US2795549A - Lubricating oil compositions - Google Patents
Lubricating oil compositions Download PDFInfo
- Publication number
- US2795549A US2795549A US440261A US44026154A US2795549A US 2795549 A US2795549 A US 2795549A US 440261 A US440261 A US 440261A US 44026154 A US44026154 A US 44026154A US 2795549 A US2795549 A US 2795549A
- Authority
- US
- United States
- Prior art keywords
- lubricating oil
- compositions
- oils
- acid
- beta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 61
- 239000010687 lubricating oil Substances 0.000 title description 23
- 239000003921 oil Substances 0.000 claims description 36
- 239000010688 mineral lubricating oil Substances 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 7
- 239000000314 lubricant Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 21
- 239000002738 chelating agent Substances 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 150000002739 metals Chemical class 0.000 description 15
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- -1 mercapto alcohols Chemical class 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 8
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical class [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical class [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 4
- WIKSRXFQIZQFEH-UHFFFAOYSA-N [Cu].[Pb] Chemical compound [Cu].[Pb] WIKSRXFQIZQFEH-UHFFFAOYSA-N 0.000 description 4
- 239000013522 chelant Substances 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000009972 noncorrosive effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 4
- CVBUKMMMRLOKQR-UHFFFAOYSA-N 1-phenylbutane-1,3-dione Chemical compound CC(=O)CC(=O)C1=CC=CC=C1 CVBUKMMMRLOKQR-UHFFFAOYSA-N 0.000 description 3
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 3
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical class [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000000908 ammonium hydroxide Substances 0.000 description 3
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical class NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 3
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 125000005287 vanadyl group Chemical group 0.000 description 3
- 229910052726 zirconium Chemical class 0.000 description 3
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- GHPVDCPCKSNJDR-UHFFFAOYSA-N 2-hydroxydecanoic acid Chemical compound CCCCCCCCC(O)C(O)=O GHPVDCPCKSNJDR-UHFFFAOYSA-N 0.000 description 2
- VMKYTRPNOVFCGZ-UHFFFAOYSA-N 2-sulfanylphenol Chemical class OC1=CC=CC=C1S VMKYTRPNOVFCGZ-UHFFFAOYSA-N 0.000 description 2
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical class [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 125000005012 alkyl thioether group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 125000003435 aroyl group Chemical group 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- 150000004832 aryl thioethers Chemical class 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 150000004662 dithiols Chemical class 0.000 description 2
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Chemical class 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 125000003441 thioacyl group Chemical group 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical class [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Chemical class 0.000 description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 2
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 2
- 229940041260 vanadyl sulfate Drugs 0.000 description 2
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- JRNVQLOKVMWBFR-UHFFFAOYSA-N 1,2-benzenedithiol Chemical class SC1=CC=CC=C1S JRNVQLOKVMWBFR-UHFFFAOYSA-N 0.000 description 1
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 1
- VRVRGVPWCUEOGV-UHFFFAOYSA-N 2-aminothiophenol Chemical compound NC1=CC=CC=C1S VRVRGVPWCUEOGV-UHFFFAOYSA-N 0.000 description 1
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 1
- CXMBJBCPGQIVET-UHFFFAOYSA-N 3-sulfanylbenzene-1,2-diol Chemical compound OC1=CC=CC(S)=C1O CXMBJBCPGQIVET-UHFFFAOYSA-N 0.000 description 1
- RQPNXPWEGVCPCX-UHFFFAOYSA-N 3-sulfanylbutanoic acid Chemical compound CC(S)CC(O)=O RQPNXPWEGVCPCX-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000005365 aminothiol group Chemical class 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940067597 azelate Drugs 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GKPOMITUDGXOSB-UHFFFAOYSA-N but-3-yn-2-ol Chemical compound CC(O)C#C GKPOMITUDGXOSB-UHFFFAOYSA-N 0.000 description 1
- 150000001717 carbocyclic compounds Chemical class 0.000 description 1
- HDFRDWFLWVCOGP-UHFFFAOYSA-N carbonothioic O,S-acid Chemical class OC(S)=O HDFRDWFLWVCOGP-UHFFFAOYSA-N 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000005205 dihydroxybenzenes Chemical class 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 1
- 229940093858 ethyl acetoacetate Drugs 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010733 inhibited oil Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical compound [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- REOJLIXKJWXUGB-UHFFFAOYSA-N mofebutazone Chemical group O=C1C(CCCC)C(=O)NN1C1=CC=CC=C1 REOJLIXKJWXUGB-UHFFFAOYSA-N 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical class OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- ZJLMKPKYJBQJNH-UHFFFAOYSA-N propane-1,3-dithiol Chemical compound SCCCS ZJLMKPKYJBQJNH-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- MAGSSGQAJNNDLU-UHFFFAOYSA-N s-phenylthiohydroxylamine Chemical class NSC1=CC=CC=C1 MAGSSGQAJNNDLU-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000013707 sensory perception of sound Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical compound CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- NBOMNTLFRHMDEZ-UHFFFAOYSA-N thiosalicylic acid Chemical class OC(=O)C1=CC=CC=C1S NBOMNTLFRHMDEZ-UHFFFAOYSA-N 0.000 description 1
- YZVRVDPMGYFCGL-UHFFFAOYSA-N triacetyloxysilyl acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)OC(C)=O YZVRVDPMGYFCGL-UHFFFAOYSA-N 0.000 description 1
- 239000010723 turbine oil Substances 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
- 150000003681 vanadium Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N xylylenediamine group Chemical group C=1(C(=CC=CC1)CN)CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- WXKDNDQLOWPOBY-UHFFFAOYSA-N zirconium(4+);tetranitrate;pentahydrate Chemical compound O.O.O.O.O.[Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WXKDNDQLOWPOBY-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M1/00—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
- C10M1/08—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/005—Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/027—Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/086—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/108—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/109—Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/02—Esters of silicic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/09—Complexes with metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/042—Siloxanes with specific structure containing aromatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/043—Siloxanes with specific structure containing carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/044—Siloxanes with specific structure containing silicon-to-hydrogen bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/045—Siloxanes with specific structure containing silicon-to-hydroxyl bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/046—Siloxanes with specific structure containing silicon-oxygen-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/047—Siloxanes with specific structure containing alkylene oxide groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/048—Siloxanes with specific structure containing carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/10—Groups 5 or 15
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/06—Instruments or other precision apparatus, e.g. damping fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/135—Steam engines or turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/32—Wires, ropes or cables lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/36—Release agents or mold release agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/40—Generators or electric motors in oil or gas winning field
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/42—Flashing oils or marking oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/44—Super vacuum or supercritical use
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/50—Medical uses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Form in which the lubricant is applied to the material being lubricated semi-solid; greasy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates to novel lubricant compositions. More particularly, the invention is concerned with novel lubricating oil compositions having improved oxidation and corrosion inhibiting properties.
- Lubricating oils generally have a tendency to detericrate due to oxidation and form decomposition products which are corrosive to metals. Since lubricating oils in use today almost invariably come into contact with metal surfaces, the problem of overcoming oxidation and corrosion is considered to be one of major importance. Operating conditions encountered in modern internal combustion engines in which these oils are commonly employed involve increased temperatures, higher speeds and reduced clearances which tend to promote decomposition and the formation of corrosive products. Furthermore, these engines generally employ alloy metal bearings which, besides their possible catalytic effect on the decomposition of the hydrocarbon type mineral lubricating oils, are easily corroded and this, in turn, has seriously accentuated the oxidation and corrosion problems in mineral lubricating oils.
- Inhibitors have been added to lubricating oils to improve their resistance to decomposition and avoid corrosivity.
- Mineral lubricating oils for internal combustion engines due to the severity of their service, have also been compounded with additional agents such as wear inhibitors, sludge inhibitors and detergents to loosen and suspend products of decomposition and counteract their effect.
- wear inhibitors such as wear inhibitors, sludge inhibitors and detergents to loosen and suspend products of decomposition and counteract their effect.
- many of these agents may adversely affect the efficiency of the oxidation and corrosion inhibitors and it is a problem to find inhibitors which will function in combination with them.
- some of the most effective oxidation and corrosion inhibitors contain active sulfur and are, therefore, extremely corro' sive to silver and similar metals which are subject to attack by active sulfur.
- a more particular object of this invention is to provide lubricating oil compositions which are noncorrosive to silver and similar metals.
- Another more particular object is the provision of mineral lubricating oil compositions in which the tendency to corrode alloy bearings of internal combustion engines has been inhibited.
- a further and somewhat related object is to provide compounded mineral lubricating oil compositions having improved anticorrosion properties without adversely affecting the stabilizing, deterging and lubricating qualities of the hydrocarbon oil composition.
- Another and still more particular object of the invention is the provision of mineral lubricating oil compositions which are noncorrosive to silver metal-containing bearings of the type employed in railroad diesel engine.
- compositions comprising an oil of lubricating viscosity and a complex of a metal compound selected from the group consisting of acids, oxides and salts of selenium, silicon, tungsten, vanadium and zirconium with a metal chelating agent having two functional groups in vicinal or beta position to one another on the carbon skeleton of a hydrocarbon linkage have greatly enhanced anticorrosion properties. It has also been found that, in particular, compositions comprising a compounded mineral lubricating oil for internal combustion engines which is normally corrosive to alloy bearings and such chelates are substantially noncorrosive.
- the metal chelating agent referred to above is the accepted terminology for a definite and well-known class of chemical compounds. Such compounds have been heretofore described in many published texts including the recent book entitled Chemistry of the Metal Chelate Compounds, by Martell and Calvin which was published by Prentice-Hall, Inc., of New York in 1952.
- the more suitable compounds of this class are members of the group consisting of glycols, dithiols, mercapto alcohols, amino alcohols, amino thiols, dicarboxylic acids, hydroxycarboxylic acids, mercaptocarboxylic acids, aminocarboxylie acids, beta-diketones, betaketo carboxylic acid esters, dihydroxy benzenes, dimercaptobenzenes, mercaptohydroxy benzenes, diamino benzenes, aminohydroxy benzenes, aminomercapto benzenes, hydroxycarboxy benzenes, aminocarboxy benzenes, and mercaptocarboxy benzenes having the two functional groups in vicinal or beta position to one another on the carbon skeleton.
- the complexes of the lubricating oil compositions according to this invention are prepared by the reaction of a mixture of the acid, salt or oxide of the metal and chelating agent.
- the mixtures are ordinarily heated to accelerate the reaction.
- two of the functional groups of a single glycol, dithiol, polyhydroxy benzene, etc. react with the acid to form what is commonly termed a "metal chelate compound.
- These compounds are characterized by a claw" type of structure in which one or more rings of similar or unlike struc ture due to the use of mixed chelating agents are formed including the metal of the group consisting of selenium. silicon, tungsten, vanadium, or zirconium.
- the preferred chelates of the above type are oil-soluble and the chelating agents are usually selected so as to impart oil solubility to the complex or chelate.
- Chelating agents containing from 2 to 18 carbon atoms are usually suitable since the less oil-soluble chelates may be used in combination with dispersants such as alkaline earth metal petroleum sulfonates or oil-solubilizing agents such as glycols and other polyhydric alcohols. Those containing from 6 to carbon atoms in the carbon skeleton are preferred since they impart an optimum degree of oil solubility to the chelate or complex.
- Suitable chelating agents within the abovedescribed class include vicinaland beta-diols such as ethylene glycol and 2-ethylhexanediol-l,3; vicinaland beta-ditbiols such as ethylene mercaptan and 1,3-propane dithiol; vicinaland beta-mercapto alcohols such as betamercaptoethanol, S-mercapto-propane-l-ol; vicinaland beta-diamines such as ethylenediamine and propylenediamine; vicinaland beta-amino alcohols such as ethanolamine and 3-aminopropane-1-ol; vicinaland beta-aminothiols such as thioethanolamine and 3-amine-l-mercaptopropane; vicinaland beta-dicarboxylic acids such as oxalic acid and malonic acid; vicinaland beta-hydroxy carboxylic acids such as glycolic acid and beta-hydroxybutyn'c acid;
- the foregoing compounds are characterized by normal or branched carbon skeletons. They may have substituted in various positions along the carbon skeleton, aromatic and substituted aromatic rings; hydroxy, alkoxy, and aryloxy radicals; sulfhydryl, alkylthioether, arylthioether, alkylthioester, and arylthioester groups; acyl, aroyl, thioacyl and thioaroyl radicals; amino, alkylamino, arylamino, acylamido and aroylamido radicals; and nitro, halogen and sulfato groups.
- preferred chelating agents of the aforementioned type for present purposes are those having an aliphatic hydrocarbon group between the two functional groups.
- chelating agents include various carbocyclic or aromatic chelating agents including vicinal-dihydroxy aromatic or carbocyclic compounds such as pyrocatechol, 4-t-butylpyrocatechol and dihydroxycyclohexane; vicinal-dimercaptoaromatic compounds such as thiocatechol; vicinalmercaptohydroxy aromatic compounds such as monothiocatechol or mercaptohydroxy benzene; vicinal-diaminoaromatic compounds such as orthophenylenediamine; vicinal aminohydroxyaromatic compounds such as orthoaminophenol; vicinal-aminomercaptoaromatic compounds such as orthoaminothiophenol; vicinal-hydroxycarboxyaromatic compounds such as salicyclic acid; vicinal-aminocarboxyaromatic compounds such as orthoaminobenzoic acid; vicinal-mercaptocarboxyaromatic compounds such as orthomercaptobenzoic acid, etc.
- the aforementioned carbocyclic or aromatic chelating agents may have various ring substituents including aromatic and substituted aromatic rings; hydroxy, alkoxy, and aryloxy radicals, sulfhydryl, alkylthioether, arylthioether, alkylthioester, and arylthioester groups; acyl, aroyl, thioacyl and thioaroyl radicals; amino, alkylamino, arylamino, acylamido, and aroylamido radicals; and nitro, halogen and sulfato groups.
- aromatic chelating agents having the two functional groups on a benzene ring or an alkyl benzene containing from 2 to 18 carbon atoms in the alkyl group are preferred since the chelates of the above-described metals are prepared with them possess the most satisfactory oil-solubility characteristics.
- the most suitable chelating agents of the above-mentioned classes for present purposes are members of the group consisting of alphaand beta-alkanediols of 2 to 18 and preferably from 6 to 10 carbon atoms, alkyl vicinaldihydroxy benzenes having from 2 to 18 and preferably from 4 to 16 carbon atoms in the alkyl group, betadiketones of from 4 to 18 and preferably from 6 to 10 carbon atoms, beta-ketocarboxylic acid esters of from 4 to 18 and preferably from 6 to 10 carbon atoms, and vicinaland beta-dicarboxylic and hydroxycarboxylic acids of from 2 to 18 and preferably from 6 to 10 carbon atoms.
- Illustrative chelating agents of this particular group are ethylene glycol, 2-ethylhexanediol 1,3, 4 t butylpyrocatechol, cetylpyrocatechol, acetylacetone, benzoylacetone, ethyl acetoacetate, oxalic acid, glycolic acid and alpha-hydroxydecanoic acid.
- These chelating agents give complexes of the previously described types which are superior corrosion and/or oxidation inhibitors in the lubricating oil compositions of the invention.
- vanadium is presently preferred.
- the complexes of acids, oxides and salts of vanadium with the more suitable chelating agents just described, particularly the alphaand beta-alkanediols, the alkyl vicinal-dihydroxy benzenes and the beta-diketones are unusually easy to prepare in excellent yields.
- these complexes when added to oils of lubricating viscosity they provide unique compositions of greatly improved resistance to oxidation and the development of corrosion characteristics due to oxidative deterioration of the oil.
- Suitable salts of the metals may be either inorganic salts such as zirconium nitrate, ammonium meta-vanadate, vanadyl chloride, vanadyl sulfate, silicon tetrachloride, etc., or organic salts such as salts of carboxylic acids, for example, silicon tetraacetate, and amine base salts such as ethanolaminetungstate, and the like.
- inorganic salts are presently preferred since they are more commonly available and give excellent results.
- amine salts of the acid complexes of the metals and chelating agents referred to above may also be employed advantageously in the lubricating oil compositions of the invention.
- These amine salts are conveniently prepared by heating a mixture of the acid complex with an organic amine such as trimethylamine, triethanolamine, laurylamine, phenyl-alpha-naphthylamine, xylylene diamines, aminophenol, pyridine, and morpholine.
- Esters of the acid complexes such as the monobutyl esters and monopentaerythritol esters are also suitable.
- Such substituted complexes are generally charactreized by enhanced oil solubility which may be desirable in the compounding of certain mineral lubricating oil compositions.
- the complex of the metal compound described above is present in the compositions of the invention in an amount at least sutficient to inhibit corrosion or oxidation.
- Small amounts usually from about 0.01 to about 5.0 percent by weight based on the oil, are effective.
- Proportions ranging from about 0.05 to about 1.0 percent are preferred in most lubricating oil compositions. Concentrates containing larger proportions, up to 50 percent, either in solution or suspension, are particularly suitable in compounding operations.
- oils of lubricating viscosity are suitable base oils for the compositions of the invention. They include hydrocarbon or mineral lubricating oils of naphthenic, paraflinic, and mixed naphthenic and parafiinic types. They may be refined by any of the conventional methods such as solvent refining and acid refining. Synthetic hydrocarbon oils of the alkylene polymer type or those derived from coal and shale may also be employed. Alkylene oxide polymers and their derivatives such as the propylene oxide polymers and their ethyl esters and acetyl derivatives in which the ter minal hydroxyl groups have been modified are also suitable.
- Synthetic oils of the dicarboxylic acid ester type including dibutyl adipate, di-Z-ethylhexyl sebacate, di-nhexyl fumaric polymer, di-lauryl azelate, and the like may be used.
- Alkyl benzene types of synthetic oils such as tetradecyl benzene, etc. are also included.
- Liquid esters of acids of phosphorus including tricresyl phosphate, diethyl esters of decane phosphonic acid, and the like may also be employed.
- polysiloxane oils of the type of polyalkyl, polyaryl, polyalkoxy and polyaryloxy siloxancs such as polymethyl siloxane, polymethylphenyl siloxane and polymethoxyphenoxy siloxane and silicate ester oils such as tetraalkyl and tetraaryl silicates of the tetra-Z-ethylhexyl silicate and tetra-p-tert-butyL phenyl silicate types.
- the complexes are employed in combination with compounded mineral lubricating oils of the internal combustion engine type which are normally corrosive to alloy bearings.
- compounded mineral lubricating oils of the internal combustion engine type which are normally corrosive to alloy bearings.
- straight oils of lubricating viscosity a major proportion of the lubricating oil normally corrosive to metals and/or subject to oxidation and a small amount, sufficient to inhibit said corrosion and/or oxidation, of the complex provides a remarkably improved composition.
- These compounded oils customarily contain detergents such as the oil-soluble petroleum sulfonates and stabilizers such as the metal alkyl phenates.
- Other agents such as oiliness agents, viscosity index improvers, pour point depressants, blooming agents, peptizing agents, etc. may also be present.
- EXAMPLE 1 A solution of 0.1 mole of tungstic acid in 50 milliliters of concentrated ammonium hydroxide and 100 milliliters of water is heated with stirring on a steam plate. During the heating and stirring, 0.2 mole of 4-t-butylcathechol dissolved in 100 milliliters of methanol is slowly added. After minutes of contined heating and stirring the mixture is cooled to room temperature and a crystalline product consisting of crude ammonium 4-t-butylcathechol tungstate is formed.
- the crude ammonium 4-t'butylcathechol tungstate obtained above is separated from the liquid phase by filtration. It is then washed with aqueous methanol to remove impurities and unreacted 4-tert.-butylcathechol and dried in a vacuum oven at about 70 C.
- the dried product consisting of purified ammonium 4-tert.-butylcatechol tungstate is used directly in the preparation of oxidation and corrosion inhibited lubricating oil compositions.
- EXAMPLE 3 A solution of 42.9 grams (0.10 mole) of zirconium nitrate pentahydrate in 100 milliliters of Warm methanol is added to a solution of 49.8 grams (0.30 mole) of 4- tert.-butylcatechol in 100 milliliters of methanol. To the resulting green solution is added 50 milliliters of concentrated ammonium hydroxide (about 28% ammonia) with vigorous stirring. The crude ammonium 4-tert.-butylcatechol zirconate is obtained as a light green precipitate.
- the crude ammonium 4-tert.-butylcatechol zirconate is separated from the liquid phase by filtration. It is then purified by washing with aqueous methanol and dried in a. vacuum oven at about 90 C.
- the purified ammonium -i tcrt.-butylcatcchol zirconate thus obtained in the form of a light green dry powder is used directly in the blending of lubricating oil compositions.
- EXAMPLE 4 40.0 grams (0.34 mole) of ammonium meta-vanadate, 234 grams (1.6 moles) of 2-ethylhexanediol-1,3, and milliliters of toluene are charged to a flask equipped with a mechanical stirrer, reflux condenser and water separator. Toluene is refluxed from the stirred reactants by heating for about 70 minutes and 16.5 milliliters of water is separated during this period. The reaction mixture becomes viscous at this point and it is desirable to terminate the reaction. The reaction mixture is dissolved in acetone filtered to remove solids which may be present and transferred to a distillation flask. The solvents and unreacted glycol are stripped from the reaction mixture by distillation at a reduced pressure of about 1 mm. Hg up to a temperature of about 127 C.
- the stripped product obtained above consists of (2- ethylhexanediol-L3) meta-vanadate and weighs about 157 grams. it is used directly in the preparation of compounded oils of lubricating viscosity.
- EXAMPLE 5 30 grams of vanadyl sulfate is dissolved in milliliters of water. The resulting solution is neutralized with saturated aqueous sodium carbonate solution and allowed to stand overnight. The vanadyl hydroxide which is formed as percipitate is removed by filtration and washed with water and alcohol. The precipitate is then stirred with 124 grams of acetylacetone dissolved in 100 milliliters of acetone. The mixture is warmed on a steam plate until the gray hydroxide color disappears. 0n cooling at bluish-green crystalline material is formed. This material, consisting of vanadyl bisacetylacetonate, is separated and employed directly in the preparation of lubricating oil compositions.
- Vanadyl bisbenzoylacetonate is prepared according to a method similar to that of the above example using benzoylacetone in place of the acetylacetone.
- the crystalline product thus prepared is used directly in the compounding of mineral lubricating oil compositions.
- the liquid phase from the above filtration is stripped to about 120 C. at a pressure of about 1 mm. Hg to give the 2-ethylhexanediol-l,3 vanadate which is used directly in the preparation of corrosion inhibited lubricating oil compositions.
- EXAMPLE 8 40 grams of ammonium meta-vanadate, 600 grams of ethylene glycol and 200 milliliters of benzene are charged to a glass reaction vessel equipped with a mechanical stirrer, reflux condenser and Water separation trap. The mixture is refluxed for about 10 hours with agitation, during which period 18.5 milliliters of water-ethylene glycol azcotrope analyzing about 66 percent Water is separated.
- the reflux product obtained above is combined with 200 grams of neutral mineral lubricating oil and about 200 grams of neutral mineral lubricating oil concentrate containing calcium alkyl phenate, sulfurized, analyzing 4.7 percent calcium and 3.08 percent sulfur.
- This mixture is stripped of solvents and unreaeted glycol up to a temperature of about 135 C. at 1 mm. Hg pressure.
- a precipitate is formed which is removed by diluting the stripped mixture with an equal part of benzene and filtering out the insoluble precipitate.
- the filtrate obtained above is stripped to remove the benzene.
- the stripped product consisting of ethylene glycol meta-vanadatc, is stable over a 48-hour period. It is employed as a concentrate in the blending of mineral lubricating oil compositions.
- the vanadium complexes prepared above are obtained in excellent yields, some ranging as high as 98 percent based on the vanadium reagent consumed.
- the effectiveness of the lubricating oil compositions of the invention is demonstrated by the copperlead strip corrosion test.
- a polished copper lead strip is weighed and immersed in 300 cubic centimeters of test oil in a 400-milliliter lipless Berzelius beaker.
- the test oil is maintained at 340 F. under a pressure of one atmosphere of air and stirred with a mechanical stirrer at l000 R. P. M.
- a synthetic naphthenate catalyst is added, unless otherwise specified, to provide the following catalytic metals:
- the test is continued 20 hours.
- the copper-lead strip is then removed, rubbed vigorously with a soft cloth and weighed to determine the net weight loss.
- the test oils include various types of mineral lubricating oil compositions as reference oils.
- Compounded oil (A) consists of a solvent refined SAE 40 mineral lubricating oil base having a viscosity index of 60 and containing 10 rnillimoles per kilogram of neutral calcium petroleum sulfonate and 20 rnillimoles per kilogram of calcium alkyl phenate, sulfurized.
- Compounded oil (B) consists of the same base oil but contains 40 millimoles per kilogram of basic calcium petroleum sulfonate.
- Compounded oil (C) is a solvent refined SAE 30 mineral lubricating oil base containing 10 rnillimoles per kilogram of neutral calcium petroleum sulfonate and 4 rnillimoles per kilogram of calcium alkyl phenate, sulfurized. The results of the test are shown in the following table. The concentrations of complex employed are given in millimoles of metal per kilogram of oil or percent by weight of the composition.
- vanadate 20 nlMJkg. zirconium bisucetyldame... 30.0
- compositions in accordance with this invention containing the same mineral lubricating oil base and a complex of the previously described type give as little as 3.2 milligrams for the same period. This shows that the compositions of the present invention are eifectively inhibited against oxidation and/or corrosion characteristics due to the oxidative deterioration of the oil.
- compositions of the invention have been primarily described as crankcase lubricants for internal combustion engines, they are also useful as turbine oils, hydraulic fluids, instrument oils, contituent oils in grease manufacture, ice-machine oils, and the like.
- a lubricant composition consisting essentially of a mineral lubricating oil for internal combustion engines containing minor amounts of alkaline earth metal petroleum sulfonate and alkaline earth metal alkyl pbenate which is normally corrosive to alloy hearings and from about 0.01 to about 5.0 percent by weight based on the oil of a vanadate of alphaand beta-glycols of 6 to 10 carbon atoms.
- a lubricant composition consisting essentially of mineral lubricating oil for internal combustion engines containing minor amounts of alkaline earth metal petroleum sulfonate and alkaline earth metal alkyl phenate which is normally corrosive to alloy bearings and from about 0.01 to about 5.0 percent by weight based on the oil of Z-ethylhexanediol-LS vanadate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Lubricants (AREA)
Description
United States Patent LUBRICATING OIL COMPOSITIONS Andrew D. Abbott, Ross, Oliver L. Harle, Berkeley, and John R. Thomas, Albany, Califl, assignors to California Research Corporation, San Francisco, Calif., a corporation of Delaware No Drawing. Application June 29, 1954, Serial No. 440,261
2 Claims. (Cl. 252-493] This invention relates to novel lubricant compositions. More particularly, the invention is concerned with novel lubricating oil compositions having improved oxidation and corrosion inhibiting properties.
Lubricating oils generally have a tendency to detericrate due to oxidation and form decomposition products which are corrosive to metals. Since lubricating oils in use today almost invariably come into contact with metal surfaces, the problem of overcoming oxidation and corrosion is considered to be one of major importance. Operating conditions encountered in modern internal combustion engines in which these oils are commonly employed involve increased temperatures, higher speeds and reduced clearances which tend to promote decomposition and the formation of corrosive products. Furthermore, these engines generally employ alloy metal bearings which, besides their possible catalytic effect on the decomposition of the hydrocarbon type mineral lubricating oils, are easily corroded and this, in turn, has seriously accentuated the oxidation and corrosion problems in mineral lubricating oils.
Inhibitors have been added to lubricating oils to improve their resistance to decomposition and avoid corrosivity. Mineral lubricating oils for internal combustion engines, due to the severity of their service, have also been compounded with additional agents such as wear inhibitors, sludge inhibitors and detergents to loosen and suspend products of decomposition and counteract their effect. Unfortunately, many of these agents may adversely affect the efficiency of the oxidation and corrosion inhibitors and it is a problem to find inhibitors which will function in combination with them. Furthermore, some of the most effective oxidation and corrosion inhibitors contain active sulfur and are, therefore, extremely corro' sive to silver and similar metals which are subject to attack by active sulfur. These types of metals, although once not so widely used in contact with lubricating oils and therefore considered to constitute only a minor problem, are being increasingly employed today. Particularly in certain important classes of internal combustion engines as, for example, marine and railroad diesel engines, silver metal-containing bearings are more and more common and the problem of providing proper lubrication for them is one of major importance.
It is, therefore, a general object of this invention to provide lubricating oil compositions having improved antioxidant and anticorrosion properties.
A more particular object of this invention is to provide lubricating oil compositions which are noncorrosive to silver and similar metals.
"ice
Another more particular object is the provision of mineral lubricating oil compositions in which the tendency to corrode alloy bearings of internal combustion engines has been inhibited.
A further and somewhat related object is to provide compounded mineral lubricating oil compositions having improved anticorrosion properties without adversely affecting the stabilizing, deterging and lubricating qualities of the hydrocarbon oil composition.
Another and still more particular object of the invention is the provision of mineral lubricating oil compositions which are noncorrosive to silver metal-containing bearings of the type employed in railroad diesel engine.
Additional objects of the invention will become apparent from the description and claims which follow.
In the accomplishment of the above objects, it has been found that compositions comprising an oil of lubricating viscosity and a complex of a metal compound selected from the group consisting of acids, oxides and salts of selenium, silicon, tungsten, vanadium and zirconium with a metal chelating agent having two functional groups in vicinal or beta position to one another on the carbon skeleton of a hydrocarbon linkage have greatly enhanced anticorrosion properties. It has also been found that, in particular, compositions comprising a compounded mineral lubricating oil for internal combustion engines which is normally corrosive to alloy bearings and such chelates are substantially noncorrosive.
The metal chelating agent referred to above is the accepted terminology for a definite and well-known class of chemical compounds. Such compounds have been heretofore described in many published texts including the recent book entitled Chemistry of the Metal Chelate Compounds, by Martell and Calvin which was published by Prentice-Hall, Inc., of New York in 1952. For present purposes the more suitable compounds of this class are members of the group consisting of glycols, dithiols, mercapto alcohols, amino alcohols, amino thiols, dicarboxylic acids, hydroxycarboxylic acids, mercaptocarboxylic acids, aminocarboxylie acids, beta-diketones, betaketo carboxylic acid esters, dihydroxy benzenes, dimercaptobenzenes, mercaptohydroxy benzenes, diamino benzenes, aminohydroxy benzenes, aminomercapto benzenes, hydroxycarboxy benzenes, aminocarboxy benzenes, and mercaptocarboxy benzenes having the two functional groups in vicinal or beta position to one another on the carbon skeleton.
The normal tendency of oils to become oxidized and corrosive is definitely inhibited in the improved compositions of the invention. Metal surfaces in general are not corroded by contact with these compositions and internal combustion engine alloy bearings, in particular, are remarkably benefited. Bearings of silver and similar metals which, as stated above are increasingly important due to their presently expanded use in marine and railroad diesel engines, are not corroded by these compositions whereas conventional oxidation inhibited oils have severely pitted and corroded such bearings. The advantages of these improvements are obtained in the compositions of this invention without loss of stability or detergency in the composition.
The complexes of the lubricating oil compositions according to this invention are prepared by the reaction of a mixture of the acid, salt or oxide of the metal and chelating agent. The mixtures are ordinarily heated to accelerate the reaction. Although the nature of the reaction is not definitely known, it is believed that two of the functional groups of a single glycol, dithiol, polyhydroxy benzene, etc. react with the acid to form what is commonly termed a "metal chelate compound. These compounds are characterized by a claw" type of structure in which one or more rings of similar or unlike struc ture due to the use of mixed chelating agents are formed including the metal of the group consisting of selenium. silicon, tungsten, vanadium, or zirconium.
The preferred chelates of the above type are oil-soluble and the chelating agents are usually selected so as to impart oil solubility to the complex or chelate. Chelating agents containing from 2 to 18 carbon atoms are usually suitable since the less oil-soluble chelates may be used in combination with dispersants such as alkaline earth metal petroleum sulfonates or oil-solubilizing agents such as glycols and other polyhydric alcohols. Those containing from 6 to carbon atoms in the carbon skeleton are preferred since they impart an optimum degree of oil solubility to the chelate or complex.
Examples of suitable chelating agents within the abovedescribed class include vicinaland beta-diols such as ethylene glycol and 2-ethylhexanediol-l,3; vicinaland beta-ditbiols such as ethylene mercaptan and 1,3-propane dithiol; vicinaland beta-mercapto alcohols such as betamercaptoethanol, S-mercapto-propane-l-ol; vicinaland beta-diamines such as ethylenediamine and propylenediamine; vicinaland beta-amino alcohols such as ethanolamine and 3-aminopropane-1-ol; vicinaland beta-aminothiols such as thioethanolamine and 3-amine-l-mercaptopropane; vicinaland beta-dicarboxylic acids such as oxalic acid and malonic acid; vicinaland beta-hydroxy carboxylic acids such as glycolic acid and beta-hydroxybutyn'c acid; vicinaland beta-mercapto carboxylic acids such as thioglycolic acid and beta-mercaptobutyric acid; vicinaland beta-amino carboxylic acids such as glycine and betaaminobutyric acid; beta-diketones such as acetylacetone and benzoylacetone; beta-ketocarboxylic acid esters such as ethylacetoacetate; etc. The foregoing compounds are characterized by normal or branched carbon skeletons. They may have substituted in various positions along the carbon skeleton, aromatic and substituted aromatic rings; hydroxy, alkoxy, and aryloxy radicals; sulfhydryl, alkylthioether, arylthioether, alkylthioester, and arylthioester groups; acyl, aroyl, thioacyl and thioaroyl radicals; amino, alkylamino, arylamino, acylamido and aroylamido radicals; and nitro, halogen and sulfato groups. However, preferred chelating agents of the aforementioned type for present purposes are those having an aliphatic hydrocarbon group between the two functional groups.
Also suitable as chelating agents are various carbocyclic or aromatic chelating agents including vicinal-dihydroxy aromatic or carbocyclic compounds such as pyrocatechol, 4-t-butylpyrocatechol and dihydroxycyclohexane; vicinal-dimercaptoaromatic compounds such as thiocatechol; vicinalmercaptohydroxy aromatic compounds such as monothiocatechol or mercaptohydroxy benzene; vicinal-diaminoaromatic compounds such as orthophenylenediamine; vicinal aminohydroxyaromatic compounds such as orthoaminophenol; vicinal-aminomercaptoaromatic compounds such as orthoaminothiophenol; vicinal-hydroxycarboxyaromatic compounds such as salicyclic acid; vicinal-aminocarboxyaromatic compounds such as orthoaminobenzoic acid; vicinal-mercaptocarboxyaromatic compounds such as orthomercaptobenzoic acid, etc. The aforementioned carbocyclic or aromatic chelating agents may have various ring substituents including aromatic and substituted aromatic rings; hydroxy, alkoxy, and aryloxy radicals, sulfhydryl, alkylthioether, arylthioether, alkylthioester, and arylthioester groups; acyl, aroyl, thioacyl and thioaroyl radicals; amino, alkylamino, arylamino, acylamido, and aroylamido radicals; and nitro, halogen and sulfato groups. For present purposes those aromatic chelating agents having the two functional groups on a benzene ring or an alkyl benzene containing from 2 to 18 carbon atoms in the alkyl group are preferred since the chelates of the above-described metals are prepared with them possess the most satisfactory oil-solubility characteristics.
The most suitable chelating agents of the above-mentioned classes for present purposes are members of the group consisting of alphaand beta-alkanediols of 2 to 18 and preferably from 6 to 10 carbon atoms, alkyl vicinaldihydroxy benzenes having from 2 to 18 and preferably from 4 to 16 carbon atoms in the alkyl group, betadiketones of from 4 to 18 and preferably from 6 to 10 carbon atoms, beta-ketocarboxylic acid esters of from 4 to 18 and preferably from 6 to 10 carbon atoms, and vicinaland beta-dicarboxylic and hydroxycarboxylic acids of from 2 to 18 and preferably from 6 to 10 carbon atoms. Illustrative chelating agents of this particular group are ethylene glycol, 2-ethylhexanediol 1,3, 4 t butylpyrocatechol, cetylpyrocatechol, acetylacetone, benzoylacetone, ethyl acetoacetate, oxalic acid, glycolic acid and alpha-hydroxydecanoic acid. These chelating agents give complexes of the previously described types which are superior corrosion and/or oxidation inhibitors in the lubricating oil compositions of the invention.
Out of the above-mentioned class of chelate-forming metals, vanadium is presently preferred. The complexes of acids, oxides and salts of vanadium with the more suitable chelating agents just described, particularly the alphaand beta-alkanediols, the alkyl vicinal-dihydroxy benzenes and the beta-diketones are unusually easy to prepare in excellent yields. Furthermore, when these complexes are added to oils of lubricating viscosity they provide unique compositions of greatly improved resistance to oxidation and the development of corrosion characteristics due to oxidative deterioration of the oil.
Although it is convenient for the sake of illustration in the above description of the invention to refer to the reaction of an acid of the metal with the various chelating agents or mixtures thereof to form the complexes for the lubricating oil compositions, other compounds of the metals such as the oxides and salts mentioned above may also be employed to provide similar chelates. Suitable acids include tungstic acid, vanadic acid and silicic acid as illustrative examples. Oxides of the metals which form complexes with the chelating agents adapted for use in the lubricating oil compositions of the invention are illustrated by compounds such as selenium dioxide, vanadium pentoxide, etc. Suitable salts of the metals may be either inorganic salts such as zirconium nitrate, ammonium meta-vanadate, vanadyl chloride, vanadyl sulfate, silicon tetrachloride, etc., or organic salts such as salts of carboxylic acids, for example, silicon tetraacetate, and amine base salts such as ethanolaminetungstate, and the like. The inorganic salts are presently preferred since they are more commonly available and give excellent results.
Various amine salts of the acid complexes of the metals and chelating agents referred to above may also be employed advantageously in the lubricating oil compositions of the invention. These amine salts are conveniently prepared by heating a mixture of the acid complex with an organic amine such as trimethylamine, triethanolamine, laurylamine, phenyl-alpha-naphthylamine, xylylene diamines, aminophenol, pyridine, and morpholine. Esters of the acid complexes such as the monobutyl esters and monopentaerythritol esters are also suitable. Such substituted complexes are generally charactreized by enhanced oil solubility which may be desirable in the compounding of certain mineral lubricating oil compositions.
The complex of the metal compound described above is present in the compositions of the invention in an amount at least sutficient to inhibit corrosion or oxidation. Small amounts, usually from about 0.01 to about 5.0 percent by weight based on the oil, are effective. Proportions ranging from about 0.05 to about 1.0 percent are preferred in most lubricating oil compositions. Concentrates containing larger proportions, up to 50 percent, either in solution or suspension, are particularly suitable in compounding operations.
Any of the well-known types of oils of lubricating viscosity are suitable base oils for the compositions of the invention. They include hydrocarbon or mineral lubricating oils of naphthenic, paraflinic, and mixed naphthenic and parafiinic types. They may be refined by any of the conventional methods such as solvent refining and acid refining. Synthetic hydrocarbon oils of the alkylene polymer type or those derived from coal and shale may also be employed. Alkylene oxide polymers and their derivatives such as the propylene oxide polymers and their ethyl esters and acetyl derivatives in which the ter minal hydroxyl groups have been modified are also suitable. Synthetic oils of the dicarboxylic acid ester type including dibutyl adipate, di-Z-ethylhexyl sebacate, di-nhexyl fumaric polymer, di-lauryl azelate, and the like may be used. Alkyl benzene types of synthetic oils such as tetradecyl benzene, etc. are also included. Liquid esters of acids of phosphorus including tricresyl phosphate, diethyl esters of decane phosphonic acid, and the like may also be employed. Also suitable are the polysiloxane oils of the type of polyalkyl, polyaryl, polyalkoxy and polyaryloxy siloxancs such as polymethyl siloxane, polymethylphenyl siloxane and polymethoxyphenoxy siloxane and silicate ester oils such as tetraalkyl and tetraaryl silicates of the tetra-Z-ethylhexyl silicate and tetra-p-tert-butyL phenyl silicate types.
In a preferred embodiment of the invention, as mentioned above, the complexes are employed in combination with compounded mineral lubricating oils of the internal combustion engine type which are normally corrosive to alloy bearings. In such an embodiment, as in the case of the other, straight oils of lubricating viscosity, a major proportion of the lubricating oil normally corrosive to metals and/or subject to oxidation and a small amount, sufficient to inhibit said corrosion and/or oxidation, of the complex provides a remarkably improved composition. These compounded oils customarily contain detergents such as the oil-soluble petroleum sulfonates and stabilizers such as the metal alkyl phenates. Other agents such as oiliness agents, viscosity index improvers, pour point depressants, blooming agents, peptizing agents, etc. may also be present.
In further illustration of the invention, the following examples are submitted showing the preparation of representative complexes and evaluation of their etfectiveness as corrosion inhibitors and antioxidants in oil composition. Unless otherwise specified the proportions given in these examples are on a weight basis.
EXAMPLE 1 A solution of 0.1 mole of tungstic acid in 50 milliliters of concentrated ammonium hydroxide and 100 milliliters of water is heated with stirring on a steam plate. During the heating and stirring, 0.2 mole of 4-t-butylcathechol dissolved in 100 milliliters of methanol is slowly added. After minutes of contined heating and stirring the mixture is cooled to room temperature and a crystalline product consisting of crude ammonium 4-t-butylcathechol tungstate is formed.
The crude ammonium 4-t'butylcathechol tungstate obtained above is separated from the liquid phase by filtration. It is then washed with aqueous methanol to remove impurities and unreacted 4-tert.-butylcathechol and dried in a vacuum oven at about 70 C. The dried product consisting of purified ammonium 4-tert.-butylcatechol tungstate is used directly in the preparation of oxidation and corrosion inhibited lubricating oil compositions.
6 EXAMPLE 2 To a solution of 11.1 grams (0.10 mole) of selenium dioxide in milliliters of methanol is added 33.2 grams (0.20 mole) of 4-tert.-butylcatechol and 50 milliliters of concentrated ammonium hydroxide (about 28% ammonia). The mixture is concentrated to a viscous residue by heating and evaporation. The viscous residue is then dissolved in 200 milliliters of toluene and heated on a steam plate to expell the last traces of water. The solution of selenium 4-tert.-butylcatecho1 is used as a concentrate in blending corrosion and oxidation inhibited lubricating oil compositions.
EXAMPLE 3 A solution of 42.9 grams (0.10 mole) of zirconium nitrate pentahydrate in 100 milliliters of Warm methanol is added to a solution of 49.8 grams (0.30 mole) of 4- tert.-butylcatechol in 100 milliliters of methanol. To the resulting green solution is added 50 milliliters of concentrated ammonium hydroxide (about 28% ammonia) with vigorous stirring. The crude ammonium 4-tert.-butylcatechol zirconate is obtained as a light green precipitate.
The crude ammonium 4-tert.-butylcatechol zirconate is separated from the liquid phase by filtration. It is then purified by washing with aqueous methanol and dried in a. vacuum oven at about 90 C. The purified ammonium -i tcrt.-butylcatcchol zirconate thus obtained in the form of a light green dry powder is used directly in the blending of lubricating oil compositions.
EXAMPLE 4 40.0 grams (0.34 mole) of ammonium meta-vanadate, 234 grams (1.6 moles) of 2-ethylhexanediol-1,3, and milliliters of toluene are charged to a flask equipped with a mechanical stirrer, reflux condenser and water separator. Toluene is refluxed from the stirred reactants by heating for about 70 minutes and 16.5 milliliters of water is separated during this period. The reaction mixture becomes viscous at this point and it is desirable to terminate the reaction. The reaction mixture is dissolved in acetone filtered to remove solids which may be present and transferred to a distillation flask. The solvents and unreacted glycol are stripped from the reaction mixture by distillation at a reduced pressure of about 1 mm. Hg up to a temperature of about 127 C.
The stripped product obtained above consists of (2- ethylhexanediol-L3) meta-vanadate and weighs about 157 grams. it is used directly in the preparation of compounded oils of lubricating viscosity.
EXAMPLE 5 30 grams of vanadyl sulfate is dissolved in milliliters of water. The resulting solution is neutralized with saturated aqueous sodium carbonate solution and allowed to stand overnight. The vanadyl hydroxide which is formed as percipitate is removed by filtration and washed with water and alcohol. The precipitate is then stirred with 124 grams of acetylacetone dissolved in 100 milliliters of acetone. The mixture is warmed on a steam plate until the gray hydroxide color disappears. 0n cooling at bluish-green crystalline material is formed. This material, consisting of vanadyl bisacetylacetonate, is separated and employed directly in the preparation of lubricating oil compositions.
EXAMPLE 6 Vanadyl bisbenzoylacetonate is prepared according to a method similar to that of the above example using benzoylacetone in place of the acetylacetone. The crystalline product thus prepared is used directly in the compounding of mineral lubricating oil compositions.
7 EXAMPLE 1 23 grams of vanadium pentoxide, 40 grains of 2-ethylhexanediol-1,3 and 50 milliliters of xylene are added to a glass reaction vessel equipped with mechanical stirrer, reflux condenser and a water separation trap. The mixture is heated to reflux temperature and agitated mechanically while refluxing for about 5 hours. 3.2 milliliters of water is separated during this period. About 20 grams of solid material is separated by filtration from the reaction mixture.
The liquid phase from the above filtration is stripped to about 120 C. at a pressure of about 1 mm. Hg to give the 2-ethylhexanediol-l,3 vanadate which is used directly in the preparation of corrosion inhibited lubricating oil compositions.
EXAMPLE 8 40 grams of ammonium meta-vanadate, 600 grams of ethylene glycol and 200 milliliters of benzene are charged to a glass reaction vessel equipped with a mechanical stirrer, reflux condenser and Water separation trap. The mixture is refluxed for about 10 hours with agitation, during which period 18.5 milliliters of water-ethylene glycol azcotrope analyzing about 66 percent Water is separated.
The reflux product obtained above, amounting to about 435 grams, is combined with 200 grams of neutral mineral lubricating oil and about 200 grams of neutral mineral lubricating oil concentrate containing calcium alkyl phenate, sulfurized, analyzing 4.7 percent calcium and 3.08 percent sulfur. This mixture is stripped of solvents and unreaeted glycol up to a temperature of about 135 C. at 1 mm. Hg pressure. A precipitate is formed which is removed by diluting the stripped mixture with an equal part of benzene and filtering out the insoluble precipitate.
The filtrate obtained above is stripped to remove the benzene. The stripped product, consisting of ethylene glycol meta-vanadatc, is stable over a 48-hour period. It is employed as a concentrate in the blending of mineral lubricating oil compositions.
The vanadium complexes prepared above are obtained in excellent yields, some ranging as high as 98 percent based on the vanadium reagent consumed.
The effectiveness of the lubricating oil compositions of the invention is demonstrated by the copperlead strip corrosion test. In this test a polished copper lead strip is weighed and immersed in 300 cubic centimeters of test oil in a 400-milliliter lipless Berzelius beaker. The test oil is maintained at 340 F. under a pressure of one atmosphere of air and stirred with a mechanical stirrer at l000 R. P. M. After two hours a synthetic naphthenate catalyst is added, unless otherwise specified, to provide the following catalytic metals:
Percent by weight iron 0.008 Lead 0.004 Copper 0.002 Manganese 0.0005 Chromium 0.004
The test is continued 20 hours. The copper-lead strip is then removed, rubbed vigorously with a soft cloth and weighed to determine the net weight loss.
The test oils include various types of mineral lubricating oil compositions as reference oils. Compounded oil (A) consists of a solvent refined SAE 40 mineral lubricating oil base having a viscosity index of 60 and containing 10 rnillimoles per kilogram of neutral calcium petroleum sulfonate and 20 rnillimoles per kilogram of calcium alkyl phenate, sulfurized. Compounded oil (B) consists of the same base oil but contains 40 millimoles per kilogram of basic calcium petroleum sulfonate. Compounded oil (C) is a solvent refined SAE 30 mineral lubricating oil base containing 10 rnillimoles per kilogram of neutral calcium petroleum sulfonate and 4 rnillimoles per kilogram of calcium alkyl phenate, sulfurized. The results of the test are shown in the following table. The concentrations of complex employed are given in millimoles of metal per kilogram of oil or percent by weight of the composition.
Table l COPPER-LEAD STRIP CORROSION TEST Copper- Lead Additive llnsu Oil Stri Wei; 1; Loss (ma None Compoundcd 011 (A].. 253.1 20 mM./kg. ammonium 4-t-butyl Same 22.0
eatcehol tungstate. 20 mlvL/lrg. (Z-ethylhexanerliol-LB) Same .4 4.0
vanadate. 20 nlMJkg. zirconium bisucetyldame... 30.0
ueetouate. 2U rnMJkg. ammonium t-t-butyl- Saint H 59.9
cateehol zirconate. 2t] mMJkg. selenium 4-tcrtipbutyl- Same 67.4
(a-tecltolate. 0.3% by weight vanadyl bisoeetyl- Same... 32.4
nectonate. (1.3% by weight vauadyl blsbcnzoyl- Stl-llli 31.8
acetonate. 0.77% by weight 2-etllylhcxanediol- Sauuc. 3 2
1,3 vnnadnte. None compounded oil (8) 225.0 20 mill/kg. 2-ethyllicxanodlei-1,3 Same 14.2
vnnadate. None. Cmnpounderl oil (C) 160.0 5 rnMJkg. ethylene glycol vauadate Same 60. 9
As shown by the above test data, the reference mineral lubricating oil compositions alone give copper-lead strip weight losses due to corrosion of over 250 milligrams in the 20-hour period. By way of distinction, compositions in accordance with this invention containing the same mineral lubricating oil base and a complex of the previously described type give as little as 3.2 milligrams for the same period. This shows that the compositions of the present invention are eifectively inhibited against oxidation and/or corrosion characteristics due to the oxidative deterioration of the oil.
The nature of the improved lubricating oil compositions of the invention and their effectiveness should be readily apparent from the many illustrations given above. Oxidation and corrosivity in the compositions are definitely inhibited to a very substantial degree. Particularly corrodible metals such as engine alloy bearings of copper, lead, and the like, as well as bearings of silver, are not adversely affected. This is indeed remarkable since the problem of devising lubricant compositions uniformly noncorrosive to both types of bearing metals has long confronted workers in the art. The advantages of these improvements are obtained without loss of other desirable properties of the lubricant compositions.
Although the compositions of the invention have been primarily described as crankcase lubricants for internal combustion engines, they are also useful as turbine oils, hydraulic fluids, instrument oils, contituent oils in grease manufacture, ice-machine oils, and the like.
We claim:
1. A lubricant composition consisting essentially of a mineral lubricating oil for internal combustion engines containing minor amounts of alkaline earth metal petroleum sulfonate and alkaline earth metal alkyl pbenate which is normally corrosive to alloy hearings and from about 0.01 to about 5.0 percent by weight based on the oil of a vanadate of alphaand beta-glycols of 6 to 10 carbon atoms.
2. A lubricant composition consisting essentially of mineral lubricating oil for internal combustion engines containing minor amounts of alkaline earth metal petroleum sulfonate and alkaline earth metal alkyl phenate which is normally corrosive to alloy bearings and from about 0.01 to about 5.0 percent by weight based on the oil of Z-ethylhexanediol-LS vanadate.
References Cited in the file of this patent UNITED STATES PATENTS
Claims (1)
1. A LUBRICANT COMPOSITION CONSISTING ESSENTIALLY OF A MINERAL LUBRICATING OIL FOR INTERNAL COMBUSTION ENGINES CONTAINING MINOR AMOUNTS OF ALKALINE EARTH METAL ALKYL PHENATE LEUM SULFONATE AND ALKALINE EARTH METAL ALKYL PHENATE WHICH IS NORMALLY CORROSIVE TO ALLOY HEARINGS AND FROM ABOUT 0.01 TO ABOUT 5.0 PERCENT BY WEIGHT BASED ON THE OIL OF A VANADATE OF ALPHA-AND BETA-GLYCOLS OF 6 TO 10 CARBON ATOMS.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US440261A US2795549A (en) | 1954-06-29 | 1954-06-29 | Lubricating oil compositions |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US440261A US2795549A (en) | 1954-06-29 | 1954-06-29 | Lubricating oil compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2795549A true US2795549A (en) | 1957-06-11 |
Family
ID=23748075
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US440261A Expired - Lifetime US2795549A (en) | 1954-06-29 | 1954-06-29 | Lubricating oil compositions |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2795549A (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3076830A (en) * | 1959-04-29 | 1963-02-05 | Merck & Co Inc | Vanadium compounds |
| US3223673A (en) * | 1962-10-29 | 1965-12-14 | Phillips Petroleum Co | Masticating rubber with vanadium acetylacetonate as the principal peptizing agent |
| US3238274A (en) * | 1960-02-23 | 1966-03-01 | Distillers Co Yeast Ltd | Process for curing unsaturated polyesters using a vanadium compound and an acid phosphate ester as catalysts |
| US3282838A (en) * | 1960-05-10 | 1966-11-01 | Texaco Inc | Petroleum liquids containing amine salts of molybdic acid |
| US3290245A (en) * | 1959-06-05 | 1966-12-06 | Castrol Ltd | Lubricating compositions containing amine tungstates |
| US3360467A (en) * | 1965-03-29 | 1967-12-26 | Monsanto Res Corp | Functional fluid |
| US3399139A (en) * | 1965-01-15 | 1968-08-27 | British Petroleum Co | Synthetic lubricant composition of improved oxidation stability |
| US3413223A (en) * | 1965-07-22 | 1968-11-26 | British Petroleum Co | Ester lubricants |
| US3538002A (en) * | 1968-11-20 | 1970-11-03 | Monsanto Res Corp | Modified functional fluids |
| US4667045A (en) * | 1984-03-28 | 1987-05-19 | Union Carbide Corporation | Organosalts of metalate anions and process for the production of alkylene glycols therewith |
| US4722919A (en) * | 1986-10-06 | 1988-02-02 | Texaco Inc. | Synthesis of vanadium/propylene glycol complexes |
| US4755311A (en) * | 1986-08-14 | 1988-07-05 | The Lubrizol Corporation | Phosphorus-, sulfur- and boron-containing compositions, and lubricant and functional fluid compositions containing same |
| US4849123A (en) * | 1986-05-29 | 1989-07-18 | The Lubrizol Corporation | Drive train fluids comprising oil-soluble transition metal compounds |
| US20040214731A1 (en) * | 2003-04-22 | 2004-10-28 | R.T. Vanderbilt Company, Inc. | Organoammonium tungstate and molybate compounds, and process for preparing such compounds |
| EP4159832A1 (en) | 2021-10-04 | 2023-04-05 | Infineum International Limited | Lubricating oil compositions |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2144654A (en) * | 1936-09-14 | 1939-01-24 | Leo Corp | Method of increasing solubility of metal salts of beta carboxy compounds in motor fuels |
| US2161184A (en) * | 1935-10-18 | 1939-06-06 | Leo Corp | Motor lubricating oil |
| US2305627A (en) * | 1939-05-24 | 1942-12-22 | Lubri Zol Dev Corp | Lubricating oil |
| US2465296A (en) * | 1944-09-20 | 1949-03-22 | Westinghouse Electric Corp | Metal chelate stabilized organic silicon compositions and products thereof |
-
1954
- 1954-06-29 US US440261A patent/US2795549A/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2161184A (en) * | 1935-10-18 | 1939-06-06 | Leo Corp | Motor lubricating oil |
| US2144654A (en) * | 1936-09-14 | 1939-01-24 | Leo Corp | Method of increasing solubility of metal salts of beta carboxy compounds in motor fuels |
| US2305627A (en) * | 1939-05-24 | 1942-12-22 | Lubri Zol Dev Corp | Lubricating oil |
| US2465296A (en) * | 1944-09-20 | 1949-03-22 | Westinghouse Electric Corp | Metal chelate stabilized organic silicon compositions and products thereof |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3076830A (en) * | 1959-04-29 | 1963-02-05 | Merck & Co Inc | Vanadium compounds |
| US3290245A (en) * | 1959-06-05 | 1966-12-06 | Castrol Ltd | Lubricating compositions containing amine tungstates |
| US3238274A (en) * | 1960-02-23 | 1966-03-01 | Distillers Co Yeast Ltd | Process for curing unsaturated polyesters using a vanadium compound and an acid phosphate ester as catalysts |
| US3282838A (en) * | 1960-05-10 | 1966-11-01 | Texaco Inc | Petroleum liquids containing amine salts of molybdic acid |
| US3223673A (en) * | 1962-10-29 | 1965-12-14 | Phillips Petroleum Co | Masticating rubber with vanadium acetylacetonate as the principal peptizing agent |
| US3399139A (en) * | 1965-01-15 | 1968-08-27 | British Petroleum Co | Synthetic lubricant composition of improved oxidation stability |
| US3360467A (en) * | 1965-03-29 | 1967-12-26 | Monsanto Res Corp | Functional fluid |
| US3413223A (en) * | 1965-07-22 | 1968-11-26 | British Petroleum Co | Ester lubricants |
| US3538002A (en) * | 1968-11-20 | 1970-11-03 | Monsanto Res Corp | Modified functional fluids |
| US4667045A (en) * | 1984-03-28 | 1987-05-19 | Union Carbide Corporation | Organosalts of metalate anions and process for the production of alkylene glycols therewith |
| US4849123A (en) * | 1986-05-29 | 1989-07-18 | The Lubrizol Corporation | Drive train fluids comprising oil-soluble transition metal compounds |
| US4755311A (en) * | 1986-08-14 | 1988-07-05 | The Lubrizol Corporation | Phosphorus-, sulfur- and boron-containing compositions, and lubricant and functional fluid compositions containing same |
| US4722919A (en) * | 1986-10-06 | 1988-02-02 | Texaco Inc. | Synthesis of vanadium/propylene glycol complexes |
| US20040214731A1 (en) * | 2003-04-22 | 2004-10-28 | R.T. Vanderbilt Company, Inc. | Organoammonium tungstate and molybate compounds, and process for preparing such compounds |
| EP4159832A1 (en) | 2021-10-04 | 2023-04-05 | Infineum International Limited | Lubricating oil compositions |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2795549A (en) | Lubricating oil compositions | |
| US2795552A (en) | Lubricant compositions | |
| US2795548A (en) | Lubricant compositions | |
| US2795553A (en) | Lubricant compositions | |
| US2795550A (en) | Lubricating oil compositions | |
| US2883412A (en) | P-xylylenediamine salts of glycol boric acids | |
| US2737492A (en) | Lubricating oil compositions | |
| US2680094A (en) | Rust preventive oil composition | |
| US2805997A (en) | Lubricant composition | |
| US2403894A (en) | Additives for lubricants | |
| US2690999A (en) | Silver protective agents for sulfurcontaining lubricants | |
| US2786812A (en) | Mineral oil compositions containing tincontaining dithiophosphate compounds | |
| US2796404A (en) | Extreme pressure lubricant compositions | |
| US4392966A (en) | Molybdenum-zinc dialkyldithiophosphates as lubricant additives | |
| US2676151A (en) | Corrosion inhibitors for lubricating oils | |
| US2409726A (en) | Lubricant composition | |
| EP0128019B1 (en) | Multifunctional additives for functional fluids and lubricants | |
| US2902450A (en) | Lubricating oil composition | |
| US2760937A (en) | Phosphorus-containing lubricant additives | |
| US2795547A (en) | Lubricating oil compositions | |
| US2371319A (en) | Lubricant | |
| US2786813A (en) | Tin-containing thioxanthate compounds and lubricants containing them | |
| US2809162A (en) | Corrosion inhibited lubricant composition | |
| US3245979A (en) | Phosphorus phenol condensation compounds | |
| US3240704A (en) | Lubricating compositions having oilsoluble phosphorus-containing condensation products |