
US4372918A (en) * 1978-11-15 1983-02-08 Woods Verle W Flow through pressure reaction apparatus
DE3144406C2 (en) * 1980-04-24 1986-11-13 W.A. Cleary Chemical Corp., Sommerset, N.J. Process for the preparation of dispersions from urea-formaldehyde polymers which are modified with higher aldehydes
US20160347457A1 (en) * 2014-01-31 2016-12-01 Safran Aircraft Engines Supply of air to an air-conditioning circuit of an aircraft cabin from its turboprop engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852078A1 (en) * 1978-12-01 1980-06-12 Linde Ag METHOD AND DEVICE FOR COOLING NATURAL GAS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191328832A (en) * 1912-12-13 1915-07-22 Julius Ephraim Improvements in Separating the Readily Condensable, or Absorbable, Constituents of Hot and Compresses Gaseous Mixtures from the Difficultly Condensable, or Absorbable, Constituents.
CA488100A (en) * 1952-11-18 J. Houdry Eugene Process of generating power involving catalytic oxidation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE735906C (en) * 1941-07-31 1943-06-01 Messer & Co G M B H Device for decomposing gas mixtures using an expansion turbine for generating cold
US2509034A (en) * 1948-10-04 1950-05-23 Elliott Co Method and apparatus for liquefying gaseous fluids
US2529880A (en) * 1949-03-15 1950-11-14 Elliott Co Turboexpander
NL196122A (en) * 1951-11-30 1900-01-01
US2713781A (en) * 1953-10-26 1955-07-26 Mississippi River Fuel Corp Variable reversible rectification process
US2922285A (en) * 1954-08-13 1960-01-26 Garrett Corp Production of low temperature liquids
US2941374A (en) * 1954-08-16 1960-06-21 Constork Liquid Methane Corp Method and apparatus for preparing natural gas for liquefaction
US2799997A (en) * 1954-09-09 1957-07-23 Constock Liquid Methane Corp Method and apparatus for reducing power needed for compression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA488100A (en) * 1952-11-18 J. Houdry Eugene Process of generating power involving catalytic oxidation
GB191328832A (en) * 1912-12-13 1915-07-22 Julius Ephraim Improvements in Separating the Readily Condensable, or Absorbable, Constituents of Hot and Compresses Gaseous Mixtures from the Difficultly Condensable, or Absorbable, Constituents.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354615A (en) * 1964-08-07 1967-11-28 Snam Spa Process for the separation of ammonia produced in medium and low pressure synthesizing plants
US3368869A (en) * 1964-09-10 1968-02-13 Air Prod & Chem Ammonia synthesis
US3350170A (en) * 1965-10-29 1967-10-31 Pullman Inc Process for carrying out cyclic synthesis reactions at elevated pressures
US3615200A (en) * 1967-06-14 1971-10-26 Toyo Engineering Corp Process for concentrating inert components in pressurized synthesis loop
US3965253A (en) * 1972-05-01 1976-06-22 Shell Oil Company Process for producing hydrogen
FR2349753A1 (en) * 1976-04-29 1977-11-25 Klein Schanzlin & Becker Ag SUPPORT OF THE ROTATING PART OF A MULTICELLULAR CENTRIFUGAL PUMP
US4372918A (en) * 1978-11-15 1983-02-08 Woods Verle W Flow through pressure reaction apparatus
DE3144406C2 (en) * 1980-04-24 1986-11-13 W.A. Cleary Chemical Corp., Sommerset, N.J. Process for the preparation of dispersions from urea-formaldehyde polymers which are modified with higher aldehydes
US20160347457A1 (en) * 2014-01-31 2016-12-01 Safran Aircraft Engines Supply of air to an air-conditioning circuit of an aircraft cabin from its turboprop engine
US10858112B2 (en) * 2014-01-31 2020-12-08 Safran Aircraft Engines Supply of air to an air-conditioning circuit of an aircraft cabin from its turboprop engine

Also Published As

Publication number Publication date
US3054269A (en) 1962-09-18

Similar Documents

Publication Publication Date Title
US2435836A (en) Centrifugal compressor
US4459802A (en) Bleedoff of gas diffusers in fluid flow machines
US2078956A (en) Gas turbine system
US3696637A (en) Method and apparatus for producing refrigeration
US3728857A (en) Turbo-compressor-pump
US3054660A (en) Manufacture of ammonia
US3240012A (en) Turbo-jet powerplant
US2911138A (en) Turbo-compressor
GB1280113A (en) Compressors for gas turbine engines
US2929548A (en) Turbocompressor
US2296701A (en) Gas turbine
US3897168A (en) Turbomachine extraction flow guide vanes
GB1387480A (en) Energy transfer machine
US3942908A (en) Gas turbine driven high speed centrifugal compressor unit
US2484275A (en) Supercharger seal
US2316452A (en) Axial blower
US2410769A (en) Turbine, turbine type compressor, and the like rotating machine
EP0076668B1 (en) Turbo-machines with bleed-off means
US2405048A (en) Centrifugal compressor
US5456577A (en) Centrifugal pump with resiliently biasing diffuser
US3305165A (en) Elastic fluid compressor
US4573864A (en) Regenerative turbomachine
Robison et al. Compressor Types, Classifications, And Applications.
US2441855A (en) Variable-speed drive for compressors
US1947477A (en) Turbine-driven compressor apparatus