US3044123A - Pressed solid propellant pellets - Google Patents
Pressed solid propellant pellets Download PDFInfo
- Publication number
- US3044123A US3044123A US803324A US80332459A US3044123A US 3044123 A US3044123 A US 3044123A US 803324 A US803324 A US 803324A US 80332459 A US80332459 A US 80332459A US 3044123 A US3044123 A US 3044123A
- Authority
- US
- United States
- Prior art keywords
- pellet
- ammonium nitrate
- composition
- propellant
- pellets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008188 pellet Substances 0.000 title claims description 49
- 239000004449 solid propellant Substances 0.000 title 1
- 239000000203 mixture Substances 0.000 claims description 29
- 239000003054 catalyst Substances 0.000 claims description 26
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 23
- 239000003380 propellant Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000004014 plasticizer Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000011118 polyvinyl acetate Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 claims description 3
- 229920000638 styrene acrylonitrile Polymers 0.000 claims description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims 1
- 239000002585 base Substances 0.000 description 11
- -1 2,4-dinitrodiphenyl ether Chemical compound 0.000 description 10
- 239000007789 gas Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- CBSCOKJVHQZELD-UHFFFAOYSA-N 1-[1-(2,3-dinitrophenoxy)ethoxy]-2,3-dinitrobenzene Chemical compound [N+](=O)([O-])C=1C(=C(OC(C)OC2=C(C(=CC=C2)[N+](=O)[O-])[N+](=O)[O-])C=CC1)[N+](=O)[O-] CBSCOKJVHQZELD-UHFFFAOYSA-N 0.000 description 2
- XVIRIXVOLLJIPF-UHFFFAOYSA-N 1-nitro-2-(2-nitrophenoxy)benzene Chemical compound [O-][N+](=O)C1=CC=CC=C1OC1=CC=CC=C1[N+]([O-])=O XVIRIXVOLLJIPF-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- YIWOOPQOYHKISC-UHFFFAOYSA-N [O-][N+](=O)CC(O)([N+]([O-])=O)OC1=CC=CC=C1 Chemical compound [O-][N+](=O)CC(O)([N+]([O-])=O)OC1=CC=CC=C1 YIWOOPQOYHKISC-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- ZANNOFHADGWOLI-UHFFFAOYSA-N ethyl 2-hydroxyacetate Chemical compound CCOC(=O)CO ZANNOFHADGWOLI-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229940075065 polyvinyl acetate Drugs 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- MKEPGIQTWYTRIW-ODZAUARKSA-N (z)-but-2-enedioic acid;ethane-1,2-diol Chemical compound OCCO.OC(=O)\C=C/C(O)=O MKEPGIQTWYTRIW-ODZAUARKSA-N 0.000 description 1
- FVHAWXWFPBPFOS-UHFFFAOYSA-N 1,2-dimethyl-3-nitrobenzene Chemical group CC1=CC=CC([N+]([O-])=O)=C1C FVHAWXWFPBPFOS-UHFFFAOYSA-N 0.000 description 1
- WDCYWAQPCXBPJA-UHFFFAOYSA-N 1,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1 WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 description 1
- SEJFWAWYAJTLJD-UHFFFAOYSA-N 1-(2,3-dinitrophenoxy)-2,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC(OC=2C(=C(C=CC=2)[N+]([O-])=O)[N+]([O-])=O)=C1[N+]([O-])=O SEJFWAWYAJTLJD-UHFFFAOYSA-N 0.000 description 1
- MQGIBEAIDUOVOH-UHFFFAOYSA-N 1-[2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOCCOCCCC MQGIBEAIDUOVOH-UHFFFAOYSA-N 0.000 description 1
- JDTMUJBWSGNMGR-UHFFFAOYSA-N 1-nitro-4-phenoxybenzene Chemical compound C1=CC([N+](=O)[O-])=CC=C1OC1=CC=CC=C1 JDTMUJBWSGNMGR-UHFFFAOYSA-N 0.000 description 1
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- DYSXLQBUUOPLBB-UHFFFAOYSA-N 2,3-dinitrotoluene Chemical compound CC1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O DYSXLQBUUOPLBB-UHFFFAOYSA-N 0.000 description 1
- FLPPEMNGWYFRSK-UHFFFAOYSA-N 2-(2-acetyloxypropoxy)propyl acetate Chemical compound CC(=O)OCC(C)OCC(C)OC(C)=O FLPPEMNGWYFRSK-UHFFFAOYSA-N 0.000 description 1
- LGBUPOUBIZSCOY-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl furan-2-carboxylate Chemical compound O1C(=CC=C1)C(=O)OCCOCCO LGBUPOUBIZSCOY-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- PBXCSOPVWKVVJT-UHFFFAOYSA-N 2-(carboxymethoxy)acetic acid ethane-1,2-diol Chemical compound OCCO.OC(=O)COCC(O)=O PBXCSOPVWKVVJT-UHFFFAOYSA-N 0.000 description 1
- KKFDCBRMNNSAAW-UHFFFAOYSA-N 2-(morpholin-4-yl)ethanol Chemical compound OCCN1CCOCC1 KKFDCBRMNNSAAW-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- PMJNEQWWZRSFCE-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-(thiophen-2-ylmethyl)propanoic acid Chemical compound CCOC(=O)C(C(O)=O)CC1=CC=CS1 PMJNEQWWZRSFCE-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- QPGJUXWWUAVSCD-UHFFFAOYSA-N C(COCC(=O)O)(=O)O.C(COCCO)O Chemical compound C(COCC(=O)O)(=O)O.C(COCCO)O QPGJUXWWUAVSCD-UHFFFAOYSA-N 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 1
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229940125717 barbiturate Drugs 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- VFGRALUHHHDIQI-UHFFFAOYSA-N butyl 2-hydroxyacetate Chemical compound CCCCOC(=O)CO VFGRALUHHHDIQI-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- 150000001912 cyanamides Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- MLQMIKSBTAZNBK-UHFFFAOYSA-N dimethyl 3-nitrobenzene-1,2-dicarboxylate Chemical compound COC(=O)C1=CC=CC([N+]([O-])=O)=C1C(=O)OC MLQMIKSBTAZNBK-UHFFFAOYSA-N 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 229940035422 diphenylamine Drugs 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-L maleate(2-) Chemical compound [O-]C(=O)\C=C/C([O-])=O VZCYOOQTPOCHFL-UPHRSURJSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- NTNWKDHZTDQSST-UHFFFAOYSA-N naphthalene-1,2-diamine Chemical compound C1=CC=CC2=C(N)C(N)=CC=C21 NTNWKDHZTDQSST-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- VLZLOWPYUQHHCG-UHFFFAOYSA-N nitromethylbenzene Chemical compound [O-][N+](=O)CC1=CC=CC=C1 VLZLOWPYUQHHCG-UHFFFAOYSA-N 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- MHQHHBYRYFICDV-UHFFFAOYSA-M sodium;pyrimidin-3-ide-2,4,6-trione Chemical compound [Na+].O=C1CC(=O)[N-]C(=O)N1 MHQHHBYRYFICDV-UHFFFAOYSA-M 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- DXRFOGXSSDRZFP-UHFFFAOYSA-N tripentyl 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound CCCCCOC(=O)CC(O)(C(=O)OCCCCC)CC(=O)OCCCCC DXRFOGXSSDRZFP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B31/00—Compositions containing an inorganic nitrogen-oxygen salt
- C06B31/28—Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
- C06B31/30—Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with vegetable matter; with resin; with rubber
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B21/00—Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
- C06B21/0033—Shaping the mixture
- C06B21/0041—Shaping the mixture by compression
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
Definitions
- the propellant composition in the form of pellets or tablets.
- pellets may be cylindrical, egg-shaped, flat tablets or wafers (with or without perforations), etc.
- These pellets are normally made by introducing into a mold cavity the necessary amount of propellant composition and applying an elevated pressure to the mold until the pellet of desired shape has been formed. This operation is normally carried out at ambient temperatures. guished for strength; they crumble easily to applied pressure and wafer type pellets are readily broken by finger pressure.
- the objects of the instant invention are to produce an ammonium nitrate-base propellant pellet which does not suffer from these disabilities.
- an ammonium nitrate-base propellant pellet prepared by the usual molding techniques is convertible to a strong, durable, compacted pellet by heat treatment thereof at a temperature from about 70 C. to 85 C. for a time between about 1 hour and 2 hours and subsequent cooling of the hot propellant to ambient temperatures. It is to be understood that the time of heat treatment is dependent upon the shape of the particular pellet; in the case of tablets or wafers, the thickness of the tablet has a bearing on the time of heat treatment.
- the invention is particularly applicable to propellant compositions consisting of essentially between about 0.5 to weight percent of a catalyst for promoting combustion of ammonium nitrate, between about 10 and 40 weight percent of an oxidiza'ble organic binder material, hereinafter defined, for ammonium nitrate and the other components of the composition.
- the pellet is formed from the composition by the application of pressure between about 3,000 p.s.i. and 8,000 p.s.i. for a short time between about 0.05 and 0.25 seconds.
- the pellet is a wafer about 0.5 inch in diameter and about 0.2 inch thick the pellet is molded These pellets are not distinat a pressure of about 6,000 p.s.i.
- a strong compressed propellant pellet is obtained by heat treating this particular molded pellet at a temperature of about 75 C.- 80 C. for a time of about l1.5 hour; greater strength is obtained when the heat treated pellet is cooledin a substantially dehumidified atmosphere.
- dehumidified atmosphere applies to ordinary atmospheric air or similar gaseous material whose moisture content has been controlled to on the order of 40-50% at temperature on the order of 18-25 C.
- the propellant pellets of the invention contain ammonium nitrate as the major component.
- the ammonium nitrate may be either GP. or ordinary commercial ammonium nitrate such as is used for fertilizers. This commercial grade material contains a small amount of impurities and the particles are usually coated with moisture resisting material such as parafiin wax. Military grade ammonium nitrate which is almost chemically ppre is particularly suitable.
- the ammonium nitrate is preferably in a finely divided particulate form which may be either produced by prilling or 'by grinding.
- the ammonium nitrate is the major component of the propellant composition and usually the composition will contain between about 65 and of ammonium nitrate.
- a matrix former or binder material is present.
- ammonium nitrate decomposes free-oxyge'n is formed.
- Advantage of the existence of this free-oxygen is taken and oxidizable organic materials are used as the binders.
- the stoichiornetry of the composition is improved, with respect to smoke production by the use of oxygenated organic material as the binders.
- the binder is usually present in an amount between about 10 and 40 weight percent of the propellant composition.
- the multi-component binder or matrix former commonly consists of a polymeric base material and a plasticizer therefor.
- Particularly suitable polymeric base materials are cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms such as cellulose acetate,
- the polyvinyl resins such as polyvinylchloride and polyvinyl acetate are also good bases; acrylonitxile is good; styreneacrylonitrile is an example of a copolymer which forms a good base material.
- the binder contains between about 15 and 45% of the particular polymeric base material.
- the plasticizer component of the binder is broadly definedas an oxygenated hydrocarbon.
- the hydrocarbon base may be aliphatic or aromatic or may contain both forms.
- the oxygen may be present in the plasticizer in ether linkage and/or hydroxyl group and/or carboxyl groups; also the oxygen may be present in inorganic substituents particularly nitro groups.
- any plasticizer which is suitable for work with the defined polymers may be used in the invention. Exemplary classes of plasticizers which are suitable are set out below.
- Di-lower alkyl-phthalates e.g. dimethyl phthalate, dibutyl phthalate, dioctyl phthalate .and dimethyl nitrophthalate.
- Nitrobenzene e.g. nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitroxylene, and nitrodiphenyl.
- Nitrodiphenyl ethers e.g. nitrodiphenyl ether and 2,4-dinitrodiphenyl ether.
- Tri-lower alkyl-citrates e.g. triethyl citrate, tributyl citrate and triamyl citrate.
- Glycerol-lower alkanoates e.g. monoacetin, triacetin,
- Lower alkylene-glycol-lower alkanoates wherein the glycol portion has a molecular weight below about 200 e.g. ethylene glycol diacetate, triethylene glycol dihexoate, triethylene glycol dioctoate, polyethylene glycol dioctate, dipropylene glycol diacetate, nitromethyl pro below about 200, e.g. diethylene glycol, polyethylene glycol (200), and tetrapropylene glycol.
- Lower alkylene-glycol oxolates e.g. diethylene glycol oxolate and polyethylene glycol (200) oxolate.
- Lower alkylene-glycol maleates e.g. ethylene glycol maleate and bis-(diethylene glycol monoethyl ether)maleate.
- Lower alkylene-glycol diglycolates e.g. ethylene glycol diglycolate and diethylene glycol diglycolate.
- Lower alkyl-phthalyl-lower alkyl-glycollate e.g. methyl phthalyl ethyl glycollate, ethyl phthalyl ethyl glycollate and butyl phthalyl butyl glycollate.
- Di-lower alkyloxy-tetraglycol e.g., dimethoxy tetra glycol and dibutoxy tetra glycol.
- Nitrophenyl ether of lower alkylene glycols e.g. dinitrophenyl ether of triethylene glycol and nitrophenyl ether of polypropylene glycol.
- Nitrophenoxy alkanols wherein the alkanol portion is derived from a glycol having a molecular weight of not more than about 200. These may be pure compounds or admixed with major component bis(nitrophenoxy) alkane.
- a single plasticizer may be used or more usually two or more plasticizers may be used in conjunction.
- the particular requirements with respect to use will determine not only the polymer but also the particular plasticizer or combination of plasticizers which are used.
- the gas generator propellant composition may contain other materials.
- materials may be present to improve low temperature ignitability, for instance oximes may be present or, asphalt may be present.
- Surfactants may be present in order to improve the coating of the nitrate with the binder and to improve the shape characteristics of the composition.
- Various burning rate promoters which are not catalyst per se, may also be present.
- the aromatic hydrocarbon amines are known to be gas evolution stabilization additives. Examples of these aromatic amines are toluene diamine, diphenyl amine, naphthalene diamine, and toluene triamine. In general the aromatic hydrocarbon amines are used in amounts between about 0.5 and 5 percent.
- the mixture of ammonium nitrate, polymeric base and oxygenated hydrocarbon is essentially as insensitive to shock as is ammonium nitrate itself. It is extremely difficult to get this particular mixture to burn. Smooth burning is attained by the addition of a catalyst to the mixture.
- This catalyst is distinguished from the well known sensitizers. For example, nitro starch or nitroglycerin may be added to ammonium nitrate in order to increase its sensitivity to shock and enable it to be more easily detonated for explosive use.
- Catalysts as a class do not promote sensitivity and are used to cause the ammonium nitrate composition to burn for example, like a cigarette.)
- the effectiveness of the catalyst is in general measured by its ability to impart a finite burning rate to a cylindrical strand of ammonium nitrate composition.
- the burning rate is specified as inches per second at a given pressure and temperature; usually these burning rates are obtained by a bomb procedure operating at 1000 p.s.i. and about 75 F. temperature.
- the inorganic chromium salts form the best known classes of catalysts.
- the better known members of this class are ammonium chromate, ammonium polychromate, the alkali metal chromates and polychromates, chromic oxide, chromic nitrate, and copper chromite.
- Ammonium dichromate is the most commonly used chromium salt.
- Various hydrocarbon amine chromates such as ethylene diamine chromate and piperidine chromate are also excellent chromium catalysts.
- Certain heavy metal cyanides particularly those of cobalt, copper, lead, nickel, silver and zinc are effective catalysts.
- the cyanamides of barium, copper, lead, mercury and silver are effective catalysts.
- the various Prussian blues are excellent catalysts.
- organic catalysts are known.
- the organic catalysts are particularly useful when it is desired to have combustion products which are gases or vapors and thereby do not erode gas exit orifices.
- Catalysts which do not contain any metal components are triethanolamine, N- (hydroxyethyl)-morpholine, pyrogene blue (Color Index 956-961), hydrogen phthalocyanine and methylene blue.
- Other suitable catalysts are the alkali metal barbiturates. alkali metal parabanates, alkali metal anthranilates and sodium glutamate.
- combustion catalysts are present in amounts needed to give, within limits, the desired burning rates. While amounts from about 0.5 to as much as 15 weight percent may be present, in general amounts above about 8% do not boost the burning rate greatly. Usually the catalyst is present in amounts between about 2 and 5 weight percent.
- Finely divided carbon such as carbon black present in amounts of several percent is effective alone as a catalyst, however, carbon is generally used in combination with another catalyst as a burning rate promoter.
- Example For purposes of illustration the preparation of pellets suitable for use in a gas generator igniter is described.
- the propellant compostiion consisted of an ammonium nitrate composition as follows: cellulose acetate 12%, acetyl triethyl citrate 9%, 9% of a 2:1 mixture of dinitrophenoxyethanol and bis(dinitrophenoxy)ethane, carbon black 4%, toluene diamine 1%, sodium barbiturate catalyst 3% and ammonium nitrate 62%.
- the pellets (tablets) in this illustration were 0.5 inch in diameter and 0.18 inch thick.
- pellets were prepared using a commercial tableting machine providing a mold pressure of approximately 6000 p.s.i.; the pressure was maintained on the composition in the mold for approximately 0.1 second.
- the molding operation was carried out in a room whose temperature was held at about 20 C. and had a relative humidity of about 40%.
- pellets as they came from the pelleting press, broke easily between the fingers and tended to crumble when handled with ordinary care.
- Pellets were heat treated in an oven at a temperature of 75-80 C. Various heat treating times were used. It was observed that for these particular pellets times below 1 hour did not increase the strength of the pellets substantially over the strength of the non-heat treated pellets. At about 1.5 hours the strength of the pellets had leveled off and no significant improvement in strength was obtained by heating for more than 2 hours. It was also observed that there was some additional strength gained in a period of 18-24 hours holding at ambient temperature following the cooling of the pellet to ambient temperature.
- a process for producing a propellant pellet which process comprises introducing into a mold cavity a predetermined amount of a propellent composition consisting essentially of between about 0.5 and 15 weight percent of a combustion catalyst, and between about 10 and 40,
- oxidiza-ble organic binder material wherein said binder material consists of a polymeric base selected 'from the class consisting of cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms, polyvinylchloride, poly-vinyl acetate, acrylonitrile and styrene acrylonitrile, and an oxygenated hydrocarbon plasticizer therefor said plasticer containing said oxygen in chemical combination, and the remainder essentially only ammonium nitrate, applying to said composition in said mold cavity a pressure between about 3000 p.s.i. and 8000 p.s.i.
- a process for producing a strong compressed propellant-pellet which process comprises inserting into a mold a predetermined amount of ammonium nitrate-base propellant composition consisting of ammonium nitrate,
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Description
Bfi idJZB Patented July 17, 19%2 fine This invention relaies to pellets of ammonium nitratebase propellant and aprocess for the preparation thereof.
In the preparation of igniters or propulsion powders for large guns it is desirable to have the propellant composition in the form of pellets or tablets. These pellets may be cylindrical, egg-shaped, flat tablets or wafers (with or without perforations), etc. These pellets are normally made by introducing into a mold cavity the necessary amount of propellant composition and applying an elevated pressure to the mold until the pellet of desired shape has been formed. This operation is normally carried out at ambient temperatures. guished for strength; they crumble easily to applied pressure and wafer type pellets are readily broken by finger pressure.
For military purposes, particularly, it is desirable to have pellets which are strong enough to withstand fairly severe handling in transportation and other movement of the article housing the pellet. Also, it is a problem to handle these pellets in the subsequent manufacture of' igniters or propulsion powders without breakage or excess amount of scrap formation. The objects of the instant invention are to produce an ammonium nitrate-base propellant pellet which does not suffer from these disabilities.
It has been discovered that an ammonium nitrate-base propellant pellet prepared by the usual molding techniques is convertible to a strong, durable, compacted pellet by heat treatment thereof at a temperature from about 70 C. to 85 C. for a time between about 1 hour and 2 hours and subsequent cooling of the hot propellant to ambient temperatures. It is to be understood that the time of heat treatment is dependent upon the shape of the particular pellet; in the case of tablets or wafers, the thickness of the tablet has a bearing on the time of heat treatment.
The invention is particularly applicable to propellant compositions consisting of essentially between about 0.5 to weight percent of a catalyst for promoting combustion of ammonium nitrate, between about 10 and 40 weight percent of an oxidiza'ble organic binder material, hereinafter defined, for ammonium nitrate and the other components of the composition. The pellet is formed from the composition by the application of pressure between about 3,000 p.s.i. and 8,000 p.s.i. for a short time between about 0.05 and 0.25 seconds. In a particular embodiment wherein the pellet is a wafer about 0.5 inch in diameter and about 0.2 inch thick the pellet is molded These pellets are not distinat a pressure of about 6,000 p.s.i. with application of such pressure for a time of about 0.1 second. A strong compressed propellant pellet is obtained by heat treating this particular molded pellet at a temperature of about 75 C.- 80 C. for a time of about l1.5 hour; greater strength is obtained when the heat treated pellet is cooledin a substantially dehumidified atmosphere.
The term dehumidified atmosphere applies to ordinary atmospheric air or similar gaseous material whose moisture content has been controlled to on the order of 40-50% at temperature on the order of 18-25 C.
The propellant pellets of the invention contain ammonium nitrate as the major component. The ammonium nitrate may be either GP. or ordinary commercial ammonium nitrate such as is used for fertilizers. This commercial grade material contains a small amount of impurities and the particles are usually coated with moisture resisting material such as parafiin wax. Military grade ammonium nitrate which is almost chemically ppre is particularly suitable. The ammonium nitrate is preferably in a finely divided particulate form which may be either produced by prilling or 'by grinding. The ammonium nitrate is the major component of the propellant composition and usually the composition will contain between about 65 and of ammonium nitrate.
In order to permit the shaping of the ammonium nitrate composition to definite configurations a matrix former or binder material is present. When ammonium nitrate decomposes free-oxyge'n is formed. Advantage of the existence of this free-oxygen is taken and oxidizable organic materials are used as the binders. The stoichiornetry of the composition is improved, with respect to smoke production by the use of oxygenated organic material as the binders. The binder is usually present in an amount between about 10 and 40 weight percent of the propellant composition.
The multi-component binder or matrix former commonly consists of a polymeric base material and a plasticizer therefor. Particularly suitable polymeric base materials are cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms such as cellulose acetate,
cellulose acetate butyrate and cellulose propionate; the polyvinyl resins such as polyvinylchloride and polyvinyl acetate are also good bases; acrylonitxile is good; styreneacrylonitrile is an example of a copolymer which forms a good base material. In general the binder contains between about 15 and 45% of the particular polymeric base material.
The plasticizer component of the binder is broadly definedas an oxygenated hydrocarbon. The hydrocarbon base may be aliphatic or aromatic or may contain both forms. The oxygen may be present in the plasticizer in ether linkage and/or hydroxyl group and/or carboxyl groups; also the oxygen may be present in inorganic substituents particularly nitro groups. In general any plasticizer which is suitable for work with the defined polymers may be used in the invention. Exemplary classes of plasticizers which are suitable are set out below.
It is to be understood that these classes are illustrative only and do not limit the types of oxygenated hydrocarbons which may be used to plasticize the polymer.
Di-lower alkyl-phthalates, e.g. dimethyl phthalate, dibutyl phthalate, dioctyl phthalate .and dimethyl nitrophthalate.
Nitrobenzene, e.g. nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitroxylene, and nitrodiphenyl.
Nitrodiphenyl ethers, e.g. nitrodiphenyl ether and 2,4-dinitrodiphenyl ether.
Tri-lower alkyl-citrates, e.g. triethyl citrate, tributyl citrate and triamyl citrate.
Acyl tri-lower alkyl-citrates where the acyl group contains 2-4 carbon-atoms, e.g. acetyl triethyl citrate and acetyl tributyl citrate.
Glycerol-lower alkanoates, e.g. monoacetin, triacetin,
glycerol, tripropionate and glycerol tributyrate.
Lower alkylene-glycol-lower alkanoates wherein the glycol portion has a molecular weight below about 200, e.g. ethylene glycol diacetate, triethylene glycol dihexoate, triethylene glycol dioctoate, polyethylene glycol dioctate, dipropylene glycol diacetate, nitromethyl pro below about 200, e.g. diethylene glycol, polyethylene glycol (200), and tetrapropylene glycol.
Lower alkylene-glycol oxolates, e.g. diethylene glycol oxolate and polyethylene glycol (200) oxolate.
Lower alkylene-glycol maleates, e.g. ethylene glycol maleate and bis-(diethylene glycol monoethyl ether)maleate.
Lower alkylene-glycol diglycolates, e.g. ethylene glycol diglycolate and diethylene glycol diglycolate.
Miscellaneous diglycollates, e.g. dibutyl diglycollate, di-
methylalkyl diglycollate and methylcarbitol diglycollate.
Lower alkyl-phthalyl-lower alkyl-glycollate, e.g. methyl phthalyl ethyl glycollate, ethyl phthalyl ethyl glycollate and butyl phthalyl butyl glycollate.
Di-lower alkyloxy-tetraglycol, e.g., dimethoxy tetra glycol and dibutoxy tetra glycol.
Nitrophenyl ether of lower alkylene glycols, e.g. dinitrophenyl ether of triethylene glycol and nitrophenyl ether of polypropylene glycol.
Nitrophenoxy alkanols wherein the alkanol portion is derived from a glycol having a molecular weight of not more than about 200. These may be pure compounds or admixed with major component bis(nitrophenoxy) alkane.
A single plasticizer may be used or more usually two or more plasticizers may be used in conjunction. The particular requirements with respect to use will determine not only the polymer but also the particular plasticizer or combination of plasticizers which are used.
In addition to the basic components, i.e. ammonium nitrate binder and catalyst, the gas generator propellant composition may contain other materials. For example, materials may be present to improve low temperature ignitability, for instance oximes may be present or, asphalt may be present. Surfactants may be present in order to improve the coating of the nitrate with the binder and to improve the shape characteristics of the composition. Various burning rate promoters, which are not catalyst per se, may also be present.
The aromatic hydrocarbon amines are known to be gas evolution stabilization additives. Examples of these aromatic amines are toluene diamine, diphenyl amine, naphthalene diamine, and toluene triamine. In general the aromatic hydrocarbon amines are used in amounts between about 0.5 and 5 percent.
The mixture of ammonium nitrate, polymeric base and oxygenated hydrocarbon is essentially as insensitive to shock as is ammonium nitrate itself. It is extremely difficult to get this particular mixture to burn. Smooth burning is attained by the addition of a catalyst to the mixture. (This catalyst is distinguished from the well known sensitizers. For example, nitro starch or nitroglycerin may be added to ammonium nitrate in order to increase its sensitivity to shock and enable it to be more easily detonated for explosive use. Catalysts as a class do not promote sensitivity and are used to cause the ammonium nitrate composition to burn for example, like a cigarette.) The effectiveness of the catalyst is in general measured by its ability to impart a finite burning rate to a cylindrical strand of ammonium nitrate composition. The burning rate is specified as inches per second at a given pressure and temperature; usually these burning rates are obtained by a bomb procedure operating at 1000 p.s.i. and about 75 F. temperature.
Many catalysts which promote the burning of ammonium nitrate compositions are known. The inorganic chromium salts form the best known classes of catalysts. The better known members of this class are ammonium chromate, ammonium polychromate, the alkali metal chromates and polychromates, chromic oxide, chromic nitrate, and copper chromite. Ammonium dichromate is the most commonly used chromium salt. Various hydrocarbon amine chromates such as ethylene diamine chromate and piperidine chromate are also excellent chromium catalysts. Certain heavy metal cyanides particularly those of cobalt, copper, lead, nickel, silver and zinc are effective catalysts. The cyanamides of barium, copper, lead, mercury and silver are effective catalysts. The various Prussian blues are excellent catalysts.
In addition to the above primarily inorganic catalysts various organic catalysts are known. The organic catalysts are particularly useful when it is desired to have combustion products which are gases or vapors and thereby do not erode gas exit orifices. Catalysts which do not contain any metal components are triethanolamine, N- (hydroxyethyl)-morpholine, pyrogene blue (Color Index 956-961), hydrogen phthalocyanine and methylene blue. Other suitable catalysts are the alkali metal barbiturates. alkali metal parabanates, alkali metal anthranilates and sodium glutamate.
These combustion catalysts are present in amounts needed to give, within limits, the desired burning rates. While amounts from about 0.5 to as much as 15 weight percent may be present, in general amounts above about 8% do not boost the burning rate greatly. Usually the catalyst is present in amounts between about 2 and 5 weight percent.
Finely divided carbon such as carbon black present in amounts of several percent is effective alone as a catalyst, however, carbon is generally used in combination with another catalyst as a burning rate promoter.
Example For purposes of illustration the preparation of pellets suitable for use in a gas generator igniter is described. The propellant compostiion consisted of an ammonium nitrate composition as follows: cellulose acetate 12%, acetyl triethyl citrate 9%, 9% of a 2:1 mixture of dinitrophenoxyethanol and bis(dinitrophenoxy)ethane, carbon black 4%, toluene diamine 1%, sodium barbiturate catalyst 3% and ammonium nitrate 62%. The pellets (tablets) in this illustration were 0.5 inch in diameter and 0.18 inch thick.
These pellets were prepared using a commercial tableting machine providing a mold pressure of approximately 6000 p.s.i.; the pressure was maintained on the composition in the mold for approximately 0.1 second. The molding operation was carried out in a room whose temperature was held at about 20 C. and had a relative humidity of about 40%.
The pellets, as they came from the pelleting press, broke easily between the fingers and tended to crumble when handled with ordinary care.
Pellets were heat treated in an oven at a temperature of 75-80 C. Various heat treating times were used. It was observed that for these particular pellets times below 1 hour did not increase the strength of the pellets substantially over the strength of the non-heat treated pellets. At about 1.5 hours the strength of the pellets had leveled off and no significant improvement in strength was obtained by heating for more than 2 hours. It was also observed that there was some additional strength gained in a period of 18-24 hours holding at ambient temperature following the cooling of the pellet to ambient temperature.
It was also observed that the strength of the heat treated pellets was improved when the cooling to ambient temperature was carried out in a dehumidified atmosphere equivalent to about 40-50% relative humidity at about 20 C. temperature.
The heat treated pellets could not be broken by the finger pressure test and did not crumble even though handled fairly roughly in the subsequent manufacture of igniters for use in gas generator cartridges.
Thus having described the invention what is claimed is:
1. A process for producing a propellant pellet which process comprises introducing into a mold cavity a predetermined amount of a propellent composition consisting essentially of between about 0.5 and 15 weight percent of a combustion catalyst, and between about 10 and 40,
weight percent of oxidiza-ble organic binder material wherein said binder material consists of a polymeric base selected 'from the class consisting of cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms, polyvinylchloride, poly-vinyl acetate, acrylonitrile and styrene acrylonitrile, and an oxygenated hydrocarbon plasticizer therefor said plasticer containing said oxygen in chemical combination, and the remainder essentially only ammonium nitrate, applying to said composition in said mold cavity a pressure between about 3000 p.s.i. and 8000 p.s.i. for a time between about 0.05 and 0.25 second to form said composition into a pellet of the desired shape, removing said pellet from said mold, heat treating said pellet at a temperature from about 70 C. to 85 C. for a time between about 1 hour and 2 hours and cooling said hot pellet toambient temperature to obtain a strong compressed propellant pellet.
2. A process for producing a strong compressed propellant-pellet which process comprises inserting into a mold a predetermined amount of ammonium nitrate-base propellant composition consisting of ammonium nitrate,
62%; combustion catalyst, 3%; carbon black, 4%; toluene diamine, 1%; cellulose acetate, 12%; acetyl triethyl citrate, 9% and a 2:1 mixture of dinitrophenoxyethanol and bis (dinitrophenoxy) ethane, 9%; applying to said composition in said mold a pressure of about 6000 p.s.i. for a time of about 0.1 second to form a pellet about 0.5 inch in diameter and about 0.2 inch thick, removing said pellet from said mold, heat treating said pellet at a temperature of about 758() C. for about 11.5 hour, and cooling said heat treated pellet in a substantially dehumidified atmosphere to ambient temperature to obtain a strong compressed propellant pellet.
2,159,234 Taylor May 23, 1939 OTHER REFERENCES Jet Propulsion, Galcit, 1946, page 158. Scientific Library.)
(Copy in
Claims (1)
1. A PROCESS FOR PRODUCING A PROPELLANT PELLET WHICH PROCESS COMPRISES INTRODUCING INTO A MOLD CAVITY A PREDETERMINED AMOUNT OF A PROPELLENT COMPOSITION CONSISTING ESSENTIALLY OF BETWEEN ABOUT 0.5 AND 15 WEIGHT PERCENT OF A COMBUSTION CATALYST, AND BETWEEN ABOUT 10 AND 40 WEIGHT PERCENT OF OXIDIZABLE ORGANIC BINDER MATERIAL WHEREIN SAID BINDER MATERIAL CONSISTS OF A POLYMERIC BASE SELECTED FROM THE CLASS CONSISTING OF CELLULOSE ESTERS OF ALKANOIC ACIDS CONTAINING FROM 2 TO 4 CARBON ATOMS, POLYVINYLCHLORIDE, POLYVINYL ACETATE, ACRYLONITRILE AND STYRENEACRYLONITRILE, AND AN OXYGENATED HYDROCARBON PLASTICIZER THEREFOR SAID PLASTICER CONTAINING SAID OXYGEN IN CHEMICAL COMBINATION, AND THE REMAINDER ESSENTIALLY ONLY AMMONIUM NITRATE, APPLYING TO SAID COMPOSITION IN SAID MOLD CAVITY A PRESSURE BETWEEN ABOUT 3000 P.S.I. AND 800P.S.I., FOR A TIME BETWEEN ABOUT 0.05 AN D0.25 SECOND TO FORM SAID COMPOSTION INTO A PELLET OF THE DESIRED SHAPE, REMOVING SAID PELLET FROM SAID MOLD HEAT TREATING SAID PELLET AT A TEMPERATURE FROM ABOUT 70* C. TO 85* C. FOR A TIME BETWEEN ABOUT 1 HOUR AN D 2 HOURS AND COOLING SAID HOT PELLET TO AMBIENT TEMPERATURE TO OBTAIN A STRONG COMPRESSED PROPELLANT PELLET.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US803324A US3044123A (en) | 1959-03-31 | 1959-03-31 | Pressed solid propellant pellets |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US803324A US3044123A (en) | 1959-03-31 | 1959-03-31 | Pressed solid propellant pellets |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3044123A true US3044123A (en) | 1962-07-17 |
Family
ID=25186235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US803324A Expired - Lifetime US3044123A (en) | 1959-03-31 | 1959-03-31 | Pressed solid propellant pellets |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3044123A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3154448A (en) * | 1961-11-28 | 1964-10-27 | Borden Co | Dinitropolystyrene explosive composition |
| US3431151A (en) * | 1967-02-23 | 1969-03-04 | American Cyanamid Co | Polyester resins |
| US5531941A (en) * | 1993-08-04 | 1996-07-02 | Automotive Systems Laboratory, Inc | Process for preparing azide-free gas generant composition |
| US5641938A (en) * | 1995-03-03 | 1997-06-24 | Primex Technologies, Inc. | Thermally stable gas generating composition |
| US5726382A (en) * | 1995-03-31 | 1998-03-10 | Atlantic Research Corporation | Eutectic mixtures of ammonium nitrate and amino guanidine nitrate |
| US5783773A (en) * | 1992-04-13 | 1998-07-21 | Automotive Systems Laboratory Inc. | Low-residue azide-free gas generant composition |
| US5866842A (en) * | 1996-07-18 | 1999-02-02 | Primex Technologies, Inc. | Low temperature autoigniting propellant composition |
| US6045726A (en) * | 1998-07-02 | 2000-04-04 | Atlantic Research Corporation | Fire suppressant |
| CN103086814A (en) * | 2013-02-06 | 2013-05-08 | 郭洋 | Gunpowder-containing powdery explosive and its preparation technology |
| US20140120229A1 (en) * | 2012-11-01 | 2014-05-01 | Xerox Corporation | Printing 3d tempered chocolate |
| US10201467B2 (en) | 2012-06-06 | 2019-02-12 | Allen Medical Systems, Inc. | Surgical accessory interface device |
| US11234449B2 (en) | 2012-11-01 | 2022-02-01 | Xerox Corporation | Method of printing 3D tempered chocolate |
| US11412755B2 (en) | 2014-02-28 | 2022-08-16 | Xerox Corporation | Method of printing chocolate structures |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2159234A (en) * | 1935-03-11 | 1939-05-23 | Ici Ltd | Gas-producing nondetonating composition |
-
1959
- 1959-03-31 US US803324A patent/US3044123A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2159234A (en) * | 1935-03-11 | 1939-05-23 | Ici Ltd | Gas-producing nondetonating composition |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3154448A (en) * | 1961-11-28 | 1964-10-27 | Borden Co | Dinitropolystyrene explosive composition |
| US3431151A (en) * | 1967-02-23 | 1969-03-04 | American Cyanamid Co | Polyester resins |
| US5783773A (en) * | 1992-04-13 | 1998-07-21 | Automotive Systems Laboratory Inc. | Low-residue azide-free gas generant composition |
| US5531941A (en) * | 1993-08-04 | 1996-07-02 | Automotive Systems Laboratory, Inc | Process for preparing azide-free gas generant composition |
| US5641938A (en) * | 1995-03-03 | 1997-06-24 | Primex Technologies, Inc. | Thermally stable gas generating composition |
| US5726382A (en) * | 1995-03-31 | 1998-03-10 | Atlantic Research Corporation | Eutectic mixtures of ammonium nitrate and amino guanidine nitrate |
| US5866842A (en) * | 1996-07-18 | 1999-02-02 | Primex Technologies, Inc. | Low temperature autoigniting propellant composition |
| US6045726A (en) * | 1998-07-02 | 2000-04-04 | Atlantic Research Corporation | Fire suppressant |
| US10201467B2 (en) | 2012-06-06 | 2019-02-12 | Allen Medical Systems, Inc. | Surgical accessory interface device |
| US20140120229A1 (en) * | 2012-11-01 | 2014-05-01 | Xerox Corporation | Printing 3d tempered chocolate |
| US9185923B2 (en) * | 2012-11-01 | 2015-11-17 | Xerox Corporation | Printing 3D tempered chocolate |
| US9924731B2 (en) | 2012-11-01 | 2018-03-27 | Xerox Corporation | Printing 3D tempered chocolate |
| US11234449B2 (en) | 2012-11-01 | 2022-02-01 | Xerox Corporation | Method of printing 3D tempered chocolate |
| CN103086814A (en) * | 2013-02-06 | 2013-05-08 | 郭洋 | Gunpowder-containing powdery explosive and its preparation technology |
| US11412755B2 (en) | 2014-02-28 | 2022-08-16 | Xerox Corporation | Method of printing chocolate structures |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3044123A (en) | Pressed solid propellant pellets | |
| US3897285A (en) | Pyrotechnic formulation with free oxygen consumption | |
| JPS6232158B2 (en) | ||
| CN109896913A (en) | A kind of novel point gunpowder and preparation method thereof | |
| US3006743A (en) | Solid composite propellants containing decaborane | |
| US3157127A (en) | Solid propellant grain with cellulose acetate coating | |
| US3450583A (en) | Solid nitrocellulose-nitroglycerin propellant with burning rate modifiers containing dinitroacetonitrile salts | |
| US4094712A (en) | Consolidated charges incorporating integral ignition compounds | |
| US3732130A (en) | Gun propellant containing nonenergetic plasticizer,nitrocellulose and triaminoguanidine nitrate | |
| US3473982A (en) | Nitrocellulose explosive containing a charcoal binder-oxidizer mixture | |
| US3180772A (en) | Ammonium nitrate propellant | |
| US3017300A (en) | Pelleted igniter composition and method of manufacturing same | |
| US3067076A (en) | Stabilized ammonium nitrate propellant | |
| US2995430A (en) | Composite propellant reinforced with | |
| US3020180A (en) | Stabilized ammonium nitrate propellant | |
| US3188962A (en) | Restricted propellant body | |
| US3154449A (en) | saucxuc acid | |
| US3247035A (en) | Ammonium nitrate propellants containing a nitro-aminocarboxy-alkali metal phenolate combustion catalyst | |
| US3148096A (en) | Ammonium nitrate gas generating composition with combustion catalyst | |
| US3028810A (en) | Propellent grain | |
| US3056703A (en) | Ammonium nitrate combustion catalyst | |
| US3012508A (en) | Shaped ammonium nitrate propellant grain | |
| US3032449A (en) | Coated solid rocket propellants with improved ignition characteristics | |
| US3153603A (en) | Ammonium nitrate combustion catalyst | |
| US3026191A (en) | Solid ammonium nitrate propellant containing alkali metal aminobenzoate combustion catalysts |