US2849373A - Preventing color formation in gasoline - Google Patents
Preventing color formation in gasoline Download PDFInfo
- Publication number
- US2849373A US2849373A US498439A US49843955A US2849373A US 2849373 A US2849373 A US 2849373A US 498439 A US498439 A US 498439A US 49843955 A US49843955 A US 49843955A US 2849373 A US2849373 A US 2849373A
- Authority
- US
- United States
- Prior art keywords
- color
- formation
- phenylenediamine
- oil
- naphtha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 47
- 150000001299 aldehydes Chemical class 0.000 claims description 28
- 229930195733 hydrocarbon Natural products 0.000 claims description 24
- 150000002430 hydrocarbons Chemical class 0.000 claims description 23
- 239000003112 inhibitor Substances 0.000 claims description 23
- 239000004215 Carbon black (E152) Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- -1 ALKYLCYCLOPARAFFINS Chemical class 0.000 claims description 12
- 150000002989 phenols Chemical class 0.000 claims description 12
- 150000004986 phenylenediamines Chemical class 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 3
- 150000001925 cycloalkenes Chemical class 0.000 claims description 3
- 150000001993 dienes Chemical class 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000003921 oil Substances 0.000 description 57
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 34
- 238000012360 testing method Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 11
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 11
- 125000003277 amino group Chemical group 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 6
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000003518 caustics Substances 0.000 description 5
- 239000012085 test solution Substances 0.000 description 5
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001555 benzenes Chemical class 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 150000001896 cresols Chemical class 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 2
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000003739 xylenols Chemical class 0.000 description 2
- CRBJBYGJVIBWIY-UHFFFAOYSA-N 2-isopropylphenol Chemical compound CC(C)C1=CC=CC=C1O CRBJBYGJVIBWIY-UHFFFAOYSA-N 0.000 description 1
- OBCSAIDCZQSFQH-UHFFFAOYSA-N 2-methyl-1,4-phenylenediamine Chemical compound CC1=CC(N)=CC=C1N OBCSAIDCZQSFQH-UHFFFAOYSA-N 0.000 description 1
- KAHYDCBZFBPBCF-UHFFFAOYSA-N 2-n-dodecylbenzene-1,2-diamine Chemical compound CCCCCCCCCCCCNC1=CC=CC=C1N KAHYDCBZFBPBCF-UHFFFAOYSA-N 0.000 description 1
- BFVOBXSKECUHSW-UHFFFAOYSA-N 4-n,4-n-di(butan-2-yl)benzene-1,4-diamine Chemical compound CCC(C)N(C(C)CC)C1=CC=C(N)C=C1 BFVOBXSKECUHSW-UHFFFAOYSA-N 0.000 description 1
- CMBRHCVQODXRRS-UHFFFAOYSA-N 4-n-butan-2-ylbenzene-1,4-diamine Chemical compound CCC(C)NC1=CC=C(N)C=C1 CMBRHCVQODXRRS-UHFFFAOYSA-N 0.000 description 1
- IELAVJDOWOPAMD-UHFFFAOYSA-N 4-n-hexylbenzene-1,4-diamine Chemical compound CCCCCCNC1=CC=C(N)C=C1 IELAVJDOWOPAMD-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- SQISUZWPWJHTEP-UHFFFAOYSA-N aniline Chemical compound NC1=CC=CC=C1.NC1=CC=CC=C1 SQISUZWPWJHTEP-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- HUMNYLRZRPPJDN-KWCOIAHCSA-N benzaldehyde Chemical group O=[11CH]C1=CC=CC=C1 HUMNYLRZRPPJDN-KWCOIAHCSA-N 0.000 description 1
- YNKMHABLMGIIFX-UHFFFAOYSA-N benzaldehyde;methane Chemical compound C.O=CC1=CC=CC=C1 YNKMHABLMGIIFX-UHFFFAOYSA-N 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- VELDYOPRLMJFIK-UHFFFAOYSA-N cyclopentanecarbaldehyde Chemical compound O=CC1CCCC1 VELDYOPRLMJFIK-UHFFFAOYSA-N 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- FXHGMKSSBGDXIY-UHFFFAOYSA-N heptanal Chemical compound CCCCCCC=O FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G27/00—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
- C10G27/04—Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
Definitions
- Oxidation stability of 'oils derived from thermal cracking and catalytic cracking as well as virgin oils containing appreciable amounts ofcrackedoils is commonly improved by the addition of small amounts of phenylenedia-mine-type inhibitors or antioxidants.
- the most widely used of this class of inhibitors is N,N-di-sec-butyl-pphenylenediamine. It has been noticed that a color changeoccurs-in cracked oils to which phenylenediaminetypeinhibitors-have been added, but-this color change has normally been too slight to be in anyway objectionable;
- inhibitor sweetening process utilizes phenylenediamine-typecompounds: as catalysts for the oxidationof mercaptans to disulfidesz In"v this process, phenylenediamine compound istzaddedi to; the. sour! cracked naphtha. and then the diamine-cont'aining: naphtha is contacted with aqueous causticsolutionl and freer-oxygen; In thisprocess, much larger amounts of phenylenediamine. compound are; used than are necessary for; the'loxidation stabilization of t-t-he cracked naphtha.
- Air Forceaaviation gas0line the specification color is: such a light blue that it is impossible,- frequently, to even'attempt to: ,mask, the. pinkish or brownish color, present, after phenylenediam-ine sweetening.
- the phenylenediaminet-inhibitor 'sweeteningyprocess. is very simple-anduelatively, cheap, its .usehas been limited to then sweetening ofi cracked, naphthaswherein pink,.or brown-color, formationcan bemaskedby the useof suitable dyes;
- An object of the invention is a process for treating liquid hydrocarbon oils whose oxidationv stabilityphas been improved. byyth-e addition of phenylenediaminel-type. in: hibitorsto prevent the formation of objectionable amounts of color; in the. productoil.
- Another object of the invention isaprocess of phenylenediamine. inhibitor sweetening, of crackednaphthas under, conditions to avoid the formation of. colon inthe sweetoil.
- the phenylenediamine-type compounds which produce the pinkish or brownish color are those in which (a) the. amino groups are in either the ortho or the para orientation-and (b) not more than 1 of the amino groups contains an alkyl substituent group.
- the alkyl group if. present, contains not more than 16 carbon atoms.
- o-phenylenediamine and p-phenylenediamine (1,2 diaminobenzene and 1,4 diaminobenzene) will'produce, under the proper conditions, objectionable amounts? of pinkish color in hydrocarbon oil; metaphenylenediamine (LS-diaminobenzene) does not produce pinkish color in hydrocarbon oil under the same conditions.
- the phenylenediamines may contain substituents' on the benzene nucleus other than the amino groups;
- the defined objectionable phenylenediamine-type compounds be utilized directly as either oxidation inhibitors or as sweetening catalyst.
- These compounds maybe introduced into the hydrocarbon oil in admixture with other phenylenediamines which are considered as the principal inhibitors or catalysts;
- commercial grade N,N-disecbutyl-p-phenylenediamine usually contains appreciable amounts of N-sec-butyl-p-phenylenediamine as an impurity;
- the amount of the mono-substituted amine is suflicient to cause objectionable amounts of pinkish color when the commercial grade inhibitor is utilized in the treatmentof cracked naphthas.
- Examples of the typesof phenylenediamines which, under proper conditions, cause the formationof pinkish or brownish color hydrocarbon oil are: o-phenylenediamine, p-phenylenediamine, N sec buty-l p phenylenediamine, N-t-butyl-pphenylenediamine, N hexyl-p-phenylenediamine, N dodecyl-o-phenylenediamine, 1-methyl-3,6-diaminobenzene, and 1,4-dimethyl-3 ,6-diaminobenzener.
- the presenceof free-oxygen in the oil is necessary to the'formation of the color; This color normally is of a pinkishicast but often turnsto'a brownish shade.
- the free-oxygenz may be present by solution from the atmosphere; orr'may be introduced by an air blowing step during inhibitor sweetening of: acsour oil
- the oil itself must contain compounds whichieither the formation of the color imparting product.
- Phenolic compounds are necessary for the formation of color. These phenolic compounds are the phenols and alkylphenols which are normally found in cracked oils or in higher boiling virgin distillates, such as heater oil, from high sulfur crudes. These phenols may be, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, octylphenol, nonylphenol, etc.
- the alkylphenols, wherein the alkyl group is para to the hydroxy group are the slowest reacting of the phenols.
- the alkylphenols, where the alkyl is either ortho or meta to the hydroxy react very rapidly. Only very very slight amounts of phenols need be-present in the hydrocarbon oil in order to produce an objectionable color in the phenylenediamine-treated product oil.
- Certain classes of hydrocarbons either participate in the reaction or promote the formation of the color bodies when phenols and oxygen are present.
- the presence of alkylbenzenes and alkylnaphthalenes in a hydrocarbon oil results in the formation of color.
- Benzene itself is inactive.
- Toluene and the xylenes give a very slow formation of color.
- Isopropylbenzene causes a very rapid formation of color.
- the alkylcycloparaffins in hydrocarbon oil cause the formation of the pinkish color.
- the unsubstituted cycloparafiins such as cyclopentane and cyclohexane are inactive.
- the alkyl substituted cycloparaflins gave a very rapid formation in color.
- the methylcycloparafiins, such as methylcyclopentane and methylcyclohexane are particularly effective in the formation of color.
- the olefins, cycloolefins, diolefins, and cyclodiolefins of all types are extremely effective in producing the undesired color when they are present in the hydrocarbon oil.
- the temperatures at which the color formation occurs may be described as throughout the atmospheric temperature range. Higher temperatures accelerate the rate at which the color is formed, but if sufiicient time is permitted to elapse, the same intensity of color will be formed, regardless of the temperature at which the oil is maintained. In general, color formation will take place at any temperature at which hydrocarbon oils containing phenylenediamine inhibitors are maintained in commercial storage or refining operations.
- the color formed is pinkish. Normally, over a period of several days, this pinkish color will turn to a brownish shade. It has been found that when alkali metal hydroxide is present, the pinkish color is stabilized, i. e., does not turn brown.
- the alkali metal hydroxide may be present either as dispersed solid in the oil or may be introduced as an aqueous caustic dispersion during aqueous caustic contacting. Water or aqueous caustic, in the absence of the other necessary conditions, did not form color.
- the formation of the objectionable color is avoided by the addition of an aldehyde to the hydrocarbon oil.
- Addition of the aldehyde to the oil prior to, or substantially simultaneously with the addition of the phenylenediamine prevents the formation of any objectionable color.
- the color formation is relatively slow even when the conditions appear to be most favorable, for example, sweetening a sour catalytically cracked naphtha; thus the first appreciable amount of color takes from 1 to 2 hours and the total color formation may require as much or more than 24 hours.
- Some oils may not show appreciable amounts of color until 24 hours have passed. Therefore, it is possible to add the aldehyde to the oil after the phenylenediamine has been introduced. If the aldehyde is added at the time that the first detectable amounts of color are formed, further development of color is prevented.
- aldehyde any aldehyde may be used.
- the alkane aldehydes (alkanal) having not more than about 10 carbon atoms are particularly suitable.
- the alkene aldehydes (alkenal) having not more than about 10 carbon atoms are also particularly useful.
- the cycloalkanals may be used, for example, cyclopentylaldehyde, cyclohexylaldehyde, methylcyclopentylaldehyde, and methylcyclohexylaldehyde.
- the aldehydes of the benzene series are suitable for the purposes of this invention, for example, benzaldehyde and various alkylbenzaldehydes, such as tolylaldehyde and xylylaldehyde.
- the mixed aldehydes, wherein the aldehyde appears in the alkyl side chain of a benzene nucleus for example, phenacetaldehyde.
- the heterocyclic aldehydes such as furfural, may be used. However, owing to the polymerizing properties of the furfurals, these are not desirable for other reasons. It is preferred to utilize the alkanals and alkenals having not more than 10 carbon atoms, cycloalkanals, benzaldehyde, and alkylbenzaldehyde, as the aldehydes utilized. Particularly it is preferred to use formaldehyde, paraformaldehyde and benzaldehyde.
- the aldehydes are added to the oil in an amount at least sufficient to prevent color formation or further color formation. It appears that about 1 mole of aldehyde is required per mole of the defined color forming phenylenediamine present in the oil.
- the addition of between about 0.01 and 1% by weight of the aldehyde to the inhibited gasoline will be more than sufficient to avoid color formation when using the usual amounts of phenylenediamine inhibitors.
- Test 1 A sour gasoline range naphtha derived from the catalytic cracking of gas oils using a fluidized silica-alumina catalyst was sweetened by contacting the sour naphtha with aqueous sodium hydroxide solution, separating aqueous phase from the treated naphtha phase, adding 5 pounds of commercial grade N,N'-di-sec-butyl-p-phenylenediamine per 1000 barrels and then blowing compressed air through the inhibited naphtha before passing the inhibited naphtha to storage. In about 24 hours, the naphtha was sweet to the doctor test and had developed a pinkish color which rendered the naphtha completely useless for blending into water-white gasoline.
- the first, second, third, fourth overhead fractions, and a sample of the bottoms were utilized in laboratory sweetening of the sour catalytically cracked naphtha. Only the naphtha containing material from the first and second fractions formed the pinkish color.
- the first fraction was then analyzed by infrared and also ultimate composition and other physical properties. This analysis indicated that the 7% low boiling portion of the commercial inhibitor was mainly N-sec-butyl-pphenylenediamine.
- the acid oil solution was made so that when 1 ml. was diluted to 100 ml. with catalytic naphtha, the resulting solution contained 0.1 weight percent acid oil.
- the acid oil employed for this solution was derived by acid-springing of a spent caustic solution from the treating plant.
- the phenylenediamine solution was made up by adding 2.40 gm. to 1000 ml. of benzene; 1 ml. of this solution, when diluted to 100 ml., gave a resulting solution which contained 1 lb. of the phenylenediamine material per 5000 gallons of oil, or 8.40 pounds per 1000 barrels.
- Test 5 In this test, the importance of the presence of a phenolic compound was tested. In this test, various benzene hydrocarbons were added to the dephenolized catalytic naphtha. In these tests, the color forming diaminobenzene was used. Addition of phenol caused color formation. Cresols and xylenols added to the test solution caused color formation. However, those compounds where an alkyl group was para to the hydroxyl group reacted slowly. Very rapid react-ions were obtained using'mtho-eresol 'andmeta- "cres-ol.
- Test-6 tin-all.ea ses,'-a veryrapidformation of color.
- Test 7 In this test, utilizing the benzene solution,.ithe:etfect.of :non.-hydrocarbons:was.examined. xThiophenolsandmercaptans, when added to the test solution didanoti result ain. the formation of color. With. the .exception .of diethylether, which gave a very weak indicationaofi coloraforma- 1 .tion,,..non.-hydrocarbon .materials :didnot produce color in the test solution.
- Test 8 Test 9 In this test, the standard catalytic naphtha solution was utilized. Addition of formaldehyde or paraformaldehyde or benzaldehyde to the test solution prior to the addition of the phenylenediamine completely prevented the formation of the pinkish color. Addition of the aldehydes to the test oil after the phenylenediamine was added also prevented color. Addition of the aldehyde to the solution after the color had reached its maximum did not in any way improve the color of the degraded oil. Addition of the aldehyde to the solution at the time that color first began to show effectively prevented the formation of additional color.
- the process of the instant invention is applicable to any hydrocarbon oil system containing the necessary components of phenol and hydrocarbon type, free-oxygen and defined phenylenediamine. However, it is particularly useful in the prevention of color formation during phenylenediamine inhibitor sweetening of cracked naphthas, such as thermally cracked naphtha and catalytically cracked naphtha.
- equipment limitations on existing units may hinder the addition of the aldehyde prior to the addition of phenylenediamine catalyst. In such case, the aldehyde may be added to the treated oil on the way to storage. It appears that addition of the aldehyde to the treated oil subsequent to one hour after phenylenediamine catalyst addition will usually prevent the formation of any appreciable amount of color in the sweet naphtha.
- aldehyde is selected from the class consisting of alkanals and alkenals having not more than 10 carbon atoms, cycloalkanals, benzaldehyde and alkylbenzaldehyde.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
United States Patent PREVENTING CQLOR- FORMATION IN GASOLINE Simon Miron, Texas City, Tex., assignor to The American Oil Company No Drawing. Application March 31, 1955 Serial No. 498,439
12 Claims: (Cl. 196-29) This application relates to the use ofphenylenedia-minetype compounds in hydrocarbons and more particularly in cracked naphthas.
The Oxidation stability of 'oils derived from thermal cracking and catalytic cracking as well as virgin oils containing appreciable amounts ofcrackedoils is commonly improved by the addition of small amounts of phenylenedia-mine-type inhibitors or antioxidants. The most widely used of this class of inhibitors is N,N-di-sec-butyl-pphenylenediamine. It has been noticed that a color changeoccurs-in cracked oils to which phenylenediaminetypeinhibitors-have been added, but-this color change has normally been too slight to be in anyway objectionable;
Recently a new-type of sweetening operation has taken hold in: the-petroleum industry; thisso-called inhibitor sweetening process utilizes phenylenediamine-typecompounds: as catalysts for the oxidationof mercaptans to disulfidesz In"v this process, phenylenediamine compound istzaddedi to; the. sour! cracked naphtha. and then the diamine-cont'aining: naphtha is contacted with aqueous causticsolutionl and freer-oxygen; In thisprocess, much larger amounts of phenylenediamine. compound are; used than are necessary for; the'loxidation stabilization of t-t-he cracked naphtha. It has been noticed that phenylenediamine inhibitor-sweetened cracked naphtha develops a pinkishs colorand frequently this color becomesra' brownish shade; Undernormal circumstances, this-color: development is not objectionable because the refiner. is able tmmask' the color. by. adding dyes; most gasolines: are dyed to a suflicient degree that-modification of the dye formulation; permits: masking, the. pinkish or brownish colorswithout a noticeable. change; in the final, color: of the dyed gasoline. However, even a slight amount of this pinkish. 'color; impairs; the saleability of the, so-called water-White gasoline. Also, in thecase of U. S. Air Forceaaviation gas0line,;the, specification color is: such a light blue that it is impossible,- frequently, to even'attempt to: ,mask, the. pinkish or brownish color, present, after phenylenediam-ine sweetening. Thuseven though, the phenylenediaminet-inhibitor 'sweeteningyprocess. is very simple-anduelatively, cheap, its .usehas been limited to then sweetening ofi cracked, naphthaswherein pink,.or brown-color, formationcan bemaskedby the useof suitable dyes;
An object of the invention is a process for treating liquid hydrocarbon oils whose oxidationv stabilityphas been improved. byyth-e addition of phenylenediaminel-type. in: hibitorsto prevent the formation of objectionable amounts of color; in the. productoil. Another object of the invention isaprocess of phenylenediamine. inhibitor sweetening, of crackednaphthas under, conditions to avoid the formation of. colon inthe sweetoil. Other objects will become apparent, intthe. detailed. description of s the invention, It has, been. found: that. the formation of a pinkish or brownish color in hydrocarbon oils which have been treated with phenylenediamine-type inhibitors can bepreventedby adding to the treated oil analdehyde prior to the formation of objectionable amounts ofcolor 2,849,373 Patented Aug. 26, 1958 2; and preferably before the addition of the phenylenediamine inhibitor.
Not all phenylenediamine compounds cause the formation of'pinkishor brownish color in the hydrocarbon oil containing them'. Nor do all oils discolor even when a phenylenediamine inhibitor, which causes color in another hydrocarbon oil, is dissolved in the particular oil. Furthermore, if free-oxygen. is excluded from the. hydrocarbon oil, the formation of the color is avoided even though in the presence of free-oxygen, color would be formed. (It istimpractical in any. commercial operation to remove dissolved oxygen from hydrocarbon oil and to exclude the presence of free-oxygen in subsequent processing and in storagev before final sale to the consumer.)
The phenylenediamine-type compounds which produce the pinkish or brownish color are those in which (a) the. amino groups are in either the ortho or the para orientation-and (b) not more than 1 of the amino groups contains an alkyl substituent group. The alkyl group, if. present, contains not more than 16 carbon atoms. To illustrate: o-phenylenediamine and p-phenylenediamine (1,2 diaminobenzene and 1,4 diaminobenzene) will'produce, under the proper conditions, objectionable amounts? of pinkish color in hydrocarbon oil; metaphenylenediamine (LS-diaminobenzene) does not produce pinkish color in hydrocarbon oil under the same conditions. The phenylenediamines may contain substituents' on the benzene nucleus other than the amino groups;
It is not necessary that the defined objectionable phenylenediamine-type compounds be utilized directly as either oxidation inhibitors or as sweetening catalyst. These compounds maybe introduced into the hydrocarbon oil in admixture with other phenylenediamines which are considered as the principal inhibitors or catalysts; For example, commercial grade N,N-disecbutyl-p-phenylenediamine usually contains appreciable amounts of N-sec-butyl-p-phenylenediamine as an impurity; The amount of the mono-substituted amine is suflicient to cause objectionable amounts of pinkish color when the commercial grade inhibitor is utilized in the treatmentof cracked naphthas. Examples of the typesof phenylenediamines which, under proper conditions, cause the formationof pinkish or brownish color hydrocarbon oil are: o-phenylenediamine, p-phenylenediamine, N sec buty-l p phenylenediamine, N-t-butyl-pphenylenediamine, N hexyl-p-phenylenediamine, N dodecyl-o-phenylenediamine, 1-methyl-3,6-diaminobenzene, and 1,4-dimethyl-3 ,6-diaminobenzener.
Under the proper conditions, objectionable. amounts of color-are formed when the phenylenediamine inhibitors are added in very-small amounts. For example, in a sour catalytically cracked naphtha, a commercial phenylenediamine, containing on-the order of 5 volume percent of objectionable type of 1 phenylenediamine as an impurity, rendered. the naphtha unsuitable for use as watenwhite gasoline or .aviation gasoline component when the, commercial, grade inhibitor. was added in an amountcf 5 poundsper 1000 barrels of cracked naphtha. In, general the ordinary conventional usages of these phenylenediamine inhibitorsis contemplated, for example,,from about, 0.5- to, 10 pounds per. 1000 barrels of oil.
The presenceof free-oxygen in the oil is necessary to the'formation of the color; This color normally is of a pinkishicast but often turnsto'a brownish shade. The free-oxygenzmay be present by solution from the atmosphere; orr'may be introduced by an air blowing step during inhibitor sweetening of: acsour oil The oil itself must contain compounds whichieither the formation of the color imparting product.
Phenolic compounds are necessary for the formation of color. These phenolic compounds are the phenols and alkylphenols which are normally found in cracked oils or in higher boiling virgin distillates, such as heater oil, from high sulfur crudes. These phenols may be, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, octylphenol, nonylphenol, etc. The alkylphenols, wherein the alkyl group is para to the hydroxy group, are the slowest reacting of the phenols. The alkylphenols, where the alkyl is either ortho or meta to the hydroxy, react very rapidly. Only very very slight amounts of phenols need be-present in the hydrocarbon oil in order to produce an objectionable color in the phenylenediamine-treated product oil.
Certain classes of hydrocarbons either participate in the reaction or promote the formation of the color bodies when phenols and oxygen are present. The presence of alkylbenzenes and alkylnaphthalenes in a hydrocarbon oil results in the formation of color. Benzene itself is inactive. Toluene and the xylenes give a very slow formation of color. Isopropylbenzene causes a very rapid formation of color.
The alkylcycloparaffins in hydrocarbon oil cause the formation of the pinkish color. The unsubstituted cycloparafiins, such as cyclopentane and cyclohexane are inactive. However, the alkyl substituted cycloparaflins gave a very rapid formation in color. The methylcycloparafiins, such as methylcyclopentane and methylcyclohexane are particularly effective in the formation of color.
As is expected, .the olefins, cycloolefins, diolefins, and cyclodiolefins of all types are extremely effective in producing the undesired color when they are present in the hydrocarbon oil.
The temperatures at which the color formation occurs may be described as throughout the atmospheric temperature range. Higher temperatures accelerate the rate at which the color is formed, but if sufiicient time is permitted to elapse, the same intensity of color will be formed, regardless of the temperature at which the oil is maintained. In general, color formation will take place at any temperature at which hydrocarbon oils containing phenylenediamine inhibitors are maintained in commercial storage or refining operations.
When the defined phenylenediamine has been added to an oil containing the defined deleterious components, in the presence of free-oxygen, the color formed is pinkish. Normally, over a period of several days, this pinkish color will turn to a brownish shade. It has been found that when alkali metal hydroxide is present, the pinkish color is stabilized, i. e., does not turn brown. The alkali metal hydroxide may be present either as dispersed solid in the oil or may be introduced as an aqueous caustic dispersion during aqueous caustic contacting. Water or aqueous caustic, in the absence of the other necessary conditions, did not form color.
The formation of the objectionable color is avoided by the addition of an aldehyde to the hydrocarbon oil. Addition of the aldehyde to the oil prior to, or substantially simultaneously with the addition of the phenylenediamine prevents the formation of any objectionable color. The color formation is relatively slow even when the conditions appear to be most favorable, for example, sweetening a sour catalytically cracked naphtha; thus the first appreciable amount of color takes from 1 to 2 hours and the total color formation may require as much or more than 24 hours. Some oils may not show appreciable amounts of color until 24 hours have passed. Therefore, it is possible to add the aldehyde to the oil after the phenylenediamine has been introduced. If the aldehyde is added at the time that the first detectable amounts of color are formed, further development of color is prevented.
Apparently, any aldehyde may be used. The alkane aldehydes (alkanal) having not more than about 10 carbon atoms are particularly suitable. For example, formaldehyde, paraformaldehyde, acetaldehyde, and heptaldehyde. The alkene aldehydes (alkenal) having not more than about 10 carbon atoms, are also particularly useful. For example, acrylaldehyde and crotonaldehyde. The cycloalkanals may be used, for example, cyclopentylaldehyde, cyclohexylaldehyde, methylcyclopentylaldehyde, and methylcyclohexylaldehyde. The aldehydes of the benzene series are suitable for the purposes of this invention, for example, benzaldehyde and various alkylbenzaldehydes, such as tolylaldehyde and xylylaldehyde. The mixed aldehydes, wherein the aldehyde appears in the alkyl side chain of a benzene nucleus, for example, phenacetaldehyde. The heterocyclic aldehydes, such as furfural, may be used. However, owing to the polymerizing properties of the furfurals, these are not desirable for other reasons. It is preferred to utilize the alkanals and alkenals having not more than 10 carbon atoms, cycloalkanals, benzaldehyde, and alkylbenzaldehyde, as the aldehydes utilized. Particularly it is preferred to use formaldehyde, paraformaldehyde and benzaldehyde.
The aldehydes are added to the oil in an amount at least sufficient to prevent color formation or further color formation. It appears that about 1 mole of aldehyde is required per mole of the defined color forming phenylenediamine present in the oil. When utilizing the preferred aldehydes for preventing the color formation in cracked oils, in general, the addition of between about 0.01 and 1% by weight of the aldehyde to the inhibited gasoline will be more than sufficient to avoid color formation when using the usual amounts of phenylenediamine inhibitors. However, it is to be understood that a small number of very simple tests will enable those in this art to determine the minimum amounts of aldehyde which must be added to the particular oil containing the particular phenylenediamine in order to prevent the formation of deleterious amounts of color.
Test 1 A sour gasoline range naphtha derived from the catalytic cracking of gas oils using a fluidized silica-alumina catalyst was sweetened by contacting the sour naphtha with aqueous sodium hydroxide solution, separating aqueous phase from the treated naphtha phase, adding 5 pounds of commercial grade N,N'-di-sec-butyl-p-phenylenediamine per 1000 barrels and then blowing compressed air through the inhibited naphtha before passing the inhibited naphtha to storage. In about 24 hours, the naphtha was sweet to the doctor test and had developed a pinkish color which rendered the naphtha completely useless for blending into water-white gasoline.
A sample of the commercial grade N,N'-di-sec-butylp-phenylenediamine was carefully fractionated in a laboratory column into a series of fractions, each containing 5 volume percent of the charge. The fractionation was carried out in a micro Podbielniak column at mm. pressure and 10:1 reflux ratio. The distillation curve indicated that the distillation reached a constant boiling point after the first 7 volume percent had been taken overhead.
The first, second, third, fourth overhead fractions, and a sample of the bottoms were utilized in laboratory sweetening of the sour catalytically cracked naphtha. Only the naphtha containing material from the first and second fractions formed the pinkish color.
The first fraction was then analyzed by infrared and also ultimate composition and other physical properties. This analysis indicated that the 7% low boiling portion of the commercial inhibitor was mainly N-sec-butyl-pphenylenediamine.
Test 2 Since it was most quickly thought that phenols were thebad act-ors, cresols derived fromeatalytic naphtha were dissolved in c. p. benzene and 'N sedbutyhp phenyl- *ene'diamineiwas added to the solution. Nocolor formed in the solutionafter several days standing. Eventhepresence of free-oxygen introduced in the solution would not Test 3 Under very carefully controlled conditions, it wasdeterrninedthatcolor would not form ina 'cresol containing catalytic. naphthain the presence of N-sec-butyl-p-phenyl- .enediamine whenifree-oxygen was absent. Permitting the solution to. stand exposed tothe air resulted in the'formation of pinkish col-or inLthe oil.
Test 4 As a result of this rather surprising result, a standard test was devised in orderto'permit acomplete investigavtion of the color-forming phenomenon. Fonthetesting ofthe various phenylenediamines, catalytic naphtha was used as the hydrocarbonoil. Thiscatalytic naphtha to be solution. This was followed by a wash with distilled water. About 50 ml. of the washed catalytic gasoline was placed in a 100 ml. volumetric flask; 1.0 ml. of the inhibitor stock solution and 1.0 ml. of the phenol or acid oil solution were added. The solution was diluted to 100 ml. with Washed catalytic gasoline and was transferred to a clean 4 oz. oil sample bottle. T-o the bottle was added 1.5 ml. of 2.5% sodium hydroxide solution. The bottle was stoppered, shaken and allowed to stand. A positive test consisted of the development of a distinct pink color within about 24-48 hours.
The acid oil solution was made so that when 1 ml. was diluted to 100 ml. with catalytic naphtha, the resulting solution contained 0.1 weight percent acid oil. The acid oil employed for this solution was derived by acid-springing of a spent caustic solution from the treating plant. The phenylenediamine solution was made up by adding 2.40 gm. to 1000 ml. of benzene; 1 ml. of this solution, when diluted to 100 ml., gave a resulting solution which contained 1 lb. of the phenylenediamine material per 5000 gallons of oil, or 8.40 pounds per 1000 barrels.
Tests with high purity ortho, para and meta-phenylenediamine (diaminobenzene) showed that the meta isomer did not cause color formation whereas the ortho and para isomers did cause color formation. Aniline (aminobenzene) did not cause color formation. Other phenylenediamine compounds were tested. These tests show that the meta oriented diamines did not cause color formation, whereas the ortho and para oriented compounds did cause color formation. (That is, the amino groups in the compounds which did not form color were meta oriented with respect to each other.) However, the tests showed that if both amino groups contained alkyl substituents, no color was formed, regardless of the orientation of the amino groups. Likewise none of the meta. oriented phenylenediamines which contained only one alkyl substituent amino group had formed color.
Test 5 In this test, the importance of the presence of a phenolic compound was tested. In this test, various benzene hydrocarbons were added to the dephenolized catalytic naphtha. In these tests, the color forming diaminobenzene was used. Addition of phenol caused color formation. Cresols and xylenols added to the test solution caused color formation. However, those compounds where an alkyl group was para to the hydroxyl group reacted slowly. Very rapid react-ions were obtained using'mtho-eresol 'andmeta- "cres-ol.
Test-6 tin-all.ea ses,'-a veryrapidformation of color.
tested'was'first freed of acid oils-by t-wo vigorous =wa shrings with: '10 .volume -percent :of 520% a sodium hydroxide The addition of unsubstituted cycloparaflins,. .for .ex-
-: ample, :cyclopentane and s cyelohexane, did not 'produce color in the test solution. However, the additionxofsubistituted reycloparafiins, methylcyclohexane .--and methylcyclopentane did result .-in a. rapid formation of color.
Test 7 In this test, utilizing the benzene solution,.ithe:etfect.of :non.-hydrocarbons:was.examined. xThiophenolsandmercaptans, when added to the test solution didanoti result ain. the formation of color. With. the .exception .of diethylether, which gave a very weak indicationaofi coloraforma- 1 .tion,,..non.-hydrocarbon .materials :didnot produce color in the test solution.
Test 8 Test 9 In this test, the standard catalytic naphtha solution was utilized. Addition of formaldehyde or paraformaldehyde or benzaldehyde to the test solution prior to the addition of the phenylenediamine completely prevented the formation of the pinkish color. Addition of the aldehydes to the test oil after the phenylenediamine was added also prevented color. Addition of the aldehyde to the solution after the color had reached its maximum did not in any way improve the color of the degraded oil. Addition of the aldehyde to the solution at the time that color first began to show effectively prevented the formation of additional color.
The process of the instant invention is applicable to any hydrocarbon oil system containing the necessary components of phenol and hydrocarbon type, free-oxygen and defined phenylenediamine. However, it is particularly useful in the prevention of color formation during phenylenediamine inhibitor sweetening of cracked naphthas, such as thermally cracked naphtha and catalytically cracked naphtha. In this process, it is preferred to introduce the aldehyde into the hydrocarbon oil immediately before the introduction of the phenylenediamine catalyst. However, equipment limitations on existing units may hinder the addition of the aldehyde prior to the addition of phenylenediamine catalyst. In such case, the aldehyde may be added to the treated oil on the way to storage. It appears that addition of the aldehyde to the treated oil subsequent to one hour after phenylenediamine catalyst addition will usually prevent the formation of any appreciable amount of color in the sweet naphtha.
Thus having described the invention, what is claimed is:
1. In the process of improving the oxidation stability of a hydrocarbon oil containing (1) a phenolic compound, and (2) a member of the class consisting of alkylbenzenes, alkylcycloparafiins, olefins, cycloolefins, diolefins and cyclodiolefins, which process comprises adding to said oil, in the presence of free-oxygen, a phenylene diamine inhibitor having the amino groups in a non-meta orientation and not more than one amino group having. an alkyl substituent group, said alkyl group having not ish color, whereby further formation of pinkish color is prevented.
2. The process of claim 1 wherein said oil is a catalytically cracked naphtha.
3. The process of claim 1 wherein said diamine is N- sec-butyl-p-phenylene diamine.
4. The process of claim 1 wherein said aldehyde is formaldehyde.
5. The process of claim 1 wherein said aldehyde is added in an amount between about 0.01 weight percent and 0.5 weight percent.
6. The process of claim 1 wherein said aldehyde is benzaldehyde.
7. The process of claim 1 wherein said aldehyde is acrylaldehyde.
10. The' process of claim 1 wherein said diamine is o-phenylene diamine.
' 11'. In the process of phenylenediamine-type inhibitor sweetening of a sour cracked naphtha containing phenols,
wherein said naphtha is contacted with aqueous caustic,
in the presence of free-oxygen, in the presence of a catalytic amount of'a phenylenediarnine-type inhibitor containing phenylenediamine component having the amino groups in non-meta orientation and not more than one of said amino groups having an alkyl substituent group, said alkyl group having from 1 to 16 carbon atoms, whereby said naphtha is madesweet to the doctor test and an undesirable color is produced therein, the improvement which comprises adding to the sour naphtha between about0.01 and 0.5 weight percent of an aldehyde.
12. The process of claim 11 wherein said aldehyde is selected from the class consisting of alkanals and alkenals having not more than 10 carbon atoms, cycloalkanals, benzaldehyde and alkylbenzaldehyde.
References Cited in the file of this patent UNITED STATES PATENTS 2,508,817 Devol et al May 23, 1950 2,552,399 Browder May 8, 1951 2,616,832 Browder et a1. Nov. 4, 1952 2,616,833 Chenicek et a1 Nov. 4, 1952
Claims (1)
1. IN THE PROCESS OF IMPROVING THE OXIDATION STABILITY OF A HYDROCARBON OIL CONTAINING (1) A PHENOLIC COMPOUND, AND (2) A MEMBER OF THE CLASS CONSISTING OF ALKYLBENZENES, ALKYLCYCLOPARAFFINS, OLEFINS, CYCLOOLEFINS, DIOLEFINS AND CYCLODIOLEFINS, WHICH PROCESS COMPRISES ADDING TO SAID OIL, IN THE PRESENCE OF FREE-OXYGEN, A PHENYLENE DIAMINE INHIBITOR HAVING THE AMINO GROUPS N A NON-META ORIENTATION AND NOT MORE THAN ONE AMINO GROUP HAVING AN ALKYL SUBSTITUENT GROUP, SAID ALKYL GROUP HAVING NOT MORE THAN 16 CARBON ATOMS, WHICH PROCESS IS CHARACTERIZED BY THE FORMATION OF A PINKISH COLOR IN SAID OIL, THE IMPROVEMENT WHICH COMPRISES ADDING AN ALDEHYDE TO SAID OIL PRIOR TO THE FORMATION OF A SIGNIFICANT AMOUNT OF PINKISH COLOR, WHEREBY FURTHER FORMATION OF PINKISH COLOR IS PREVENTED.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US498439A US2849373A (en) | 1955-03-31 | 1955-03-31 | Preventing color formation in gasoline |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US498439A US2849373A (en) | 1955-03-31 | 1955-03-31 | Preventing color formation in gasoline |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2849373A true US2849373A (en) | 1958-08-26 |
Family
ID=23981094
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US498439A Expired - Lifetime US2849373A (en) | 1955-03-31 | 1955-03-31 | Preventing color formation in gasoline |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2849373A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2945808A (en) * | 1958-11-14 | 1960-07-19 | Gloria Oil And Gas Company | Sweetening and stabilizing of naphthas |
| US4868246A (en) * | 1987-08-12 | 1989-09-19 | Pennwalt Corporation | Polymer bound UV stabilizers |
| US4981914A (en) * | 1987-08-12 | 1991-01-01 | Atochem North America, Inc. | Polymer bound UV stabilizers |
| US5096977A (en) * | 1987-08-12 | 1992-03-17 | Atochem North America, Inc. | Process for preparing polymer bound UV stabilizers |
| US5206378A (en) * | 1987-08-12 | 1993-04-27 | Elf Atochem North America, Inc. | Hydrazido functionalized 2-(2-hydroxyphenyl)-2h-benzotriazoles |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2508817A (en) * | 1947-04-18 | 1950-05-23 | Tide Water Associated Oil Comp | Sweetening light hydrocarbon oils |
| US2552399A (en) * | 1949-02-19 | 1951-05-08 | Standard Oil Dev Co | Treating petroleum distillates |
| US2616832A (en) * | 1949-10-14 | 1952-11-04 | Standard Oil Dev Co | Treatment of petroleum distillates with an alkali and an aldehyde |
| US2616833A (en) * | 1951-03-01 | 1952-11-04 | Universal Oil Prod Co | Treatment of hydrocarbon distillates |
-
1955
- 1955-03-31 US US498439A patent/US2849373A/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2508817A (en) * | 1947-04-18 | 1950-05-23 | Tide Water Associated Oil Comp | Sweetening light hydrocarbon oils |
| US2552399A (en) * | 1949-02-19 | 1951-05-08 | Standard Oil Dev Co | Treating petroleum distillates |
| US2616832A (en) * | 1949-10-14 | 1952-11-04 | Standard Oil Dev Co | Treatment of petroleum distillates with an alkali and an aldehyde |
| US2616833A (en) * | 1951-03-01 | 1952-11-04 | Universal Oil Prod Co | Treatment of hydrocarbon distillates |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2945808A (en) * | 1958-11-14 | 1960-07-19 | Gloria Oil And Gas Company | Sweetening and stabilizing of naphthas |
| US4868246A (en) * | 1987-08-12 | 1989-09-19 | Pennwalt Corporation | Polymer bound UV stabilizers |
| US4981914A (en) * | 1987-08-12 | 1991-01-01 | Atochem North America, Inc. | Polymer bound UV stabilizers |
| US5096977A (en) * | 1987-08-12 | 1992-03-17 | Atochem North America, Inc. | Process for preparing polymer bound UV stabilizers |
| US5206378A (en) * | 1987-08-12 | 1993-04-27 | Elf Atochem North America, Inc. | Hydrazido functionalized 2-(2-hydroxyphenyl)-2h-benzotriazoles |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2552399A (en) | Treating petroleum distillates | |
| US2143472A (en) | Process for treating hydrocarbons | |
| US2384315A (en) | Process for cracking crude hydrocarbon oil | |
| US2849373A (en) | Preventing color formation in gasoline | |
| US2264894A (en) | Motor fuel | |
| US2006756A (en) | Liquid fuel composition | |
| US2508817A (en) | Sweetening light hydrocarbon oils | |
| US2054276A (en) | Process and product for the stabilizing of unsaturated hydrocarbons | |
| US2062675A (en) | Distillate petroleum products and method of treating same | |
| US2134959A (en) | Mineral oil products | |
| US1761810A (en) | Process of treating gasoline and the product thereof | |
| US2626208A (en) | Preparation of stable distillate fuels from cracked stocks | |
| US2422503A (en) | Stabilized alkaryl amine and process for preparing | |
| US2567174A (en) | Process for improving stability and engine cleanliness characteristics of petroleum fractions | |
| US2634231A (en) | Sweetening of sour hydrocarbon distillates | |
| US4981495A (en) | Methods for stabilizing gasoline mixtures | |
| US2694034A (en) | Treatment of saturated distillates | |
| US3290376A (en) | Nu-phenyl-nu'-sec-alkyl-ortho-phenylenediamines | |
| US2176883A (en) | Stabilization of hydrocarbon | |
| US2280227A (en) | Refining of petroleum distillates | |
| US1963556A (en) | Treatment of hydrocarbon oils | |
| US2124171A (en) | Motor fuels | |
| US3398086A (en) | Process for treating hydrocarbon distillates containing mercaptan and color-forming components | |
| US2051873A (en) | Treatment of motor fuel | |
| US2249277A (en) | Treatment of cracked hydrocarbon distillates |