US2604667A - Yarn process - Google Patents
Yarn process Download PDFInfo
- Publication number
- US2604667A US2604667A US181092A US18109250A US2604667A US 2604667 A US2604667 A US 2604667A US 181092 A US181092 A US 181092A US 18109250 A US18109250 A US 18109250A US 2604667 A US2604667 A US 2604667A
- Authority
- US
- United States
- Prior art keywords
- spinneret
- spun
- fiber
- spinning
- polyethylene terephthalate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 20
- 239000000463 material Substances 0.000 claims description 27
- 239000000835 fiber Substances 0.000 claims description 23
- 238000009987 spinning Methods 0.000 claims description 22
- -1 POLYETHYLENE TEREPHTHALATE Polymers 0.000 claims description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 15
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000009739 binding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000005486 naphthalic acid group Chemical group 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S8/00—Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
- Y10S8/04—Polyester fibers
Definitions
- This invention relates to a process for spinning synthetic linear polyesters and is more particularly concerned with a high-speed process for melt-spinning polyethylene terephthalate material to produce useful as-spun fibers and yarns.
- the objects of this invention are accomplished by a process which comprises extruding a molten fiber-forming material containing at least 90 mol percent of polyethylene terephthalate through a spinneret and pulling the extruded fibers away from the spinneret by winding up or forwarding the fibers to the next operation at a spinning speed, measured after the fibers have completely solidified, in excess of 5200 yards per minute.
- yarns are prepared having tenacities of at least 3 grams per denier and shrinkages of about 4% or less in the as-spun state.
- fiber-forming material is meant an ethylene terephthalate polymer which preferably has an intrinsic viscosity of at least 0.3, since polymers having lower intrinsic viscosities are essentially non-fiber forming.
- the expression intrinsic viscosity is used herein as a measure of the degree of polymerization of the polyester and may be defined as wherein r is the viscosity of a dilute solution of the polyester in a mixture of 60 parts phenol and 40 parts tetrachloroethane, divided by the viscosity of the phenol-tetrachloroethane mixture per se, measured in the same units at the same temperature, and C is the concentration in grams of polyester per cc. of solution.
- the fiber-forming material is principally polyethylene terephthalate, but the inclusion therein of up to 10 mol percent of modifying materials is intended whenever the expression polyethylene terephthalate material is used.
- Polyethylene terephthalate itself is a polycondensation product of ethylene glycol and terephthalic acid or an ester forming derivative thereof.
- minor amounts of a modifying material may be added, e. g., another glycol and/or another dicarboxylic acid.
- a suitable funicular structure comprised essentially of polyethylene terephthalate may have included in the polymer molecule up to 10 mol percent of another glycol, such as diethylene glycol, tetramethylene glycol, or hexamethylene glycol. Or again, the molecule may contain up to 10 mol percent of another acid.
- suitable examples of Limit modifying acids there may be mentioned hexahydroterephthalic acid, bibenzoic acid, adipic acid, sebacic acid, azelaic acid, the naphthalic acids, 2,5-dimethyl terephthallc acid and bis-p-carboxy phenoxy-ethane.
- modifiers may be added as one of the initial reactants during the polymerization process, but the modifying materials may also be polymerized separately and then melt-blended with the polyethylene terephthalate. In either case the total amount of modifier in the final polymeric material should not exceed 10 mol percent. While the polymerization process is preferably carried out in the melt, it may also be performed in the solid phase, or in solution or emulsion by conventional procedures. An explanation of suitable polymerization processes for the type of polyesters comprehended herein is contained in United States Patent No. 2,465,319 to Whinfield and Dickson.
- spinning speed is meant the speed of the yarn at a point after complete solidification has occurred when no more reduction in denier is being observed.
- a convenient point for determining this speed is at the wind-up or forwarding regions. It will be obvious that the speed of an extruded polymer stream will not be the same while in the fluid or semi-fluid state as it is at the wind-up or forwarding place.
- the polymer prepared by a conventional polymerization process, is cooled, broken into chips and dried. The chips are then melted on a heated grid and pumped by means of a metering pump of the type commonly :used in the synthetic textile industry through a filter pack and spinneret orifices into room temperature air.
- the extruded filaments cool and solidify by passage through the air and are subjected after solidification to a means for forwarding them at speeds in excess of 5200 yards per minute.
- the forwarding means may comprise a high speed wheel, roll or pinch rolls, an air jet or other suitable means.
- the filaments Under the impetus imposed by the forwarding means, the filaments elongate in the distance between the spinneret face and the point of complete solidification.
- the inertia of the material and the drag of the surrounding air apparently supplies sufficient tension in the form of drag on the filaments to induce orientation of the polymer molecules in the solidification range.
- no useful orientation takes place until the filamentary streams begin to solidify.
- the filaments for several inches from the spinneret appear to be just dangling from the spinneret.
- the filaments In the solidification range, the filaments can be seen to accelerate and become taut fibers, moving along their length at high speeds. The phenomenon can further be detected byfeeling the air dragged along with the filaments beginning at the solidification range. It is the orientation that takes place at this point which accounts for the useful properties of the yarn spun by the process of this invention.
- the spinning speed can be increased up to speeds where excessive filament breakage occurs.
- the upper limit is about 6500 yards per minute.
- the spinning speed can also be higher without excessive filament breaking at the spinneret.
- the upper practical limit for extrusion rate is about 41,000 denyards per spinneret hole.
- the spinning speeds essential in the process of this invention may be obtained by several methods. There may be used a driven bobbin, a high s eed pirn take-up, or an air jet may be used as a tensiom'ng and forwarding device so that the yarn can be forwarded directly to a staple cutter without an intermediate wind-up.
- the molten polymer may be extruded through a spinneret at temperatures within the range of 260 to 310 C. For optimum results this extrusion temperature should be between 280 to 295 C., although properties of the final yarn vary but little over the entire range.
- the preferred temperature range is from 10 to 20 C. lower than copolymers of ethylene terephthalate are used, depending on the copolymer, and typically in the range of'from 270 to 285 C.
- the resulting filaments should be allowed to travel at least 45-50 inches before they reach the forwarding means. This distance is required for complete solidification. When the distance is in the range of 30-40 inches, fused filaments often result with an otherwise standard spinning procedure because of inadequate quenching time.
- the outstanding advantage of the present invention is that valuable polyethylene terephthalate fibers and yarns having high tenacity and low shrinkage, are produced directly in the asspun condition without the necessity of an afterdrawing operation.
- the spinning process also operates at exceptionally high speeds. Both of these advantage contribute to increased production and a considerable saving in manpower and equipment.
- the high tenacity, low shrinkage yarns produced by the process of this invention have great z utility in the apparel, industrial, and other fields. in water for five minutes.
- they may be Intrinsic Extrusion Denier Percent Percent Example Viscos- Temp. 5 2 5? per flla- 3 Elon- Shrinkity (O.) ment y gation age
- the spinning speed can be varied over a wide range above 5200 yards per minute. Lower spinning speeds in the range of from 3000 to 5200 1 yards per minute result in high shrinkage yarns of quite different properties, which spontaneously crimp to a wool-like resiliency upon heating in a relaxed condition, as disclosed in'detail in'my ..copending application, Serial No.
- Polyethylene terephthalate yarns also find use in blanket bindings, table cloths, Slip covers, theatre curtains, sails, lace, fishing lines, chair seats, lamp shades, deck chair fabrics, shoe fabrics, upholstery both flat and plush, veilings, and velvets.
- a process for producing tenacious as-spun fibers which comprises extruding a molten fiberforming material containing at least 90 mol percent of polyethylene terephthalate through a spinneret, cooling the extruded material until solidified to a fiber, and pulling the extruded material away from the spinneret at a spinning speed, measured afterthe material has com pletely solidified to a fiber, in excess of 5200 yards per minute and below speeds where excessive filament breakage occurs, said extruding being at a rate in denyards equal to the product of said spinning speed and the spun denier desired;
- a process for producing tenacious, as-spun fibers which comprises extruding, at a temperature within the range of from 260' to 310 C., a
- molten fiber-forming material containing at least 90 mol percent of polyethylene terephthalate through a. spinneret, cooling the extruded material until solidified to a fiber, and pulling the extruded material away from the spinneret at a spinning speed, measured after the material has completely solidified to a fiber, in excess of 5200 yards per minute and below speeds where excessive filament breakage occurs, said extruding being at a rate in denyards equal to the product of said spinning speed and the spun denier desired.
- a process for producing tenacious, as-spun fibers which comprises extruding, at a temperature within the range of from 270 to 295 C., a molten fiber-forming material containing at least 90 mol percent of polyethylene terephthalate through a spinneret, cooling the extruded material until solidified to a fiber, and pulling the extruded material away from the spinneret at a spinning speed, measured after the material has completely solidified to a fiber, in excess of 5200 yards per minute andbelow speeds where excessive filament breakage occurs, said extruding being at a rate in denyards equal to the product of said spinning speed and the spun denier desired.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Artificial Filaments (AREA)
Description
Patented July 29, 1952 YARN PROCESS Harold Henry Hebeler, Eggertsville, N. Y., assignor to E. I. du Pont de Nemours and Company, Wilmington, Del.
No Drawing. Application August 23, 1950, Serial No. 181,092
3 Claims. 1
This invention relates to a process for spinning synthetic linear polyesters and is more particularly concerned with a high-speed process for melt-spinning polyethylene terephthalate material to produce useful as-spun fibers and yarns.
The preparation of useful synthetic linear textile fibers by previous melt-spinning processes has required the two separate operations of spinning and then drawing. Melt-spun fibers of synthetic linear polyesters and polyamides in the as-spun state havepreviously been very weak and not suitable for textile uses, except in very special applications, until drawn. The as-spun tenacities have been in the range of 0.2 to 0.8 grams per denier, at elongations of several hundred per cent. By a subsequent drawing operation, in which both orientation and crystallization occur, useful fibers are obtained having tenacities in the range of 4 to 10 grams per denier at elongations of 5 to This is generally true for synthetic yarns made from condensation or addition polymers.
It is apparent that considerable economic advantage would be achieved by providing a process which produces useful as-spun fibers. Elimination of the drawing operation subsequent to the normal spinning process would result in a considerable saving in both manpower and equipment and would speed up production considerably. Furthermore, for a given production capacity less space would be necessary, since the area currently needed for drawing yarn would be eliminated.
It is an object of the present invention to provide a process for. melt-spinning polyethylene terephthalate material at high speeds to produce useful as-spun high tenacity fibers and yarns having low shrinkage without the necessity of a,
subsequent drawing operation. Other objects of the invention will become apparent from the following description and claims.
The objects of this invention are accomplished by a process which comprises extruding a molten fiber-forming material containing at least 90 mol percent of polyethylene terephthalate through a spinneret and pulling the extruded fibers away from the spinneret by winding up or forwarding the fibers to the next operation at a spinning speed, measured after the fibers have completely solidified, in excess of 5200 yards per minute. By means of this process, yarns are prepared having tenacities of at least 3 grams per denier and shrinkages of about 4% or less in the as-spun state.
,By "fiber-forming material is meant an ethylene terephthalate polymer which preferably has an intrinsic viscosity of at least 0.3, since polymers having lower intrinsic viscosities are essentially non-fiber forming. The expression intrinsic viscosity is used herein as a measure of the degree of polymerization of the polyester and may be defined as wherein r is the viscosity of a dilute solution of the polyester in a mixture of 60 parts phenol and 40 parts tetrachloroethane, divided by the viscosity of the phenol-tetrachloroethane mixture per se, measured in the same units at the same temperature, and C is the concentration in grams of polyester per cc. of solution.
The fiber-forming material is principally polyethylene terephthalate, but the inclusion therein of up to 10 mol percent of modifying materials is intended whenever the expression polyethylene terephthalate material is used. Polyethylene terephthalate itself is a polycondensation product of ethylene glycol and terephthalic acid or an ester forming derivative thereof. During the preparation of this polyester, minor amounts of a modifying material may be added, e. g., another glycol and/or another dicarboxylic acid. Thus. a suitable funicular structure comprised essentially of polyethylene terephthalate may have included in the polymer molecule up to 10 mol percent of another glycol, such as diethylene glycol, tetramethylene glycol, or hexamethylene glycol. Or again, the molecule may contain up to 10 mol percent of another acid. As suitable examples of Limit modifying acids, there may be mentioned hexahydroterephthalic acid, bibenzoic acid, adipic acid, sebacic acid, azelaic acid, the naphthalic acids, 2,5-dimethyl terephthallc acid and bis-p-carboxy phenoxy-ethane.
These modifiers may be added as one of the initial reactants during the polymerization process, but the modifying materials may also be polymerized separately and then melt-blended with the polyethylene terephthalate. In either case the total amount of modifier in the final polymeric material should not exceed 10 mol percent. While the polymerization process is preferably carried out in the melt, it may also be performed in the solid phase, or in solution or emulsion by conventional procedures. An explanation of suitable polymerization processes for the type of polyesters comprehended herein is contained in United States Patent No. 2,465,319 to Whinfield and Dickson.
By spinning speed is meant the speed of the yarn at a point after complete solidification has occurred when no more reduction in denier is being observed. A convenient point for determining this speed is at the wind-up or forwarding regions. It will be obvious that the speed of an extruded polymer stream will not be the same while in the fluid or semi-fluid state as it is at the wind-up or forwarding place.
In preparing the useful high tenacity, low .shrinkage yarns by this invention, the following general procedure is used. The polymer, prepared by a conventional polymerization process, is cooled, broken into chips and dried. The chips are then melted on a heated grid and pumped by means of a metering pump of the type commonly :used in the synthetic textile industry through a filter pack and spinneret orifices into room temperature air. The extruded filaments cool and solidify by passage through the air and are subjected after solidification to a means for forwarding them at speeds in excess of 5200 yards per minute. The forwarding means may comprise a high speed wheel, roll or pinch rolls, an air jet or other suitable means. Under the impetus imposed by the forwarding means, the filaments elongate in the distance between the spinneret face and the point of complete solidification. The inertia of the material and the drag of the surrounding air apparently supplies sufficient tension in the form of drag on the filaments to induce orientation of the polymer molecules in the solidification range. Actually, no useful orientation takes place until the filamentary streams begin to solidify. The filaments for several inches from the spinneret appear to be just dangling from the spinneret. In the solidification range, the filaments can be seen to accelerate and become taut fibers, moving along their length at high speeds. The phenomenon can further be detected byfeeling the air dragged along with the filaments beginning at the solidification range. It is the orientation that takes place at this point which accounts for the useful properties of the yarn spun by the process of this invention.
' The properties of polyethylene terephthalate yarns spun under various conditions in accordance with the present invention are given in the table. The general procedure described was followed, with specific conditions as shown in the table. Spinning speed is given in yards per minute, tenacity is in grams per denier, and intrinsic viscosity is as defined previously. The percent shrinkage was calculated from the difference in length between fibers as-spun and boiled 4 August 23, 1950. Still lower spinning speeds produce low tenacity yarns having very high shrinkages, which approach the properties of conventional unoriented, as-spun polyesters or polyamides when the speed is reduced below 1500 yards per minute.
Above 5200 yards per minute the spinning speed can be increased up to speeds where excessive filament breakage occurs. For example, at extrusion rates of 15,000 denyards (denier times yards per minute), the upper limit is about 6500 yards per minute. At higher extrusion rates, the spinning speed can also be higher without excessive filament breaking at the spinneret. The upper practical limit for extrusion rate is about 41,000 denyards per spinneret hole.
The spinning speeds essential in the process of this invention may be obtained by several methods. There may be used a driven bobbin, a high s eed pirn take-up, or an air jet may be used as a tensiom'ng and forwarding device so that the yarn can be forwarded directly to a staple cutter without an intermediate wind-up.
The molten polymer may be extruded through a spinneret at temperatures within the range of 260 to 310 C. For optimum results this extrusion temperature should be between 280 to 295 C., although properties of the final yarn vary but little over the entire range. The preferred temperature range is from 10 to 20 C. lower than copolymers of ethylene terephthalate are used, depending on the copolymer, and typically in the range of'from 270 to 285 C.
When the molten polymer is extruded into room temperature air, the resulting filaments should be allowed to travel at least 45-50 inches before they reach the forwarding means. This distance is required for complete solidification. When the distance is in the range of 30-40 inches, fused filaments often result with an otherwise standard spinning procedure because of inadequate quenching time.
The outstanding advantage of the present invention is that valuable polyethylene terephthalate fibers and yarns having high tenacity and low shrinkage, are produced directly in the asspun condition without the necessity of an afterdrawing operation. The spinning process also operates at exceptionally high speeds. Both of these advantage contribute to increased production and a considerable saving in manpower and equipment.
The high tenacity, low shrinkage yarns produced by the process of this invention have great z utility in the apparel, industrial, and other fields. in water for five minutes. For example, in the apparel field, they may be Intrinsic Extrusion Denier Percent Percent Example Viscos- Temp. 5 2 5? per flla- 3 Elon- Shrinkity (O.) ment y gation age The spinning speed can be varied over a wide range above 5200 yards per minute. Lower spinning speeds in the range of from 3000 to 5200 1 yards per minute result in high shrinkage yarns of quite different properties, which spontaneously crimp to a wool-like resiliency upon heating in a relaxed condition, as disclosed in'detail in'my ..copending application, Serial No. 181,091, filed steam, compressed air and the like. Polyethylene terephthalate yarns also find use in blanket bindings, table cloths, Slip covers, theatre curtains, sails, lace, fishing lines, chair seats, lamp shades, deck chair fabrics, shoe fabrics, upholstery both flat and plush, veilings, and velvets.
As different embodiments of this invention may be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific processes disclosed except as defined in the appended claims.
What is claimed is:
1. A process for producing tenacious as-spun fibers which comprises extruding a molten fiberforming material containing at least 90 mol percent of polyethylene terephthalate through a spinneret, cooling the extruded material until solidified to a fiber, and pulling the extruded material away from the spinneret at a spinning speed, measured afterthe material has com pletely solidified to a fiber, in excess of 5200 yards per minute and below speeds where excessive filament breakage occurs, said extruding being at a rate in denyards equal to the product of said spinning speed and the spun denier desired;
2. A process for producing tenacious, as-spun fibers which comprises extruding, at a temperature within the range of from 260' to 310 C., a
molten fiber-forming material containing at least 90 mol percent of polyethylene terephthalate through a. spinneret, cooling the extruded material until solidified to a fiber, and pulling the extruded material away from the spinneret at a spinning speed, measured after the material has completely solidified to a fiber, in excess of 5200 yards per minute and below speeds where excessive filament breakage occurs, said extruding being at a rate in denyards equal to the product of said spinning speed and the spun denier desired.
3. A process for producing tenacious, as-spun fibers which comprises extruding, at a temperature within the range of from 270 to 295 C., a molten fiber-forming material containing at least 90 mol percent of polyethylene terephthalate through a spinneret, cooling the extruded material until solidified to a fiber, and pulling the extruded material away from the spinneret at a spinning speed, measured after the material has completely solidified to a fiber, in excess of 5200 yards per minute andbelow speeds where excessive filament breakage occurs, said extruding being at a rate in denyards equal to the product of said spinning speed and the spun denier desired.
HAROLD HENRY HEBELER.
, file of this patent:
UNITED STATES PATENTS Number Name Date Whinfield et al Mar. 22, 1949
Claims (1)
1. A PRCOESS FOR PRODUCING TENACIOUS AS-SPUN FIBERS WHICH COMPRISES EXTRUDING A MOLTEN FIBERFORMING MATERIAL CONTAINING AT LEAST 90 MOL PERCENT OF POLYETHYLENE TEREPHTHALATE THROUGH A SPINNERET, COOLING THE EXTRUDED MATERIAL UNTIL SOLIDIFIED TO A FIBER, AND PULLING THE EXTRUDED MATERIAL AWAY FROM THE SPINNERET AT A SPINNING SPEED, MEASURED AFTER THE MATERIAL HAS COMPLETELY SOLIDIFIED TO A FIBER IN EXCESS OF 5200 YARDS PER MINUTE AND BELOW SPEEDS WHERE EXCESSIVE FILAMENT BREAKAGE OCCURS, SAID EXTRUDING BEING AT A RATE IN DENYARDS EQUAL TO THE PRODUCT OF SAID SPINNING SPEED AND THE SPUN DENIER DESIRED.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US181092A US2604667A (en) | 1950-08-23 | 1950-08-23 | Yarn process |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US181092A US2604667A (en) | 1950-08-23 | 1950-08-23 | Yarn process |
| GB1532452A GB712951A (en) | 1952-06-18 | 1952-06-18 | A process for melt spinning polyethylene terephthalate fibres or yarns |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2604667A true US2604667A (en) | 1952-07-29 |
Family
ID=26251216
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US181092A Expired - Lifetime US2604667A (en) | 1950-08-23 | 1950-08-23 | Yarn process |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2604667A (en) |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2764468A (en) * | 1952-02-23 | 1956-09-25 | Du Pont | Method of preparing resilient acrylonitrile polymer fibers |
| DE1078210B (en) * | 1956-02-23 | 1960-03-24 | Licentia Gmbh | Laminate based on polyethylene terephthalic acid ester |
| US2935371A (en) * | 1954-05-05 | 1960-05-03 | Du Pont | Process for interfacial spinning in which one phase contains a thickening agent |
| US3528129A (en) * | 1964-10-24 | 1970-09-15 | Freudenberg Carl Kg | Apparatus for producing nonwoven fleeces |
| US3539676A (en) * | 1966-08-29 | 1970-11-10 | Celanese Corp | Process for producing filaments and films of polymers of alkylene sulfides |
| DE1950669A1 (en) * | 1969-10-08 | 1971-07-15 | Metallgesellschaft Ag | Novel endless thread fleece |
| DE2241718A1 (en) * | 1971-08-24 | 1973-03-08 | Du Pont | METHOD OF MANUFACTURING TEXTURED YARN |
| US3895090A (en) * | 1968-04-09 | 1975-07-15 | Asahi Chemical Ind | Method for direct spinning of polyethylene-1,2-diphenoxyethane-p,p{40 -dicarboxylate fibers |
| US3900549A (en) * | 1972-06-06 | 1975-08-19 | Kuraray Co | Method of spinning composite filaments |
| DE2514874A1 (en) * | 1975-04-05 | 1976-10-14 | Zimmer Ag | PROCESS FOR FAST-SPIN POLYAMIDES |
| US4000239A (en) * | 1971-12-13 | 1976-12-28 | Teijin Limited | Process for spinning naphthalate polyester fibers |
| DE2623904A1 (en) * | 1976-05-28 | 1977-12-15 | Metallgesellschaft Ag | TEXTILE MATERIAL MADE FROM SYNTHETIC YARN |
| US4107252A (en) * | 1974-05-22 | 1978-08-15 | Polysar Limited | Melt spinning synthetic filaments |
| US4134882A (en) * | 1976-06-11 | 1979-01-16 | E. I. Du Pont De Nemours And Company | Poly(ethylene terephthalate)filaments |
| DE2839672A1 (en) * | 1977-09-12 | 1979-04-05 | Du Pont | FLAT YARN OR ELECTRIC WIRE |
| US4195051A (en) * | 1976-06-11 | 1980-03-25 | E. I. Du Pont De Nemours And Company | Process for preparing new polyester filaments |
| US4237187A (en) * | 1979-02-26 | 1980-12-02 | Allied Chemical Corporation | Highly oriented, partially drawn, untwisted, compact poly(ε-caproamide) yarn |
| US4425293A (en) | 1982-03-18 | 1984-01-10 | E. I. Du Pont De Nemours And Company | Preparation of amorphous ultra-high-speed-spun polyethylene terephthalate yarn for texturing |
| DE3431834A1 (en) * | 1984-08-30 | 1986-03-06 | Hoechst Ag, 6230 Frankfurt | HIGH-STRENGTH SUPPLY THREADS FOR SEWING YARNS AND METHOD FOR THEIR PRODUCTION |
| US4668566A (en) * | 1985-10-07 | 1987-05-26 | Kimberly-Clark Corporation | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
| US4687610A (en) * | 1986-04-30 | 1987-08-18 | E. I. Du Pont De Neumours And Company | Low crystallinity polyester yarn produced at ultra high spinning speeds |
| US4691003A (en) * | 1986-04-30 | 1987-09-01 | E. I. Du Pont De Nemours And Company | Uniform polymeric filaments |
| US4753834A (en) * | 1985-10-07 | 1988-06-28 | Kimberly-Clark Corporation | Nonwoven web with improved softness |
| US4778460A (en) * | 1985-10-07 | 1988-10-18 | Kimberly-Clark Corporation | Multilayer nonwoven fabric |
| US4804508A (en) * | 1983-02-16 | 1989-02-14 | Rhone-Poulenc Fibres | Process for spinning polyamide at high speed |
| US4818456A (en) * | 1983-02-16 | 1989-04-04 | Rhone-Poulenc Fibres | Simplified process for obtaining polyester yarns at high speed |
| US4855099A (en) * | 1983-12-30 | 1989-08-08 | Snia Fibre S.P.A. | Single stage process for producing continuous polyester-based multifilament yarns at high speed |
| US5013506A (en) * | 1987-03-17 | 1991-05-07 | Unitika Ltd. | Process for producing polyester fibers |
| US5034182A (en) * | 1986-04-30 | 1991-07-23 | E. I. Du Pont De Nemours And Company | Melt spinning process for polymeric filaments |
| US5108675A (en) * | 1982-05-28 | 1992-04-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for preparing easily dyeable polyethylene terephthalate fiber |
| US5141700A (en) * | 1986-04-30 | 1992-08-25 | E. I. Du Pont De Nemours And Company | Melt spinning process for polyamide industrial filaments |
| US5250245A (en) * | 1991-01-29 | 1993-10-05 | E. I. Du Pont De Nemours And Company | Process for preparing polyester fine filaments |
| US5288553A (en) * | 1991-01-29 | 1994-02-22 | E. I. Du Pont De Nemours And Company | Polyester fine filaments |
| US5407621A (en) * | 1991-01-29 | 1995-04-18 | E. I. Du Pont De Nemours And Company | Process for preparing polyester fine filaments |
| US5414034A (en) * | 1993-03-29 | 1995-05-09 | General Electric Company | Processing stabilizer formulations |
| US5417902A (en) * | 1986-01-30 | 1995-05-23 | E. I. Du Pont De Nemours And Company | Process of making polyester mixed yarns with fine filaments |
| US5543102A (en) * | 1993-07-22 | 1996-08-06 | General Electric Company | Melt extrusion process |
| US5741587A (en) * | 1991-01-29 | 1998-04-21 | E. I. Du Pont De Nemours And Company | High filament count fine filament polyester yarns |
| DE19705113A1 (en) * | 1997-02-12 | 1998-08-13 | Freudenberg Carl Fa | Stretching device and method for producing stretched plastic filaments |
| US5827464A (en) * | 1991-01-29 | 1998-10-27 | E. I. Du Pont De Nemours And Company | Making high filament count fine filament polyester yarns |
| US5849231A (en) * | 1993-03-29 | 1998-12-15 | General Electric Company | Melt extrusion process |
| US6115893A (en) * | 1996-12-20 | 2000-09-12 | Rhodia Filtec Ag | Process and device for producing industrial polyester yarn |
| US6444151B1 (en) * | 1999-04-15 | 2002-09-03 | E. I. Du Pont De Nemours And Company | Apparatus and process for spinning polymeric filaments |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2465319A (en) * | 1941-07-29 | 1949-03-22 | Du Pont | Polymeric linear terephthalic esters |
-
1950
- 1950-08-23 US US181092A patent/US2604667A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2465319A (en) * | 1941-07-29 | 1949-03-22 | Du Pont | Polymeric linear terephthalic esters |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2764468A (en) * | 1952-02-23 | 1956-09-25 | Du Pont | Method of preparing resilient acrylonitrile polymer fibers |
| US2935371A (en) * | 1954-05-05 | 1960-05-03 | Du Pont | Process for interfacial spinning in which one phase contains a thickening agent |
| DE1078210B (en) * | 1956-02-23 | 1960-03-24 | Licentia Gmbh | Laminate based on polyethylene terephthalic acid ester |
| US3528129A (en) * | 1964-10-24 | 1970-09-15 | Freudenberg Carl Kg | Apparatus for producing nonwoven fleeces |
| US3539676A (en) * | 1966-08-29 | 1970-11-10 | Celanese Corp | Process for producing filaments and films of polymers of alkylene sulfides |
| US3895090A (en) * | 1968-04-09 | 1975-07-15 | Asahi Chemical Ind | Method for direct spinning of polyethylene-1,2-diphenoxyethane-p,p{40 -dicarboxylate fibers |
| DE1950669A1 (en) * | 1969-10-08 | 1971-07-15 | Metallgesellschaft Ag | Novel endless thread fleece |
| DE2241718A1 (en) * | 1971-08-24 | 1973-03-08 | Du Pont | METHOD OF MANUFACTURING TEXTURED YARN |
| US4000239A (en) * | 1971-12-13 | 1976-12-28 | Teijin Limited | Process for spinning naphthalate polyester fibers |
| US3900549A (en) * | 1972-06-06 | 1975-08-19 | Kuraray Co | Method of spinning composite filaments |
| US4107252A (en) * | 1974-05-22 | 1978-08-15 | Polysar Limited | Melt spinning synthetic filaments |
| DE2514874A1 (en) * | 1975-04-05 | 1976-10-14 | Zimmer Ag | PROCESS FOR FAST-SPIN POLYAMIDES |
| DE2623904A1 (en) * | 1976-05-28 | 1977-12-15 | Metallgesellschaft Ag | TEXTILE MATERIAL MADE FROM SYNTHETIC YARN |
| US4134882A (en) * | 1976-06-11 | 1979-01-16 | E. I. Du Pont De Nemours And Company | Poly(ethylene terephthalate)filaments |
| US4195051A (en) * | 1976-06-11 | 1980-03-25 | E. I. Du Pont De Nemours And Company | Process for preparing new polyester filaments |
| DE2839672A1 (en) * | 1977-09-12 | 1979-04-05 | Du Pont | FLAT YARN OR ELECTRIC WIRE |
| FR2402720A1 (en) * | 1977-09-12 | 1979-04-06 | Du Pont | POLY (ETHYLENE TEREPHTHALATE) WIRE, WICK AND DISCONTINUED FIBERS WITH IMPROVED TINCTORIAL PROPERTIES |
| US4237187A (en) * | 1979-02-26 | 1980-12-02 | Allied Chemical Corporation | Highly oriented, partially drawn, untwisted, compact poly(ε-caproamide) yarn |
| US4425293A (en) | 1982-03-18 | 1984-01-10 | E. I. Du Pont De Nemours And Company | Preparation of amorphous ultra-high-speed-spun polyethylene terephthalate yarn for texturing |
| US5108675A (en) * | 1982-05-28 | 1992-04-28 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for preparing easily dyeable polyethylene terephthalate fiber |
| US4804508A (en) * | 1983-02-16 | 1989-02-14 | Rhone-Poulenc Fibres | Process for spinning polyamide at high speed |
| US4818456A (en) * | 1983-02-16 | 1989-04-04 | Rhone-Poulenc Fibres | Simplified process for obtaining polyester yarns at high speed |
| US4855099A (en) * | 1983-12-30 | 1989-08-08 | Snia Fibre S.P.A. | Single stage process for producing continuous polyester-based multifilament yarns at high speed |
| DE3431834A1 (en) * | 1984-08-30 | 1986-03-06 | Hoechst Ag, 6230 Frankfurt | HIGH-STRENGTH SUPPLY THREADS FOR SEWING YARNS AND METHOD FOR THEIR PRODUCTION |
| EP0173200A3 (en) * | 1984-08-30 | 1986-05-28 | Hoechst Aktiengesellschaft | High-strength filaments for a sewng-yarn, and process for manufacturing those filaments |
| US4753834A (en) * | 1985-10-07 | 1988-06-28 | Kimberly-Clark Corporation | Nonwoven web with improved softness |
| US4778460A (en) * | 1985-10-07 | 1988-10-18 | Kimberly-Clark Corporation | Multilayer nonwoven fabric |
| US4668566A (en) * | 1985-10-07 | 1987-05-26 | Kimberly-Clark Corporation | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
| US5417902A (en) * | 1986-01-30 | 1995-05-23 | E. I. Du Pont De Nemours And Company | Process of making polyester mixed yarns with fine filaments |
| US4687610A (en) * | 1986-04-30 | 1987-08-18 | E. I. Du Pont De Neumours And Company | Low crystallinity polyester yarn produced at ultra high spinning speeds |
| US5141700A (en) * | 1986-04-30 | 1992-08-25 | E. I. Du Pont De Nemours And Company | Melt spinning process for polyamide industrial filaments |
| US5034182A (en) * | 1986-04-30 | 1991-07-23 | E. I. Du Pont De Nemours And Company | Melt spinning process for polymeric filaments |
| US4691003A (en) * | 1986-04-30 | 1987-09-01 | E. I. Du Pont De Nemours And Company | Uniform polymeric filaments |
| US5013506A (en) * | 1987-03-17 | 1991-05-07 | Unitika Ltd. | Process for producing polyester fibers |
| US5741587A (en) * | 1991-01-29 | 1998-04-21 | E. I. Du Pont De Nemours And Company | High filament count fine filament polyester yarns |
| US5250245A (en) * | 1991-01-29 | 1993-10-05 | E. I. Du Pont De Nemours And Company | Process for preparing polyester fine filaments |
| US5288553A (en) * | 1991-01-29 | 1994-02-22 | E. I. Du Pont De Nemours And Company | Polyester fine filaments |
| US5407621A (en) * | 1991-01-29 | 1995-04-18 | E. I. Du Pont De Nemours And Company | Process for preparing polyester fine filaments |
| US5827464A (en) * | 1991-01-29 | 1998-10-27 | E. I. Du Pont De Nemours And Company | Making high filament count fine filament polyester yarns |
| US5849231A (en) * | 1993-03-29 | 1998-12-15 | General Electric Company | Melt extrusion process |
| US5414034A (en) * | 1993-03-29 | 1995-05-09 | General Electric Company | Processing stabilizer formulations |
| US6022916A (en) * | 1993-03-29 | 2000-02-08 | General Electric Company | Processing stabilizer formulations |
| US5543102A (en) * | 1993-07-22 | 1996-08-06 | General Electric Company | Melt extrusion process |
| US6115893A (en) * | 1996-12-20 | 2000-09-12 | Rhodia Filtec Ag | Process and device for producing industrial polyester yarn |
| DE19705113A1 (en) * | 1997-02-12 | 1998-08-13 | Freudenberg Carl Fa | Stretching device and method for producing stretched plastic filaments |
| DE19705113C2 (en) * | 1997-02-12 | 1999-04-29 | Freudenberg Carl Fa | Stretching device and method for producing stretched plastic filaments |
| US6444151B1 (en) * | 1999-04-15 | 2002-09-03 | E. I. Du Pont De Nemours And Company | Apparatus and process for spinning polymeric filaments |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2604667A (en) | Yarn process | |
| US4518744A (en) | Process of melt spinning of a blend of a fibre-forming polymer and an immiscible polymer and melt spun fibres produced by such process | |
| US2980492A (en) | Process for preparing textile yarns | |
| US3900549A (en) | Method of spinning composite filaments | |
| US2604689A (en) | Melt spinning process and fiber | |
| CA2915810C (en) | Process for the preparation of a fiber, a fiber and a yarn made from such a fiber | |
| US2957747A (en) | Process for producing crimpable polyamide filaments | |
| US4424258A (en) | Self-crimping multi-component polyester filament wherein the components contain differing amounts of polyolefin | |
| US4863664A (en) | High speed process of making polyamide filaments | |
| US3574811A (en) | Polyamide wet-spinning and stretching process | |
| US3457341A (en) | Process for spinning mixed filaments | |
| US2942325A (en) | Process of treating undrawn polyester yarns and filaments | |
| KR100649850B1 (en) | PTT (Poly (trimethylene terephthalate)) staple fiber and its production method | |
| US3275732A (en) | Process for preparing thick and thin novelty yarns | |
| US3221088A (en) | Process and apparatus for orienting yarn | |
| US3671620A (en) | Process for the manufacture of composite filaments and yarns | |
| US4668453A (en) | Cospinning process | |
| US2924503A (en) | Process for melt spinning polyesters containing an alkaline earth sulfate filler | |
| EP0140559B1 (en) | Improved high speed process for forming fully drawn polyester yarn | |
| US3975488A (en) | Process for preparing poly(tetramethylene terephthalate) yarn | |
| US3470686A (en) | Polyblend yarns | |
| US3864448A (en) | Dry-spinning tetrachlorinated armoatic polyester filaments from methylene chloride solutions | |
| JP2861335B2 (en) | Method for producing naphthalate polyester fiber | |
| JP5964437B2 (en) | Poly (trimethylene arylate) fiber, method for making the same, and fabric made therefrom | |
| KR100221568B1 (en) | Manufacturing method of dichroic polyester composite yarn |