US2801213A - Method of electroplating on titanium - Google Patents
Method of electroplating on titanium Download PDFInfo
- Publication number
- US2801213A US2801213A US531812A US53181255A US2801213A US 2801213 A US2801213 A US 2801213A US 531812 A US531812 A US 531812A US 53181255 A US53181255 A US 53181255A US 2801213 A US2801213 A US 2801213A
- Authority
- US
- United States
- Prior art keywords
- titanium
- copper
- electroplating
- solution
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052719 titanium Inorganic materials 0.000 title description 29
- 239000010936 titanium Substances 0.000 title description 29
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title description 28
- 238000000034 method Methods 0.000 title description 12
- 238000009713 electroplating Methods 0.000 title description 11
- 239000000243 solution Substances 0.000 description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 18
- 229910052802 copper Inorganic materials 0.000 description 18
- 239000010949 copper Substances 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 6
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 6
- 230000003213 activating effect Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000001119 stannous chloride Substances 0.000 description 6
- 235000011150 stannous chloride Nutrition 0.000 description 6
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 3
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical class [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- -1 Titanium Metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/38—Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/934—Electrical process
- Y10S428/935—Electroplating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
Definitions
- This invention relates to electroplating and more particularly to electroplating adherent electrodeposits of metals on titanium such as on very thin vacuum coated deposits of titanium.
- An object of the present invention is, therefore, to provide an improved electroplating process for plating metals onto articles which have been coated with a relatively thin titanium layer by vacuum coating methods.
- Another object of this invention is to provide an improved electroplating plating process whereby metals such as copper and nickel may be plated onto thin titanium coatings without attacking or etching the titanium.
- Example 1 A surface having a vacuum coated layer of titanium thereon is cleaned by being made the cathode in an aqueous alkaline cleaner solution containing 8 ounces per gallon of sodium orthosilicate and 2% by dry weight of orthosilicate of a non-ionic surfactant. The temperature of the solution was maintained at 160 F. Three volts were applied for 5 minutes. The cleaned titanium surface was then rinsed and given a two minute dip in an aqueous stannous chloride activating solution. The activating solution contained 1% stannous chloride and 1% hydrochloric acid. After rinsing, a reduced copper mirror was placed on the titanium surface by dipping it into a copper reducing solution containing:
- a current of 28 amperes per square foot was employed for 15 minutes.
- the solution was held at about 20 C.
- the plated surface was rinsed and copper plated in a copper cyanide solution comprising:
- Example 2 A surface having a vacuum coated layer of titanium thereon is cleaned by being made the cathode in the cleaner solution described in Example 1, the temperature of which was maintained at a temperature of F. The cleaned titanium surface was then rinsed and given a two minute dip in an aqueous stannous chloride activating solution containing 1% stannous chloride and 1% hydrochloric acid. After rinsing the titanium surface was coated with a layer of gold by chemical displacement in a 1% gold chloride solution at room temperature. A good film forms in approximately l2 minutes. The gold layer promotes the formation of a better and thicker copper mirror. The surface was rinsed and a reduced copper mirror was placed thereon by dipping it into the copper reducing solution shown in Example 1. The plated surface was then rinsed and further plated in the copper cyanide solution shown in Example 1 while employing a current of 15 amperes per square foot with an electrolyte temperature of 140 F.
- the mirrors may alternatively be plated with nickel in lieu of copper provided the nickel deposit has little internal stress.
- the process may be further modified by coating the copper mirror or gold immersion coating directly with nickel phosphorous al- 10y as deposited from the catalytic chemical reduction processes as disclosed in Brenner et al. Patent No. 2,532,283 of December 5, 1950.
- Palladous chloride may be substituted for the gold chloride to form a palladium layer followed by nickelphosphorous alloy coating by catalytic chemical reduction.
- a method of electroplating a firmly adhering metal coating onto a thin titanium layer which comprises cathodically cleaning the titanium surface in an alkaline solution containing sodium orthosilicate, activating the cleaned surface in an aqueous stannous chloride solution, adding a relatively thin copper coating thereover by dipping into an aqueous copper reducing solution containing copper sulfate, sodium hydroxide, Rochelle salts, potassium sulfate and formalin, electroplating a copper layer thereover from an electrolyte comprising copper sulfate, Rochelle salts, triethanolamine and water While employing a current of 28 amperes per square foot and further electroplating the surface in a copper cyanide electrolyte comprising copper cyanide and free sodium cyanide while holding the pH of the solution at approximately 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Description
United States Patent 2,801,213 METHOD or ELECTROPLATING N TITANIUM Frank O. Beuckman and William M. Tucker, Rochester,
N. Y., assignors to Eastman Kodak Company, Rochester, N. Y., a corporation of New Jersey No Drawing. Application August 31,1955, Serial No. 531,812
1 Claim. (Cl. 204-32) This invention relates to electroplating and more particularly to electroplating adherent electrodeposits of metals on titanium such as on very thin vacuum coated deposits of titanium.
Heretofore to obtain adherent deposits on titanium, strong pickling solutions and reagents have been employed. These solutions not only remove the oxide layer from the titanium but etch it as well. We have found in the case of very thin layers of vacuum coated titanium that these previous methods of effecting adherence of metals to titanium are entirely unsuited because the vacuum coated titanium layers are destructively attacked.
An object of the present invention is, therefore, to provide an improved electroplating process for plating metals onto articles which have been coated with a relatively thin titanium layer by vacuum coating methods.
Another object of this invention is to provide an improved electroplating plating process whereby metals such as copper and nickel may be plated onto thin titanium coatings without attacking or etching the titanium.
Other objects will appear hereinafter.
In accordance with the invention these and other objects are attained by cathodically cleaning the titanium surface to be plated, activating the surface in a stannous chloride activating solution, coating the titanium surface by immersion in a copper reducing solution or gold chloride dip, electroplating copper thereon from a special copper solution and copper striking the surface in a copper cyanide solution. The work is preferably rinsed between each of the above steps.
The invention is presented in more detail in the following examples:
Example 1 A surface having a vacuum coated layer of titanium thereon is cleaned by being made the cathode in an aqueous alkaline cleaner solution containing 8 ounces per gallon of sodium orthosilicate and 2% by dry weight of orthosilicate of a non-ionic surfactant. The temperature of the solution was maintained at 160 F. Three volts were applied for 5 minutes. The cleaned titanium surface was then rinsed and given a two minute dip in an aqueous stannous chloride activating solution. The activating solution contained 1% stannous chloride and 1% hydrochloric acid. After rinsing, a reduced copper mirror was placed on the titanium surface by dipping it into a copper reducing solution containing:
Copper sulfate grams 2 After rinsing, the surface was electroplated in a special copper solution containing:
Copper sulfate grams 25 Rochelle salts do Triethanolamine milliliters 25 Water ter..- 1
A current of 28 amperes per square foot was employed for 15 minutes. The solution was held at about 20 C. The plated surface was rinsed and copper plated in a copper cyanide solution comprising:
with a bath temperature of F.
Example 2 A surface having a vacuum coated layer of titanium thereon is cleaned by being made the cathode in the cleaner solution described in Example 1, the temperature of which was maintained at a temperature of F. The cleaned titanium surface was then rinsed and given a two minute dip in an aqueous stannous chloride activating solution containing 1% stannous chloride and 1% hydrochloric acid. After rinsing the titanium surface was coated with a layer of gold by chemical displacement in a 1% gold chloride solution at room temperature. A good film forms in approximately l2 minutes. The gold layer promotes the formation of a better and thicker copper mirror. The surface was rinsed and a reduced copper mirror was placed thereon by dipping it into the copper reducing solution shown in Example 1. The plated surface was then rinsed and further plated in the copper cyanide solution shown in Example 1 while employing a current of 15 amperes per square foot with an electrolyte temperature of 140 F.
Further examples of this technique would involve the formation of silver or gold mirrors by chemical reduction over the sensitized titanium surface and their subsequent plating with copper.
The mirrors may alternatively be plated with nickel in lieu of copper provided the nickel deposit has little internal stress.
On massive objects of titanium the process may be further modified by coating the copper mirror or gold immersion coating directly with nickel phosphorous al- 10y as deposited from the catalytic chemical reduction processes as disclosed in Brenner et al. Patent No. 2,532,283 of December 5, 1950.
Palladous chloride may be substituted for the gold chloride to form a palladium layer followed by nickelphosphorous alloy coating by catalytic chemical reduction.
Our process for plating metals onto thin layers of titanium more particularly titanium coated by vacuum methods gives excellent adhesion without removing a measurable amount of vacuum coated titanium.
We claim:
A method of electroplating a firmly adhering metal coating onto a thin titanium layer which comprises cathodically cleaning the titanium surface in an alkaline solution containing sodium orthosilicate, activating the cleaned surface in an aqueous stannous chloride solution, adding a relatively thin copper coating thereover by dipping into an aqueous copper reducing solution containing copper sulfate, sodium hydroxide, Rochelle salts, potassium sulfate and formalin, electroplating a copper layer thereover from an electrolyte comprising copper sulfate, Rochelle salts, triethanolamine and water While employing a current of 28 amperes per square foot and further electroplating the surface in a copper cyanide electrolyte comprising copper cyanide and free sodium cyanide while holding the pH of the solution at approximately 10.
(References on following page) Patented July 30, 1957 References Cited in the file of this patent UNITED STATES PATENTS Roux June 22, 1915 Merritt Aug, 9, 1921 De Trairup Oct. 13, 1931 Bergstrom Feb. 15, 1955 FOREIGN PATENTS Great Britain May 13, 1948 OTHER REFERENCES Handbook of Titanium Metal, Titanium Metals Corporation of America, 7th Edition, Aug. 1, 1953, page 92. Principles of Electroplating and Electra-Forming, Blum 5 and Hogaboon, 3rd Edition, pages 226-227, McGraw-Hill Book Co., Inc. (1949).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US531812A US2801213A (en) | 1955-08-31 | 1955-08-31 | Method of electroplating on titanium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US531812A US2801213A (en) | 1955-08-31 | 1955-08-31 | Method of electroplating on titanium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2801213A true US2801213A (en) | 1957-07-30 |
Family
ID=24119149
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US531812A Expired - Lifetime US2801213A (en) | 1955-08-31 | 1955-08-31 | Method of electroplating on titanium |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2801213A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2900715A (en) * | 1956-05-28 | 1959-08-25 | Steel Improvement & Forge Co | Protection of titanium |
| US2938841A (en) * | 1956-04-13 | 1960-05-31 | Olin Mathieson | Preparation of zirconium for cold working |
| US3291714A (en) * | 1961-01-13 | 1966-12-13 | Ici Australia Ltd | Electrodes |
| US4153742A (en) * | 1976-08-25 | 1979-05-08 | Basf Aktiengesellschaft | Manufacture of electrodes |
| US4294670A (en) * | 1979-10-29 | 1981-10-13 | Raymond Louis W | Precision electroplating of metal objects |
| US5009966A (en) * | 1987-12-31 | 1991-04-23 | Diwakar Garg | Hard outer coatings deposited on titanium or titanium alloys |
| US5456819A (en) * | 1991-12-26 | 1995-10-10 | The United States Of America As Represented By The Secretary Of Commerce | Process for electrodepositing metal and metal alloys on tungsten, molybdenum and other difficult to plate metals |
| US6656606B1 (en) | 2000-08-17 | 2003-12-02 | The Westaim Corporation | Electroplated aluminum parts and process of production |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1144000A (en) * | 1914-01-19 | 1915-06-22 | Aluminum Francais Soc D | Treament of surfaces of aluminum or alloys of aluminum in order to prepare them for receiving a metallic deposit. |
| US1387426A (en) * | 1919-10-13 | 1921-08-09 | Merritt Metals Company | Method of soldering aluminum |
| US1827142A (en) * | 1929-09-03 | 1931-10-13 | Trairup Martin Kristensen De | Process for the treatment of aluminum |
| GB601825A (en) * | 1945-10-04 | 1948-05-13 | Karl Theodor Suchy | An improved process for the electroplating of aluminium or aluminium alloy |
| US2702253A (en) * | 1950-11-01 | 1955-02-15 | Gasaccumulator Svenska Ab | Surface metallizing method |
-
1955
- 1955-08-31 US US531812A patent/US2801213A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1144000A (en) * | 1914-01-19 | 1915-06-22 | Aluminum Francais Soc D | Treament of surfaces of aluminum or alloys of aluminum in order to prepare them for receiving a metallic deposit. |
| US1387426A (en) * | 1919-10-13 | 1921-08-09 | Merritt Metals Company | Method of soldering aluminum |
| US1827142A (en) * | 1929-09-03 | 1931-10-13 | Trairup Martin Kristensen De | Process for the treatment of aluminum |
| GB601825A (en) * | 1945-10-04 | 1948-05-13 | Karl Theodor Suchy | An improved process for the electroplating of aluminium or aluminium alloy |
| US2702253A (en) * | 1950-11-01 | 1955-02-15 | Gasaccumulator Svenska Ab | Surface metallizing method |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2938841A (en) * | 1956-04-13 | 1960-05-31 | Olin Mathieson | Preparation of zirconium for cold working |
| US2900715A (en) * | 1956-05-28 | 1959-08-25 | Steel Improvement & Forge Co | Protection of titanium |
| US3291714A (en) * | 1961-01-13 | 1966-12-13 | Ici Australia Ltd | Electrodes |
| US4153742A (en) * | 1976-08-25 | 1979-05-08 | Basf Aktiengesellschaft | Manufacture of electrodes |
| US4294670A (en) * | 1979-10-29 | 1981-10-13 | Raymond Louis W | Precision electroplating of metal objects |
| US5009966A (en) * | 1987-12-31 | 1991-04-23 | Diwakar Garg | Hard outer coatings deposited on titanium or titanium alloys |
| US5456819A (en) * | 1991-12-26 | 1995-10-10 | The United States Of America As Represented By The Secretary Of Commerce | Process for electrodepositing metal and metal alloys on tungsten, molybdenum and other difficult to plate metals |
| US6656606B1 (en) | 2000-08-17 | 2003-12-02 | The Westaim Corporation | Electroplated aluminum parts and process of production |
| US6692630B2 (en) | 2000-08-17 | 2004-02-17 | The Westaim Corporation | Electroplated aluminum parts and process for production |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5246565A (en) | High adherence copper plating process | |
| US3726771A (en) | Process for chemical nickel plating of aluminum and its alloys | |
| CA2060121A1 (en) | Zincate solutions for treatment of aluminum and aluminum alloys | |
| IL34111A (en) | Conditioning aluminous surfaces for the reception of electroless nickel plating | |
| CN101243211B (en) | Pretreatment of magnesium substrates for electroplating | |
| US2662831A (en) | Method of bonding copper to aluminum or aluminum alloys | |
| US2801213A (en) | Method of electroplating on titanium | |
| US3790400A (en) | Preparation of plastic substrates for electroless plating and solutions therefor | |
| US4670312A (en) | Method for preparing aluminum for plating | |
| US3989606A (en) | Metal plating on aluminum | |
| US5456819A (en) | Process for electrodepositing metal and metal alloys on tungsten, molybdenum and other difficult to plate metals | |
| US2526544A (en) | Method of producing a metallic coating on magnesium and its alloys | |
| EP0030305A1 (en) | Chemical pretreatment for method for the electrolytical metal coating of magnesium articles | |
| US3065154A (en) | Method of plating chromium and the like to titanium, its alloys, and the like | |
| US2624684A (en) | Method and composition for coating aluminum with tin | |
| US2511952A (en) | Process of plating zinc on aluminum | |
| US4196061A (en) | Direct nickel-plating of aluminum | |
| US4225397A (en) | New and unique aluminum plating method | |
| US7270734B1 (en) | Near neutral pH cleaning/activation process to reduce surface oxides on metal surfaces prior to electroplating | |
| US2662054A (en) | Method of electrodepositing chromium directly on aluminum | |
| US2563229A (en) | Method of producing bright electroplate on electropolished surfaces | |
| US3505181A (en) | Treatment of titanium surfaces | |
| US2729601A (en) | Electroplating on beryllium | |
| US3502548A (en) | Method of electroplating gold on chromium | |
| US2856333A (en) | Electroplating |