US2793990A - Electrodeposition of alloys containing copper and tin - Google Patents
Electrodeposition of alloys containing copper and tin Download PDFInfo
- Publication number
- US2793990A US2793990A US430425A US43042554A US2793990A US 2793990 A US2793990 A US 2793990A US 430425 A US430425 A US 430425A US 43042554 A US43042554 A US 43042554A US 2793990 A US2793990 A US 2793990A
- Authority
- US
- United States
- Prior art keywords
- tin
- copper
- electrodeposition
- sodium
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 15
- 239000000956 alloy Substances 0.000 title claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title description 13
- 229910052802 copper Inorganic materials 0.000 title description 13
- 239000010949 copper Substances 0.000 title description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title description 10
- 238000004070 electrodeposition Methods 0.000 title description 6
- 238000000034 method Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 8
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- TVQLLNFANZSCGY-UHFFFAOYSA-N disodium;dioxido(oxo)tin Chemical compound [Na+].[Na+].[O-][Sn]([O-])=O TVQLLNFANZSCGY-UHFFFAOYSA-N 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 229940079864 sodium stannate Drugs 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 235000015165 citric acid Nutrition 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000409204 Cacaliopsis nardosmia Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- -1 alkali-metal salts Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- FMWMEQINULDRBI-UHFFFAOYSA-L copper;sulfite Chemical compound [Cu+2].[O-]S([O-])=O FMWMEQINULDRBI-UHFFFAOYSA-L 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- IOUCSUBTZWXKTA-UHFFFAOYSA-N dipotassium;dioxido(oxo)tin Chemical compound [K+].[K+].[O-][Sn]([O-])=O IOUCSUBTZWXKTA-UHFFFAOYSA-N 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/58—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
Definitions
- the present invention relates to improvements in electroplating and is more particularly concerned with the electrodeposition of alloys containing copper and tin as the main constituents.
- the major object of the present invention is to provide a method whereby copper-tin alloys may be deposited in a bright condition so that a subsequent bright chromium plating operation is possible without any intermediate treatment of the articles.
- This improvement is of very considerable commercial importance as it makes it possible to transfer the articles being plated direct from the alloy plating bath to the bright chromium bath without the necessity of removing them from the plating jigs or suspenders in order to carry out a polishing or brightening treatment.
- Such intermediate treatment would usually involve unwiring the articles and hence an appreciable amount of labor, and the possibility of dispensing with it owing to the depositing of a bright alloy undercoating, represents therefore an important economic advantage.
- the alloy coating may be obtained in the bright state by adopting a suitable chemical measure.
- the chemical measures employed comprise the addition to the electrolyte of certain compounds of lead.
- the effect may be increased by the use of a secondary brightener which may consist of organic compounds such as acetates, cyanates, thiocyanates, tartrates, and/or citrates which may be supplied in the form of their alkali-metal salts or as salts of lead previously referred to.
- the proportions by weight of the solids may vary as follows:
- the various components may be added to the aqueous bath separately or they may be mixed in suitable proportions beforehand and subsequently dissolved in the appropriate amount of water.
- composition of the anodes which primarily controls the nature of the deposit, may be -95% copper and 5-20% tin and very good results have been obtained with copper and 10% tin. It has also been found advantageous to include a small proportion gf aluminum or aluminum alloy, for instance, up to 2.5% of aluminum or up to 3% of an alloy of aluminum and magnesium.
- citrate or citric acid given in each of the above examples of electrolytes are not essential to the present invention.
- a primary brightener compound of lead there is added to an electrolyte-as setforthin the above-examples (with or without the citrate or citric acid present) a primary brightener compound of lead.
- Such compounds may include oxides, carbonates, cyanidesftar'trates or acetates.
- Titanium which is also a metal of the fourth group or "the'Piio'di'c Table, does not satisfy therequirements or the present invention which are so well served by lead.
- the quantity of-t't he primary brighteher added to an electrolyte -'s'olu'tio'n containing the composition or any one or Examples -l will vary from .01 to 1 gram per liter or about .003.3% of asoluble lead compound selected from the group'co'iisisti'ng of oxides and salts. It is preferred to add the brightener compound to the electrolyte-solution after-formation of the solution'rather than incorporating-it-wit-h the compositions of Examples 1-5 and adding theentire composition to the water. In other -words,-it-is-deemed advisable to add the brightener compound to theelectroly-te solution separately. Alternatively, the brightener may be included in the form of a small proportion of the appropriate metal alloyed with the anode.
- the invention accordingly represents an important step forward in the plating art whereby improved results may be obtained with less labor.
- a process for the electrodeposition in bright form of alloys consisting mainly of copper and tin on a cathode comprising passing an electric current through an electrolytecontaining major portions of copper and tin, a primary brightener comprising about .003 to 3% of soluble compounds of lead selected from the group consisting of oxides and salts, and in which the cathode and an anode of the alloy to be deposited are immersed.
- -A process for theelectrodeposition in bright form of alloys consisting mainly of copper and tin on a cathode comprising passing an electric current through an electrolyte comprising an aqueous solution containing dissolved solids in the proportion by weight of 5 25% copper cyanide, lO50% sodium stannate, 10-35% sodium cyanide, *35% sodium hydroxide, and .0O3.3% of a soluble lead compound selected from the group consisting of oxides and salts and in which the cathode and an anode of the alloy to be deposited are immersed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
United States Patent ELECTRODEPOSITION OF ALLOYS CONTAINING COPPER AND TIN Erich Heymann and Grigory Schmerling, London, England, assignors to Silvercrown Limited, London, England, a British company No Drawing. Application May 17, 1954, Serial No. 430,425
Claims priority, application Great Britain June 4, 1952 6 Claims (Cl. 204-'44) This application is a continuation-in-part of our application, Serial No. 334,088, filed January 29, 1953, now abandoned,
The present invention relates to improvements in electroplating and is more particularly concerned with the electrodeposition of alloys containing copper and tin as the main constituents.
As is well known, in bright chromium plating techniques, the usual practice is to deposit a thin film of chromium on an electrolytically-deposited undercoating of another meta-l, conveniently nickel. As an alternative which affords many technical advantages, the use of an alloy containing copper and tin as the main constituents in place of nickel has much to recommend it, and various methods have been proposed in order to obtain a satisfac tory depositing under production conditions which involves certain difliculties. One method which largely overcomes these difiiculties is disclosed in our copending application Serial No. 320,617 filed November 14, 1952, now Patent No. 2,722,508.
All methods hitherto proposed for electrodepositing copper-tin alloy suitable as undercoating for bright chromium plate have, however, given a dull deposit which requires polishing or other brightening treatment if the subsequent chromium plating is to come out bright.
The major object of the present invention is to provide a method whereby copper-tin alloys may be deposited in a bright condition so that a subsequent bright chromium plating operation is possible without any intermediate treatment of the articles.
This improvement is of very considerable commercial importance as it makes it possible to transfer the articles being plated direct from the alloy plating bath to the bright chromium bath without the necessity of removing them from the plating jigs or suspenders in order to carry out a polishing or brightening treatment. Such intermediate treatment would usually involve unwiring the articles and hence an appreciable amount of labor, and the possibility of dispensing with it owing to the depositing of a bright alloy undercoating, represents therefore an important economic advantage.
According to the invention, the alloy coating may be obtained in the bright state by adopting a suitable chemical measure.
The chemical measures employed comprise the addition to the electrolyte of certain compounds of lead. The effect may be increased by the use of a secondary brightener which may consist of organic compounds such as acetates, cyanates, thiocyanates, tartrates, and/or citrates which may be supplied in the form of their alkali-metal salts or as salts of lead previously referred to.
An example of a suitable composition for the electrolyte is as follows:
EXAMPLE 1 Gm./l. Copper cyan 40 Sodium ctannate 20 Sodium cyanide (total) 65 Sodium hydroxide 7% Sodium citrate This gives a rather weak electrolyte and in circumstances in which the use of a more concentrated electrolyte is preferable, the following composition might be used:
The quantitiesof the various components may vary within the ranges defined by the upper and lower limits set forth in the two preceding examples.
For instance, the proportions by weight of the solids may vary as follows:
Percent Copper cyanide 5-25 Sodium stannate 10-50 Sodium cyanide 10-35 Sodium hydroxide 3- 5 Sodium citr 10-45 Other suitable examples of electrolyte compositions are as follows:
EXAMPLE 3 Preferred Concentra- Ooncentra- Percentage tion tion, g./l. Range Range,
g. ll.
copper carbonate- 7-60 20-80 potassium stannate 30 3-75 10-50 sodium cyanide (total) 7-60 20-80 sodium hydroxide 5 0. 25-20 1-20 potassium citrate 3-70 25-125 EXAMPLE 4 copper oxide 15 3-50 10-50 sodium stannate 100 3-50 10-50 potassium cyanide (total) 45 8-70 20-100 ammonium citrate 100 10-80 25-125 EXAMPLE 5 copper sulphite 50 7-50 20-80 sodium cyanide (total)c 50 7-50 20-80 sodium stannate 60 3-40 10-50 potassium hydroxide 60 10-40 20-100 citric acid 50 10-40 20-100 The various components may be added to the aqueous bath separately or they may be mixed in suitable proportions beforehand and subsequently dissolved in the appropriate amount of water.
The composition of the anodes, which primarily controls the nature of the deposit, may be -95% copper and 5-20% tin and very good results have been obtained with copper and 10% tin. It has also been found advantageous to include a small proportion gf aluminum or aluminum alloy, for instance, up to 2.5% of aluminum or up to 3% of an alloy of aluminum and magnesium.
The citrate or citric acid given in each of the above examples of electrolytes are not essential to the present invention.
According to the present "invention, there is added to an electrolyte-as setforthin the above-examples (with or without the citrate or citric acid present) a primary brightener compound of lead. Such compounds may include oxides, carbonates, cyanidesftar'trates or acetates.
It has been found that lead is the most eflective metal, the compounds ofwhich will serve as a primary brightener. Titanium, "which is also a metal of the fourth group or "the'Piio'di'c Table, does not satisfy therequirements or the present invention which are so well served by lead. x
The quantity of-t't he primary brighteher added to an electrolyte -'s'olu'tio'n containing the composition or any one or Examples -lwill vary from .01 to 1 gram per liter or about .003.3% of asoluble lead compound selected from the group'co'iisisti'ng of oxides and salts. It is preferred to add the brightener compound to the electrolyte-solution after-formation of the solution'rather than incorporating-it-wit-h the compositions of Examples 1-5 and adding theentire composition to the water. In other -words,-it-is-deemed advisable to add the brightener compound to theelectroly-te solution separately. Alternatively, the brightener may be included in the form of a small proportion of the appropriate metal alloyed with the anode.
The invention accordingly represents an important step forward in the plating art whereby improved results may be obtained with less labor.
We claim:
1. A process for the electrodeposition in bright form of alloys consisting mainly of copper and tin on a cathode comprising passing an electric current through an electrolytecontaining major portions of copper and tin, a primary brightener comprising about .003 to 3% of soluble compounds of lead selected from the group consisting of oxides and salts, and in which the cathode and an anode of the alloy to be deposited are immersed.
2. A process as claimed in claim 1 in which the effect of the primary brightener is increased by the addition to the electrolyte of a secondary brightener consisting of a metallic salt of an organic acid selected from the group consisting of acetic, cyanic, thiocyanic, tartaric and citric acids.
3. A process as claimed in claim 2 in which an organic salt of lead serves as both a primary and a secondary brightener.
4. A composition adapted for use when dissolved in water as the electrolyte in an electrolytic bath for the electrodeposition in bright form of an alloy consisting mainly of copper and tin, said composition comprising 525%'cop'pe1"cyanide, l'050% sodium stannate, l'0 35% sodium cyanide, 35% sodium hydroxide and .003 .3% of asolublelead compound selectedfrom the group consisting of oxides and salts.
5. A liquid for use as the electrolyte in -an'electrolytic bath for the electrodeposition in bright form of an alloy consisting mainly of copper and tin, said liquid comprising an aqueous solution containing dissolved solids in the proportion by weight of 545% copper cyanide, l0 sodium stannate, 10-35% sodium cyanide, 35% sodium hydroxide and .003.3% of a soluble lead compound selected from the group consisting of oxides and salts.
6. -A process =for theelectrodeposition in bright form of alloys consisting mainly of copper and tin on a cathode comprising passing an electric current through an electrolyte comprising an aqueous solution containing dissolved solids in the proportion by weight of 5 25% copper cyanide, lO50% sodium stannate, 10-35% sodium cyanide, *35% sodium hydroxide, and .0O3.3% of a soluble lead compound selected from the group consisting of oxides and salts and in which the cathode and an anode of the alloy to be deposited are immersed.
References Cited in the file of this patent UNITED STATES PATENTS 2,397,522 Baie'r Apr. 2, 1946 2,734,024 Schultz Feb. 7, 1956 FOREIGN PATENTS 679,947 Great Britain Sept. 24, 1952 OTHER REFERENCES Ser. No. 331,456, Weiner (A. P.'C.), published July 13, 1943.
Claims (1)
1. A PROCESS FOR THE ELETRODEPOSITION IN BRAIGHT FORM OF ALLOYS CONSISTING MAINLY OF COPPER AND TIN ON A CATHODE COMPRISING PASSING AN ELECTRIC CURRENT THROUGH AN ELECTROLYATE CONTAINING MAJOR PORTIONS OF COPPER AND TIN, A PRIMARY BRIGHTENER COMPRISING ABOUT .003 TO .3% OF SOLUBLE COMPOUNDS OF LEAD SELECTED FROM THE GROUP CONSISTING OF OXIDES AND SALTS, AND IN WHICH THE CATHODE AND AN ANODE OF THE ALLOY TO BE DEPOSITED ARE IMMERSED.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB14118/52A GB741864A (en) | 1952-06-04 | 1952-06-04 | Improvements in the electrodeposition of alloys containing copper and tin |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2793990A true US2793990A (en) | 1957-05-28 |
Family
ID=10035325
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US430425A Expired - Lifetime US2793990A (en) | 1952-06-04 | 1954-05-17 | Electrodeposition of alloys containing copper and tin |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US2793990A (en) |
| DE (1) | DE1040339B (en) |
| GB (1) | GB741864A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2886500A (en) * | 1956-11-01 | 1959-05-12 | Battelle Development Corp | Electroplating of copper alloys |
| US3108006A (en) * | 1959-07-13 | 1963-10-22 | M & T Chemicals Inc | Plating on aluminum |
| US3775268A (en) * | 1971-12-30 | 1973-11-27 | Us Navy | Use of lead in a nonorganic-containing copper pyrophosphate bath |
| US3957594A (en) * | 1973-09-14 | 1976-05-18 | Bernard Grellet | Surface treatment of parts of ferrous alloys |
| EP0048579A1 (en) * | 1980-09-23 | 1982-03-31 | Gkn Vandervell Limited | Method for the electro-deposition of lead alloys |
| CN103540956A (en) * | 2013-09-26 | 2014-01-29 | 界首市飞航铜业有限公司 | Wet separation technology for waste copper-tin alloy fitting soldering flakes |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5614327A (en) * | 1994-09-09 | 1997-03-25 | Sarthoise De Revetements Electrolytiques | Process for protecting a silver or silver-coated part |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2397522A (en) * | 1939-10-25 | 1946-04-02 | City Auto Stamping Co | Process for the electrodeposition of tin alloys |
| GB679947A (en) * | 1950-06-09 | 1952-09-24 | Cleveland Graphite Bronze Co | Improvements in bearings |
| US2734024A (en) * | 1956-02-07 | Method of making bearings |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2548867A (en) * | 1945-04-14 | 1951-04-17 | Poor & Co | Electroplating metals |
| NL69965C (en) * | 1945-08-10 | |||
| US2575712A (en) * | 1945-09-29 | 1951-11-20 | Westinghouse Electric Corp | Electroplating |
| US2436316A (en) * | 1946-04-25 | 1948-02-17 | Westinghouse Electric Corp | Bright alloy plating |
| DE821895C (en) * | 1949-11-25 | 1951-11-22 | Diamler Benz A G | Method and device for producing shiny Glavanian precipitates |
-
1952
- 1952-06-04 GB GB14118/52A patent/GB741864A/en not_active Expired
-
1953
- 1953-03-13 DE DES32594A patent/DE1040339B/en active Pending
-
1954
- 1954-05-17 US US430425A patent/US2793990A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2734024A (en) * | 1956-02-07 | Method of making bearings | ||
| US2397522A (en) * | 1939-10-25 | 1946-04-02 | City Auto Stamping Co | Process for the electrodeposition of tin alloys |
| GB679947A (en) * | 1950-06-09 | 1952-09-24 | Cleveland Graphite Bronze Co | Improvements in bearings |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2886500A (en) * | 1956-11-01 | 1959-05-12 | Battelle Development Corp | Electroplating of copper alloys |
| US3108006A (en) * | 1959-07-13 | 1963-10-22 | M & T Chemicals Inc | Plating on aluminum |
| US3775268A (en) * | 1971-12-30 | 1973-11-27 | Us Navy | Use of lead in a nonorganic-containing copper pyrophosphate bath |
| US3957594A (en) * | 1973-09-14 | 1976-05-18 | Bernard Grellet | Surface treatment of parts of ferrous alloys |
| EP0048579A1 (en) * | 1980-09-23 | 1982-03-31 | Gkn Vandervell Limited | Method for the electro-deposition of lead alloys |
| CN103540956A (en) * | 2013-09-26 | 2014-01-29 | 界首市飞航铜业有限公司 | Wet separation technology for waste copper-tin alloy fitting soldering flakes |
Also Published As
| Publication number | Publication date |
|---|---|
| GB741864A (en) | 1955-12-14 |
| DE1040339B (en) | 1958-10-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2436316A (en) | Bright alloy plating | |
| GB957778A (en) | Improvements in or relating to immersion tin coating and to electrodepositing tin-copper alloys on aluminium | |
| US2693444A (en) | Electrodeposition of chromium and alloys thereof | |
| US2250556A (en) | Electrodeposition of copper and bath therefor | |
| US2793990A (en) | Electrodeposition of alloys containing copper and tin | |
| US2658032A (en) | Electrodeposition of bright copper-tin alloy | |
| US3764489A (en) | Electrodeposition of gold alloys | |
| US4069113A (en) | Electroplating gold alloys and electrolytes therefor | |
| US2075623A (en) | Zinc plating | |
| GB533610A (en) | Improved process and apparatus for the electro-deposition of tin alloys | |
| US3440151A (en) | Electrodeposition of copper-tin alloys | |
| US2555375A (en) | Process of plating bright silver alloy | |
| US2497988A (en) | Indium plating | |
| US2080479A (en) | Plating of zinc | |
| US2773022A (en) | Electrodeposition from copper electrolytes containing dithiocarbamate addition agents | |
| US3668083A (en) | Process of electroplating rhenium and bath for this process | |
| GB2086428A (en) | Hardened gold plating process | |
| US2577365A (en) | Rhodium plating | |
| US2719821A (en) | Gold alloy plating bath | |
| US2429970A (en) | Silver plating | |
| US3219558A (en) | Bright silver plating bath and process | |
| US4411744A (en) | Bath and process for high speed nickel electroplating | |
| US3984291A (en) | Electrodeposition of tin-lead alloys and compositions therefor | |
| US2722508A (en) | Electrodeposition of alloys containing copper and tin | |
| US2739933A (en) | Electrodeposition of ternary alloys |